Прибор для постоянного напряжения. Как измерить переменное напряжение мультиметром. Измерение силы тока

Запомните одно правило при измерениях: при измерении силы тока, соединяются последовательно с нагрузкой, а при измерении других величин — параллельно.

На рисунке ниже показано, как надо правильно соединять щупы и нагрузку для того, чтобы замерить силу тока:

Черный щуп, который воткнут в гнездо СОМ — его не трогаем, а красный переносим в гнездо, где написано mA или хA, где вместо х — максимальное значение силы тока, которую может замерить прибор. В моем случае это 20 Ампер, так как рядом с гнездом написано 20 А. В зависимости от того, какое значение силы тока вы собираетесь замерять, туда и втыкаем красный щуп. Если вы не знаете, какая примерно сила тока будет протекать в цепи, то ставим в гнездо хА:


Давайте проверим, как все это работает в деле. В нашем случае нагрузкой является вентилятор от компьютера. Наш блок питания имеет встроенную индикацию для показа силы тока, а как вы знаете с курса физики, сила тока измеряется в Амперах. Выставляем 12 Вольт, на мультиметре ручку крутим на измерение постоянного тока. Мы выставили предел измерения на мультике до 20 Ампер. Собираем как по схеме выше и смотрим показания на мультике. Оно в точности совпало со встроенным амперметром на .


Для того, чтобы измерить силу тока переменного напряжения мы ставим крутилку мультиметра на значок измерения силы тока переменного напряжения — «А~» и точно также по такой же схеме делаем замеры.

Как измерить постоянное напряжение мультиметром

Возьмем вот такую вот батарейку


Как мы видим, на ней написан ток 550 мАh , который она может выдавать в нагрузку в течение часа, то есть миллиампер в час, а также напряжение, которым обладает наша батарейка — 1,2 Вольта. Напряжение — это понятно, а вот что такое «ток в течение часа»? Допустим, наша нагрузка -лампочка кушает ток 550 мА. Значит лампочка будет светить один час. Или возьмем лампочку, которая светит послабее, и пусть она у нас кушает 55 мА, значит она сможет проработать 10 часов.

Значение 550 мА, которое у нас написано на батарейке, делим на значение, которое написано на нагрузке и получаем время, в течение которого все это будет работать, пока не сядет батарейка. Короче говоря, кто дружен с математикой, тому не составит труда понять сие чудо:-)

Давайте замеряем напряжение на батарейке, один щуп мультиметра ставим на плюс, а другой на минус, то есть подсоединяем параллельно , и вуаля!


В данном случае напряжение на батарейке 1,28 Вольт. Значение на новой батарейке всегда должно превышать то, которое написано на этикетке.

Давайте замеряем напряжение на блоке питания. Выставляем 10 Вольт и замеряем.


Красный — это плюс, черный — минус. Все сходится, напряжение 10,09 Вольт. 0,09 Вольт спишем на погрешность.

Если же мы спутаем щупы мультиметра или щупы блока, то ничего страшного не произойдет. Мультиметр покажет нам такое же значение, но со знаком «минус».


Имейте ввиду, на таких мультиметрах это не прокатывает


Для того, чтобы точно определить полярность не имея мультиметра, можно прибегнуть к нескольким советам, которые описаны в статье.

Как измерить переменное напряжение мультиметром

Ставим на мультике предел измерения переменного напряжения и замеряем напряжение в розетке. Без разницы, как совать щупы. У нет плюса и минуса. Там есть фаза и ноль. Грубо говоря, один провод в розетке не представляет опасности — это ноль, а другой может здорово попортить ваше самочувствие или даже здоровье — это фаза.

По идее в розетке должно быть 220 Вольт. Но у меня показывает 215. Ничего страшного в этом нет. Напряжение в розетке «играет». Ровно 220 Вольт вам вряд ли придется увидеть при измерениях напряжения в розетках вашего дома:-)

Под электрическим напряжением понимают работу, совершаемую электрическим полем для перемещения заряда напряженностью в 1 Кл (кулон) из одной точки проводника в другую.

Как возникает напряжение?

Все вещества состоят из атомов, представляющих собой положительно заряженное ядро, вокруг которого с большой скоростью кружатся более мелкие отрицательные электроны. В общем случае атомы нейтральны, так как количество электронов совпадает с числом протонов в ядре.

Однако если некоторое количество электронов отнять из атомов, то они будут стремиться притянуть такое же их количество, формируя вокруг себя плюсовое поле. Если же добавить электронов, то возникнет их избыток, и отрицательное поле. Формируются потенциалы – положительный и отрицательный.

При их взаимодействии возникнет взаимное притяжение.

Чем больше будет величина различия – разность потенциалов – тем сильнее электроны из материала с их избыточным содержанием будут перетягиваться к материалу с их недостатком. Тем сильнее будет электрическое поле и его напряжение.

Если соединить потенциалы с различными зарядами проводников, то возникнет электрический – направленное движение носителей заряда, стремящееся устранить разницу потенциалов. Для перемещения по проводнику зарядов силы электрического поля совершают работу, которая и характеризуется понятием электрического напряжения.

В чем измеряется

Температуры;

Виды напряжения

Постоянное напряжение

Напряжение в электрической сети постоянно, когда с одной ее стороны всегда положительный потенциал, а с другой – отрицательный. Электрический в этом случае имеет одно направление и является постоянным.

Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах.

При подключении нагрузки в цепь постоянного тока важно не перепутать контакты, иначе устройство может выйти из строя. Классическим примером источника постоянного напряжения являются батарейки. Применяют сети , когда не требуется передавать энергию на большие расстояния: во всех видах транспорта – от мотоциклов до космических аппаратов, в военной технике, электроэнергетике и телекоммуникациях, при аварийном электрообеспечении, в промышленности (электролиз, выплавка в дуговых электропечах и т.д.).

Переменное напряжение

Если периодически менять полярность потенциалов, либо перемещать их в пространстве, то и электрический устремится в обратном направлении. Количество таких изменений направления за определенное время показывает характеристика, называемая частотой. Например, стандартные 50 означают, что полярность напряжения в сети меняется за секунду 50 раз.


Напряжение в электрических сетях переменного тока является временной функцией.

Чаще всего используется закон синусоидальных колебаний.

Так получается за счет того, что возникает в катушке асинхронных двигателей за счет вращения вокруг нее электромагнита. Если развернуть вращение по времени, то получается синусоида.

Состоит из четырех проводов – трех фазных и одного нулевого. напряжение между проводами нулевым и фазным равно 220 В и называется фазным. Между фазными напряжение также существует, называется линейным и равно 380 В (разность потенциалов между двумя фазными проводами). В зависимости от вида подключения в трехфазной сети можно получить или фазное напряжение, или линейное.

Напряжение, или вольтаж, - это один из параметров электрического тока, показывающий разницу потенциалов на участке цепи. Он равнозначен электродвижущей силе, и фактически является одним из самых важных факторов для работы любых электроприборов.

Проверка напряжения - едва ли не самая частая операция, которую приходится выполнять в работе с электротехникой, вне зависимости от того, обслуживание это промышленной или бытовой (домашней) электросети. От его величины, а также от самого факта наличия, зависит, будет ли работать электроприбор, а также может ли он выйти из строя. В настоящее время для измерения напряжения используется аппарат под названием мультиметр.

Общее назначение

Это многофункциональное устройство, предназначенное для измерения целого ряда параметров электрического тока. Современный мультиметр, даже полупрофессиональный, предназначенный для бытовых нужд, способен измерять:

  • переменное и постоянное напряжение;
  • переменный и постоянный ток (силу тока);
  • сопротивление.

Это минимальный перечень функций, которыми обладает даже самое простое устройство. Более сложные имеют функции прозвонки диодов и транзисторов, проверки целостности кабелей и т.п. Есть модели, которые позволяют мерить даже температуру.

Обычный бытовой прибор используется в сетях, напряжение которых не выше 1000 вольт постоянного или 750 вольт переменного тока. Чтобы измерить высокое напряжение, применяется только профессиональный высоковольтный мультиметр.

Устройство

Мы будем рассматривать цифровые мультиметры (они же — тестеры), поскольку. аналоговые (снабженные стрелкой и полем со шкалой значений) в настоящее время уже почти вышли из обихода.

На рынке существует большое разнообразие мультиметров, но у всех из них есть следующие элементы:

  • цифровой дисплей;
  • переключатель для выставления параметров;
  • 2-4 гнезда для подключения контактных щупов;
  • два контактных щупа.

Работает прибор от батарейки. Мы будем рассматривать самое простой мультиметр для домашнего использования, измеряющий три основных параметра - напряжение, силу тока и сопротивление электрического проводника. Подавляющее большинство других функций в быту не нужны, за исключением функции прозвонки. Но прежде чем переходить к измерению напряжения, разберемся, какое оно бывает.

Разница между переменным и постоянным напряжением

Правильнее будет говорить о разнице между постоянным и переменным током. Различные электроприборы работают либо от постоянного тока, либо от переменного.

Переменный означает, что направление движения электронов в проводнике меняется от плюса к минусу с заданной частотой, то есть меняется полярность тока. В бытовой розетке по стандарту действующее напряжение 220 В, (амплитудное 311 В) а частота изменения тока 50 Гц. От такого напряжения работают все включающиеся в розетку приборы.

А вот аккумуляторы и батарейки - это источники постоянного тока. Они всегда имеют фиксированные плюс и минус (полярность). Частота у постоянного тока, естественно, отсутствует.

Подключение штекеров

Перед тем, как измерять напряжение, мультиметр надо выставить в соответствующий режим. Для маркировки напряжения используются либо аббревиатуры ACV - переменное, и DCV - постоянное, либо пиктограммы, дополняющие обозначение V - вольтаж. Так, V~ — это переменное напряжение. V с горизонтальной длинной чертой, под которой три коротких - это постоянное.

Обратите внимание! Если на вашем приборе есть только обозначение V, значит, он способен автоматически определять, переменное оно или постоянное.
Кроме пиктограмм, обозначающих тип напряжения, на корпус мультиметра нанесены диапазоны величин. Большинство бытовых приборов имеют границы измерения до 750 В переменного и до 1000 В постоянного напряжения.

Перед тем, как замерить напряжение в розетке, на аккумуляторе или другом приборе, подключите к мультиметру щупы. Их два - черный и красный. А вот гнезд может быть и два, и три, и четыре - в зависимости от класса прибора.

Черный щуп - это либо минус, либо «ноль». Он всегда устанавливается в гнездо мультиметра, обозначенное COM. Красный щуп - либо плюс, либо «фаза». Для его подключения выбирается гнездо, снабженное соответствующей маркировкой. Если гнезд только 2 - вопрос снят, если больше - выбирайте то, около которого есть символ V.

Другие гнезда могут быть маркированы либо 10-20А, либо mA - соответственно для измерения силы тока (сверхбольшой или сверхмалой), либо иметь другие обозначения и соответственно предназначения. Гнездо для вольтажа всегда одно.

Установка режима измерения

После установки щупов переведите переключатель мультиметра на подходящий диапазон. Если измеряется напряжение в розетке, выбирайте пороговое значение в 750 ACV, если, к примеру, автомобильного аккумулятора - 20 или 200 DCV.

Обратите внимание! Всегда необходимо устанавливать предел измерения выше предполагаемого напряжения на источнике питания. Иначе вы рискуете сжечь прибор.

Есть правило: вольтаж измеряется путем параллельного подключения мультиметра, (тогда как сила тока - последовательно с нагрузкой). На практике это значит, что для того, чтобы померить напряжение в розетке, необходимо просто вставить в нее оба щупа мультиметра, каждый в свое гнездо. Где ноль, где фаза - не имеет значения.

Прибор показывает напряжение в тех пределах, на которые он отрегулирован. Таким образом, если выставить верхний порог в 750 В - увидите на экране значение в диапазоне 210-230 В. Или меньше, или больше, если скачок напряжения очень велик, но выше 750 В он подняться не может. Но если выставить порог в 200 В, то при фактической величине напряжения выше этой границы на экране появится цифра 1.

Учтите, что ровно 220 В в бытовой розетке бывает не всегда. Допустимы отклонения плюс-минус 10-15 В.

Проверка трехфазной линии осуществляется контактом двух щупов мультиметра с двумя шинами. Между ними должно быть 380 В, между одной шиной и землей будет 220 В (плюс-минус 15).

Проверка батарейки

Как измерить напряжение на батарейке? Необходимо черный щуп законтачить с ее минусом, красный - с плюсом, и выставить границу на 20 DCV. Для любых домашних батарей и аккумуляторов этого достаточно. Для сравнения: аккумулятор легкового автомобиля выдает 13-14 В. Только мощные аккумуляторы грузовиков предназначены для напряжения 24 В и выше.

Мультиметр покажет сохранившийся заряд батареи. Если вы перепутали полярность - ничего страшного, просто на экранчике появится знак «-».
Проверяя батарейку, учтите, что «свежая» батарейка должна выдавать значение вольтажа немного больше, чем указано на ее корпусе.

Прижимая щупы к контактам батарейки или аккумулятора, удара током бояться не стоит: порог чувствительности человеческой кожи - 36 В. Даже 20 В вы не почувствуете. Но проверяя ток во вскрытом электроприборе или розетке, нужно быть осторожным. Нельзя использовать щупы с поврежденной изоляцией.

Возможные неисправности

Если мультиметр перестал измерять напряжение или неправильно его показывает, проверьте другим тестером батарейку, размещенную внутри корпуса, или просто замените ее. Проверьте также, соответствует ли выставленный порог измерения напряжению, которое должно быть у объекта, который вы проверяете. Проверьте, верно ли установлен характер вольтажа - батарея не проверяется в режиме переменного, а розетка - постоянного напряжения.

Если не определяется параметр в одной розетке, проверьте его в другой. Если проблема возникла при проверке маленькой батареи - возможно, дело в плохом контакте щупа и клеммы.

Протестируйте устройство на различных объектах, априори работоспособных. Если мультиметр в принципе перестал измерять вольтаж, то либо иссяк его встроенный источник тока, либо повреждена плата управления, либо - наиболее частый случай - поврежден кабель одного из щупов. Следует осмотреть кабели на предмет разрыва, убедиться в хорошем контакте с гнездом. Если разрыв обнаружен - замените или почините провод, восстановив его целостность.

Если же никаких видимых причин потери работоспособности не обнаружено, то, скорее всего, мультиметр сгорел . Это могло произойти из-за попытки измерить завышенное напряжение, либо мощного сетевого скачка или других причин.

Прибор измеряет постоянное напряжение от 0 до 51,1 В с дискретностью 0,1 В и постоянный ток от 0 до 5,11 А с дискретностью 0,01 А Его прототипом послужил измеритель, описанный в , довольно простой по схеме и имеющий неплохие параметры. Основная реализованная в нем идея использовать недорогой микроконтроллер заслуживает внимания. Однако необходимость использовать ОУ, способный работать при однополярном питании при близком к нулю выходном напряжении, а также наличие дополнительного источника питания накладывают некоторые ограничения на его применение.

Цифровой измеритель напряжения и тока

К тому же индикаторы на плате прототипа расположены неудобно, лучше установить их в ряд по горизонтали и сократить размеры передней панели измерителя, приблизив их к габаритам использованных индикаторов. Принципиальная схема измерителя представлена на сайте www.сайт. Поскольку найти применённые в микросхемы 74HC595N (сдвиговые регистры с регистром хранения) не удалось, использованы микросхемы 74HC164N, в которых регистр хранения отсутствует. Также применены индикаторы, обладающие гораздо более высокой яркостью при малом токе, что позволило уменьшить потребляемый измерителем ток до 20 мА и отказаться от дополнительного стабилизатора напряжения +5 В.

Сигнал с датчика тока (резистора R1) поступает на вход GP1 микроконтроллера через инвертирующий усилитель на ОУ DA1. В отличие от (1J, здесь используется двухполярное питание ОУ напряжением ±8 В, поскольку далеко не все ОУ обладают свойством rail to rail и корректно работают при однополярном питании и почти нулевом напряжении на выходе. Двухполярное же питание позволяет легко решить эту проблему, допускает применение ОУ очень многих типов. Поскольку напряжение на выходе ОУ может находиться в интервале от 8 до 8 В. для защиты входа микроконтроллера от перегрузки применена ограничительная цепь R10VD9.

Подстроечным резистором R8 регулируют коэффициент усиления, а подстроечным резистором R11 устанавливают нулевое напряжение на выходе ОУ. Диоды VD1 и VD2 защищают вход ОУ от перегрузки в случае обрыва датчика тока. Благодаря сравнительно малому сопротивлению датчика тока уход результата измерения напряжения при изменении тока нагрузки от нуля до максимального (5.11 А) не превышает 0.06 В. Если измеритель встраивают в источник напряжения отрицательной полярности. датчик тока можно включить перед выходным делителем напряжения его стабилизатор».

При этом падение напряжения на датчике тока будет компенсировано цепью обратной связи стабилизатора. Поскольку ток делителя обычно невелик, на показания амперметра он влияния почти не окажет, к тому же это влияние можно скомпенсировать, подстрочным резистором R11.Питают измеритель выходным напряжением выпрямителя блока питания через преобразователь на транзисторах VT1 и VT2. Это несколько сложнее, чем в , так как требует изготовления импульсного трансформатора, зато нет проблем с получением всех требуемых номиналов напряжения. Преобразователь напряжения представляет собой простейший двухтактный автогенератор. схема которого позаимствована из . Частота преобразования - около 80 кГц.

Благодаря гальванической развязке между входом и выходом преобразователя измеритель можно встроить в стабилизатор напряжения любой полярности. С указанными на схеме транзисторами он работоспособен при входном напряжении от 30 до 44 В. при этом выходные напряжения изменяются приблизительно от 8 до 12 В. Благодаря тому что сопротивления резисторов R5 и R6 выбраны довольно большими, преобразователь не боится замыканий выходов. В таких случаях генерация просто срывается.

Напряжение 5 В для питания цифровой части измерителя получено с помощью интегрального стабилизатора DA2. Стабилизировать напряжения питания ОУ не требуется, поскольку сам он достаточно устойчив к его изменениям. Напряжение пульсаций с частотой преобразования подавляют RC-фильтры на входах микроконтроллера DD1. Если же слишком велики пульсации с частотой 100 Гц, рекомендуется воспользоваться способом их снижения, описанным в .Здесь стоит сказать несколько слов о присущей всем цифровым измерителям нестабильности младшего разряда результата измерения.

Он всегда хаотически изменяется на единицу вокруг истинного значения. Эти флюктуации не являются следствием неисправности прибора, но их нельзя устранить полностью, можно лишь уменьшить, усредняя результаты большого числа измерений. Детали измерителя смонтированы на трёх печатных платах из фольгированного с одной стороны изоляционного материала. Рассчитаны они на установку микросхем в корпусах DIP На одной плате (рис. 2) смонтированы индикаторы, на второй (рис. 3) - цифровые микросхемы и микроконтроллер. Преобразователь, стабилизатор напряжения питания микроконтроллера и усилитель сигнала датчика тока установлены на третьей плате (рис. 4).

Размещение деталей на платах и межплатные соединения показаны на рис. 5. Красными цифрами на нем обозначены номера выводов импульсного трансформатора Т1 у мест их подключения к плате. Сам трансформатор закреплён на ней хомутами из изолированного монтажного провода. Блокировочные конденсаторы С13 и С14 припаяны непосредственно к выводам питания микросхем DD2 и DD3. Как показала практика, измеритель нормально работает и без этих конденсаторов.

Платы микроконтроллера и индикаторов соединены кронштейнами из оцинкованной стали толщиной 0.5 мм. Плата преобразователя и усилителя закреплена двумя винтами М2. Расстояние между платами - около 11 мм. Такой вариант конструкции прибора (рис. 6) занимает меньше места на лицевой панели блока питания, в которую этот прибор должен быть встроен. Вместо ОУ КР140УД708 можно применить, например. КР140УД1408 и множество ОУ других типов Следует отметить, что они могут требовать иных цепей коррекции, чем КР140УД708 Это следует учесть при проектировании печатной платы.

Вместо сдвиговых регистров 74НС164 можно использовать 74НС4015, но придется изменить топологию печатных проводников платы. Диоды КД522Б можно заменить на КД510А. Подстроечные резисторы R8 и R11 - СПЗ19. R9 - импортный. Постоянные конденсаторы также импортные. Резистор R1 (датчик тока) можно изготовить из нихромового провода или применить готовый, как это сделано в (1). Я сделал его из отрезка нихромовой ленты сечением 2,5×0,8 мм и длиной (с учётом залуженных концов) около 25 мм, извлеченной из теплового реле ТРН.

Трансформатор Т1 намотан на ферритовом кольце типоразмера 10x6x3 мм, извлеченном из неисправной КЛЛ. Все обмотки намотаны проводом ПЭВ-2 диаметром 0,18 мм. Обмотка 2-3 содержит 83 витка, обмотки 1-2 и 4-5 - по 13 витков, а обмотка 6-7-8 80 витков с отводом от середины. Если выходное напряжение выпрямителя меньше 30 В, число витков обмотки 2-3 придётся уменьшить из расчета приблизительно 4 витка на вольт. Между собой обмотки 1-2-3 и 4-5 изолированы одним слоем конденсаторной бумаги толщиной 0,1 мм, а от обмотки 6-7-8 - двумя слоями такой бумаги После проверки работоспособности трансформатор пропитан лаком ХВ-784.

Программа микроконтроллера написана в среде MPLAB IDE v8.92 на языке ассемблера MPASM. Предлагаются два её варианта. Файлы первого варианта находятся в папке «Общ. катод» и предназначены для прибора со светодиодными индикаторами с общими катодами разрядов, в том числе теми, что указаны на схеме рис. 1. Файлы второго варианта из папки «Общ. анод» следует использовать при установке в прибор светодиодных индикаторов с общими анодами разрядов. Однако на практике этот вариант программы не испытан. Программирование микроконтроллера было выполнено с помощью программы IC-prog и простого устройства, описанного в (4).

Налаживание измерителя заключается в установке подстроечным резистором R11 нуля на выходе ОУ DA 1 при отсутствии тока в измеряемой цепи. Затем в эту цепь подают ток. близкий к пределу измерения, но меньше его. Контролируя ток образцовым амперметром, подстроечным резистором R8 добиваются равенства показаний образцового и налаживаемого приборов.Подав и контролируя образцовым вольтметром измеряемое напряжение, устанавливают соответствующие показания на индикаторе прибора подстроечным резистором R9. Подробнее о налаживании написано в (1).

Общие сведения. Необходимость измерения напряжения на практике возникает очень часто. В электротехнических и радиотехнических цепях и устройствах чаще всего измеряют напряжение постоянного и переменного (синусоидального и импульсного) тока.

Напряжение постоянного тока (рис. 3.5, а ) выражается, как . Источниками такого напряжения являются генераторы постоянного тока и химические источники питания.

Рис. 3.5. Временные диаграммы напряжений: постоянного (а), переменного синусоидального (б) и переменного импульсного (в) тока

Напряжение переменного синусоидального тока (рис. 3.5, б ) выражается как и характеризуется среднеквадратичным и амплитудным значениями:

Источниками такого напряжения являются низко- и высокочастотные генераторы , электросеть.

Напряжение переменного импульсного тока (рис. 3.5 в ) характеризуется амплитудным и средним (постоянная составляющая) значениями напряжения. Источником такого напряжения являются импульсные генераторы с сигналом разной формы.

Основной единицей измерения напряжения является вольт (В).

В практике электротехнических измерений широко используются дольные и кратные единицы:

Киловольт (1 кВ - В);

Милливольт (1мВ - В);

Микровольт (1 мкВ - В).

Международные обозначения единиц измерения напряжения приведены в Приложении 1.

В каталоговой классификации электронные вольтметры обознача-ются следующим образом: В1 — образцовые, В2 — постоянного тока, ВЗ — переменного синусоидального тока, В4 — переменной) импульс-ного тока, B5 — фазочувствительные, В6 — селективные, В7 — уни-версальные.

На шкалах аналоговых индикаторов и на лицевых панелях (на пе-реключателях пределов) отечественных и зарубежных электронных и электромеханических вольтметров применяются следующие обо-значения: V — вольтметры, kV — киловольтметры, mV — милливольт-метры, V — микровольтметры.

Измерение напряжения постоянного тока. Для измерения напря-жения постоянного тока используются электромеханические вольт-метры и мультиметры, электронные аналоговые и цифровые вольт-метры, электронные осциллографы.

Электромеханические вольтметры непосредственной опенки измеряемой величины составляют большой класс приборов аналого-вого типа и имеют следующие достоинства:

Возможность работы без подключения к источнику питания;

Малые габаритные размеры;

Меньшая цена (по сравнению с электронными);

Простота конструкции и удобство эксплуатации.

Чаще всего при электротехнических измерениях в сильноточных цепях используются вольтметры на основе электромагнитной и элек-тродинамической систем, в слаботочных цепях — магнитоэлектриче-ской системы . Поскольку все названные системы сами являются из-мерителями силы тока (амперметрами), то для создания на их основе вольтметров необходимо увеличить внутреннее сопротивление при-бора, т.е. подключить последовательно с измерительным механизмом добавочный резистор (рис. 3.6, а).


Вольтметр подключается к исследуемой цепи параллельно (рис. 3.6, б), и его входное сопротивление должно быть достаточно большим.

Для расширения диапазона измерения вольтметра также использу-ют добавочный резистор, который подключают к прибору последова-тельно (рис. 3.6, в).

Значение сопротивления добавочного резистора определяется по формуле:


Рис. 3.6. Схема создания вольтметра на основе амперметра (а ), подключение вольтметра к нагрузке (6 ), подключение добавочного резистора к вольтметру (в )

(3.8)

Где — число, показывающее, во сколько раз расширяется предел измерения вольтметра:

где — исходный предел измерения;

— новый предел измерения.

Добавочные резисторы, размещенные внутри корпуса прибора, называются внутренними, подключенные к прибору снаружи — внешними. Вольтметры могут быть многопредельными. Между пределом измерения и внутренним сопротивлением многопредельного вольтметра существует прямая зависимость: чем больше предел измерения, тембольше сопротивление вольтметра.

Электромеханические вольтметры имеют следующие недостатки:

Ограниченный диапазон измерения напряжений (даже в многопредельных вольтметрах);

Малое входное сопротивление, следовательно, большое собственное потребление мощности из исследуемой цепи.

Этими недостатками электромеханических вольтметров обусловлено предпочтительное использование для измерения напряжения в электронике электронных вольтметров.

Электронные аналоговые вольтметры постоянного тока построены по схеме, представленной на рис. 3.7. Входное устройство состоит из эмиттерного повторителя (для увеличения входного сопро-тивления) и аттенюатора — делителя напряжения.

Преимущества электронных аналоговых вольтметров по сравнению с аналоговыми очевидны:

Рис. 3.7. Структурная схема электронного аналогового вольтметра постоянного тока

Широкий диапазон измерения напряжений;

Большое входное сопротивление, следовательно, малое собствен-ное потребление мощности из исследуемой цепи;

Высокая чувствительность благодаря наличию усилителя на входе прибора;

Невозможность перегрузок.

Вместе с тем электронные аналоговые вольтметры имеют ряд не-достатков:

Наличие источников питания, большей частью стабилизирован-ных;

Большая, чем у электромеханических вольтметров, приведенная относительная погрешность (2,5-6%);

Большие массогабаритные размеры, более высокая цена.

В настоящее время аналоговые электронные вольтметры постоян-ного тока применяются недостаточно широко, так как по своим пара-метрам заметно уступают цифровым вольтметрам.

Измерение напряжения переменного тока.

Для измерения напря-жения переменного тока используются электромеханические вольт-метры и мультиметры, электронные аналоговые и цифровые вольт-метры, электронные осциллографы.

Рассмотрим недорогие и достаточно точные электромеханиче-ские вольтметры. Делать это целесообразно по частотным диапазо-нам.

На промышленных частотах 50, 100, 400 и 1000 Гц широко приме-няются вольтметры электромагнитной, электродинамической, ферро-динамической, выпрямительной, электростатической и термоэлектри-ческой систем.

На низких частотах (до 15-20 кГц) применяются вольтметры вы-прямительной, электростатической и термоэлектрической систем.

На высоких частотах (до единиц — десятков мегагерц) используют-ся приборы электростатической и термоэлектрической систем.

Для электротехнических измерений широко используются универ-сальные приборы — мультиметры.

Мультиметры (тестеры, ампервольтомметры, комбинированные приборы) позволяют измерять множество параметров: силу постоянного и переменного тока, напряжение постоянного и переменного тока, сопро-тивление резисторов, емкость конденсаторов (не все приборы), некото-рые статические параметры маломощных транзисторов ( , , и ).

Мультиметры выпускаются с аналоговым и цифровым отсчетом.

Широкое использование мультиметров объясняется следующими ихпреимуществами:

Многофункциональность, т.е. возможность использования в каче-стве амперметров, вольтметров, омметров, фарадомеров, измерителей параметров маломощных транзисторов:

Широкий диапазон измеряемых параметров благодаря наличию нескольких пределов измерения по каждому параметру;

Возможность использования в качестве переносных приборов, поскольку отсутствует сетевой источник питания;

Небольшие массогабаритные размеры;

Универсальность (возможность измерения переменных и постоянных токов и напряжений),

Мультиметры имеют также ряд недостатков:

Узкий частотный диапазон применимости;

Большое собственное потребление мощности из исследуемой 1 цепи;

Большая приведенная погрешность у аналоговых (1,5; 2,5 и 4) и у цифровых мультиметров;

Непостоянство внутреннего сопротивления на различных пределах 4 измерения силы тока и напряжения.

По отечественной каталоговой классификации мультиметры имеют обозначение Ц43 и далее номер модели, например, Ц4352.

Для определения внутреннего сопротивления аналогового мультиметра на включенном пределе измерения в паспорте прибора может 1 быть приведено удельное сопротивление. Например, в паспорте тестера Ц4341 удельное сопротивление = 16,7 кОм/В, пределы измерения по напряжению постоянного тока составляют 1,5 — 3 — 6 — 15 В.

В этом случае сопротивление мультиметра на пределе 6 В постоянного тока определяют по формуле:

В паспорте прибора могут быть приведены сведения, необходимые для расчета сопротивления по закону Ома .

Если тестер используется как вольтметр, то его входное сопротивление определяется по формуле:

где - выбранный предел измерения;

Значение силы тока в выбранном пределе (указанное на задней пане ли прибора или в его паспорте).

Если тестер используется как амперметр, то его входное сопротив-ление определяется по формуле:

Где — выбранный предел измерения;

значение напряжения, приведенное на задней панели прибора или в его паспорте.

Например, в паспорте тестера Ц4341 приведено падение напря-жения на приборе, равное 0,3 В в пределах 0,06 — 0,6 — 6 — 60 — 600 мА постоянного тока, и падение напряжения 1,3 В в пределах: 0,3 — 3 — 30 — 300 мА переменного тока. Входное сопротивление мультиметра в пределе 3 мА переменного тока составит

Электронные аналоговые вольтметры переменного тока по-строены по одной из структурных схем (рис. 3.8), которые различа-ются последовательностью расположения основных блоков - усили-теля и преобразователя (детектора) напряжения переменного тока в напряжение постоянного тока. Свойства этих вольтметров во многом зависят от выбранной схемы.

Рис. 3.8. Структурные схемы электронных аналоговых вольтметров переменного тока тина У—Д (а ) и типа Д—У (б)

Вольтметры первой группы - типа усилитель-детектор (У—Д) — имеют высокую чувствительность, что связано с наличием дополни-тельного усилителя. Поэтому все микро- и милливольтметры построе-ны по схеме У—Д. Однако частотный диапазон таких вольтметров неширок (до единиц мегагерц), так как создание широкополосного усилителя переменного тока связано с определенными трудностями. Вольтметры типа У—Д относятся к не универсальным (подгруппа ВЗ), т.е. могут измерять только напряжение переменного тока.

Вольтметры второй группы — типа детектор—усилитель (Д—У) -имеют широкий частотный диапазон (до единиц гигагерц) и низкую чувствительность. Вольтметры этого типа относятся к универсаль-ным (подгруппа В7), т.е. измеряют напряжение не только перемен-ного, но и постоянного тока; могут измерять напряжение значитель-ного уровня, так как обеспечить большое усиление с помощью УНТ несложно.

В вольтметрах обоих типов важную функцию выполняют преоб-разователи напряжения переменного тока в напряжение постоянного тока — детекторы, которые по функции преобразования входного на-пряжения в выходное можно классифицировать на три типа: ампли-тудного, среднеквадратичного и средневыпрямленного значения.

От типа детектора во многом зависят свойства прибора. Вольт-метры с детектором амплитудного значения являются самыми высо-кочастотными; вольтметры с детектором среднеквадратичного значе-ния позволяют измерять напряжение переменного тока любой формы; вольтметры с детектором средневыпрямленного значения пригодны для измерения напряжения только гармонического сигнала и являют-ся самыми простыми, надежными и недорогими.

Детектор амплитудного значения представляет собой устройство, напряжение на выходе которого соответствует амплитудному значе-нию измеряемого сигнала, что обеспечивается путем запоминания на-пряжения на конденсаторе.

Чтобы цепь реальной нагрузки любого детектора эффективно от-фильтровывала полезный сигнал и подавляла нежелательные высоко-частотные гармоники, следует выполнить условие:

Или , (3.12)

где — емкость выходного фильтра;

— сопротивление нагрузки детектора.

Второе условие хорошей работы детектора:

На рисунке 3.9 приведены структурная схема и временные диа-граммы выходного напряжения детектора амплитудного значения с параллельным включением диода и закрытым входом. Детектор с за-крытым входом имеет последовательно включенный конденсатор, не пропускающий постоянную составляющую. Рассмотрим работу та-кого детектора при подаче на его вход синусоидального напряжения .

Рис. 3.9. Структурная схема детектора амплитудного значении параллельным включением диода и закрытым входом (а) и временные диаграммы напряжении (б) При поступлении положительной полуволны синусоиды конденса-тор С заряжается через диод VD, который в открытом состоянии имеет малое сопротивление .

Постоянная времени заряда конден-сатора мала, и конденсатор быстро заряжается до макси-мального значения . При смене полярности входного сигнала диод закрыт и конденсатор медленно разряжается через сопротивление на-грузки , которое выбирается большим — 50-100 МОм.

Таким обра-зом, постоянная разряда оказывается значительно больше периода синусоидального сигнала . В результате конденсатор остается заряженным до напряжения, близкого к .

Изменение напряжения на нагрузочном резисторе определяется разностью амплитуд входного напряжения и напряжения на кон-денсаторе .В результате выходное напряжение бу-дет пульсирующим с удвоенной амплитудой измеряемого напряжения (см. рис. 3.9, б).

Это подтверждается следующими математическими выкладками:

при , , при , при .

Для выделения постоянной составляющей сигнала вы-ход детектора подключен к емкостному фильтру, подавляющему всё остальные гармоники тока.

На основании изложенного следует вывод: чем меньше период ис-следуемого сигнала (чем больше его частота), тем точнее выполняется равенство , что объясняет высокочастотные свойства детектора. При использовании в работе вольтметров с детектором амплитудного значения следует иметь в виду, что эти приборы чаще всего градуиру-ются в среднеквадратичных значениях синусоидального сигнала, т.e показания индикатора прибора равны частному от деления амплитудного значения на коэффициент амплитуды синусоиды:

где — коэффициент амплитуды.

Детектор среднеквадратичного значения (рис. 3.10) преобразу-ет напряжение переменного тока в напряжение постоянного тока, про-порциональное квадрату среднеквадратичного значения измеряемого напряжения. Следовательно, измерение среднеквадратичного напряжения связано с выполнением трех операций: возведения в квадрат мгновенного значения сигнала, усреднения его значения и извлечение корня из результата усреднения (последняя операция обеспечивается градуировкой шкалы вольтметра). Возведение в квадрат мгновенного значения сигнала обычно осуществляется диодной ячейкой путем использования квадратичного участка его характеристики.

Рис. 3.10. Детектор среднеквадратичного значения: а — диодная ячейка; б — ВАХ диода

В диодной ячейке VD, R1 (см. рис. 3.10, а) постоянное напряжение приложено к диоду VD таким образом, что он оказывается закры-тым до тех пор, пока измеряемое напряжение () на резисторе R2 не превысит значение .

Начальный участок вольтамперной характеристики диода имеет малую протяженность (см. рис. 3.10, б), поэтому квадратичную часть искусственно удлиняют методом кусочно-линейной аппроксимации путем использования нескольких диодных ячеек.

При конструировании вольтметров среднеквадратичного значения возникают трудности с обеспечением широкого частотного диапазона. Несмотря на это такие вольтметры являются самыми востребованны-ми, так как ими можно измерять напряжение любой сложной формы.

Детектор средневыпрямленного значения преобразует напряжение переменного тока в напряжение постоянного тока, пропорциональное средневыпрямленному значению напряжения. Выходной ток измери-тельного прибора с таким детектором аналогичен выходному току вы-прямительной системы.

Напряжения переменного тока, действующие в электронных устройствах, могут изменяться во времени по различным законам. На-пример, напряжение на выходе задающего генератора связного радио-передатчика изменяется по синусоидальному закону, на выходе генера-тора развертки осциллографа импульсы имеют пилообразную форму, синхроимпульсы полного телевизионного сигнала прямоугольные.

На практике приходится проводить измерения в различных участ-ках схем, напряжения в которых могут отличаться по значению и по форме. Измерение напряжения несинусоидальной формы имеет свои особенности, которые необходимо учитывать, чтобы не допустить оши-бок.

Очень важно правильно выбрать тип прибора и способ пересчета показаний вольтметра в значение необходимого параметра измеряемо-го напряжения. Для этого необходимо четко представлять себе, каким образом производится оценка и сравнение напряжений переменного тока и как влияет форма напряжения на значения коэффициентов, свя-зывающих между собой отдельные параметры напряжения.

Критерием оценки напряжения переменного тока любой формы служит связь с соответствующим напряжением постоянного тока по одинаковому эффекту теплового действия (среднеквадратичное зна-чение U ), определяемое выражением

(3.14)

где — период повторения сигнала;

— функция, описывающая закон изменения мгновенного значения на-пряжения. Далеко не всегда в распоряжении оператора может оказаться вольт-метр, с помощью которого можно измерить нужный параметр напряжения. В таком случае необходимый параметр напряжения измеряется косвенно с помощью имеющегося вольтметра, с использованием коэффициентов амплитуды и формы . Рассмотрим пример расчета необходимых параметров напряжения синусоидальной формы.

Необходимо определить амплитудное () и средневыпрямленное () значения напряжения синусоидальной формы вольтметром, градуированным в среднеквадратичных значениях напряжения синусоидальной формы, если прибор показал .

Расчет выполняем следующим образом. Так как вольтметр градуирован в среднеквадратичных значениях , то в приложении 3 для дан-ного прибора показание 10 В соответствует прямому отсчету по шкале среднеквадратичного значения, т.е.

Переменное напряжение характеризуется средним, амплитудным) (максимальным) и среднеквадратичным значениями.

Среднее значение (постоянная составляющая) за период переменного напряжения:

(3.15)

Максимальное значение — это наибольшее мгновенное значение переменного напряжения за период сигнала:

Средневыпрямленное значение — это среднее напряжение на вы-ходе двухполупериодного выпрямителя, имеющего на входе перемен-ное напряжение :

(3.17)

Соотношение среднеквадратичного, среднего и максимального зна-чений напряжения переменного тока зависит от его формы и в общем виде определяются двумя коэффициентами:

(коэффициент амплитуды), (3.18)

(коэффициент формы). (3.19)

Значения этих коэффициентов для напряжений разной формы иих соотношения приведены в табл. 3.1

Таблица 3.1

Значения и для напряжений разной формы

Примечание , - скважность: .

В ряде приборов напряжение оценивают не в абсолютных единицах измерения (В, мВ, мкВ), а в относительной логарифмической единице — децибеле (dB, или дБ). Для упрощения перехода абсолютных единиц в относительную и, наоборот, большинство аналоговых вольте метров (автономных и встроенных в другие приборы: генераторы, мультиметры, измерители нелинейных искажений) наряду с обычной шкалой имеют децибельную. Эта шкала отличается четко выраженной нелинейностью, что при необходимости позволяет получать результат сразу в децибелах, без соответствующих расчетов и применения таблиц перевода. Чаще всего у таких приборов нуль шкалы децибел соответствует входному напряжению 0,775 В.

Напряжение больше условного нулевого уровня характеризуется положительными децибелами, меньше этого уровня — отрицательными. На переключателе пределов каждый поддиапазон измерения отличается по уровню от соседнего на 10 дБ, что соответствует кратности по напряжению 3,16. Показания, снятые по шкале децибел, алгебраически складываются с показаниями на переключателе пределов измерения, а не перемножаются, как в случае абсолютного отсчета напряжений.

Например, переключатель пределов установлен на «- 10 dB», при этом стрелка индикатора установилась на отметку «- 0,5 dB». Суммар-ный уровень составит: ---- 10 + (- 0,5) = - 10,5 dB, И основу перевода напряжения из абсолютных значений в относительные положена формула

(3.20)

Где = 0,775В.

Поскольку бел — большая единица, то на практике применяют дольную (десятую) часть бела — децибел.

Импульсные и цифровые вольтметры. При измерении импульсных напряжений с малой амплитудой применяют предварительное усиление импульсов. Структурная схема аналогового импульсного вольтметра (рис. 3.11) состоит из выносного пробника с эмиттерным повторителем, аттенюатора, широкополосного предварительного усилителя, детектора амплитудного значения, усилителя постоянного тока (УПТ) и электромеханического индикатора. Вольтметры, реа-лизованные по этой схеме, непосредственно измеряют напряжения 1 мВ - 3 В с погрешностью ± (4 — 10)%, длительностью импульсов 1 - 200 мкс и скважностью 100 ... 2500.

Рис. 3.11.т Структурная схема импульсного вольтметра

Для измерения малых напряжений в широком диапазоне длитель-ностей (от наносекунд до миллисекунд) применяют вольтметры, рабо-тающие на основе автокомпенсационного метода.

Электронные цифровые вольтметры имеют существенные преиму-щества перед аналоговыми:

Высокая скорость измерений;

Исключение возможности возникновения субъективной ошибки оператора;

Малая приведенная погрешность.

Благодаря этим преимуществам цифровые электронные вольтмет-ры широко используются для измерения. На рисунке 3.12 приведена упрощенная структурная схема цифрового вольтметра.

Рис. 3.12. Упрощенная структурная схема цифрового вольтметра

Входное устройство предназначено для создания большого вход-ного сопротивления, выбора пределов измерения, ослабления помех, автоматического определения полярности измеряемого напряжения постоянного тока. В вольтметрах переменного тока входное устрой-ство включает в себя также преобразователь напряжения перемен-ного тока в постоянный.

С выхода входного устройства измеряемое напряжение подается на аналого-цифровой преобразователь (АЦП), в котором напряжение преобразуется в цифровой (дискретный) сигнал в виде электрического кода или импульсов, количество которых про-порционально измеряемому напряжению. Результат появляется на табло цифрового индикатора. Работой всех блоков управляет устрой-ство управления.

Цифровые вольтметры в зависимости от типа АЦП подразделяют-ся на четыре группы: кодоимпульсные, времяимпульсные, частотно-импульсные, пространственного кодирования.

В настоящее время широко применяются цифровые времяимпульсные вольтметры , преобразователи которых выполняют промежуточное преобразование измеряемого напряжения в пропорцио-нальный интервал времени, заполняемый импульсами с известной частотой повторения. В результате такого преобразования дискретный сигнал измерительной информации на входе АЦП имеет вид пачки счетных импульсов, количество которых пропорционально измеряе-мому напряжению.

Погрешность времяимпульсных вольтметров определяется погрешностью дискретизации измеряемого сигнала, нестабильностью частоты счетных импульсов, наличием порога чувствительности схемы сравнения, нелинейностью преобразованного напряжения на входе схемы сравнения.

Различают несколько вариантов схемотехнических решений при построении времяимпульсных вольтметров. Рассмотрим принцип работы время импульсного вольтметра с генератором линейно изменяющегося напряжения (ГЛИН).

На рисунке 3.13 представлены структурная схема цифрового времяимпульсного вольтметра с ГЛИН и временные диаграммы, поясняющие его работу.

Дискретный сигнал измерительной информации па выходе преоб-разователя имеет вид пачки счетных импульсов, количество которых пропорционально значению входного напряжения . С выхода ГЛИН на входы 1 устройств сравнения поступает линейно нарастающее во времени напряжение . Вход 2 устройства сравнения II соединен с корпусом.

В момент равенства на входе устройства сравнения II и на его выходе возникает импульс, который подается на единичный вход триггера (Т), вызывая появление сигнала на его выходе. Триггер возвращается в исходное положение импульсом, поступающим с выхода устройства сравнения II. Этот сигнал появляется в момент равенства линейно нарастающего напряжения и измеряемого . Сформированный таким образом сигнал длительностью (где коэффициент преобразования) подается на вход 1 схемы логиче-ского умножения И, а на вход 2 поступает сигнал с генератора счетных импульсов (ГСИ). Импульсы следуют с частотой . Импульсный сигнал появляется тогда, когда на обоих входах есть импульсы, т.е. счетные импульсы проходят при наличии сигнала на выходе триггера.


Рис. 3.13. Структурная схема (а) ивременное диаграммы (б) цифрового времяимпульсного вольтметра с ГЛИН

Счетчик импульсов подсчитывает количество прошедших импуль-сов (с учетом коэффициента преобразования). Результат измерения отображается на табло цифрового индикатора (ЦИ). Приве-денная формула не учитывает погрешность дискретности из-за несовпа-дения появления счетных импульсов с началом и концом интервала

Кроме того, большую погрешность вносит фактор нелинейности коэффициента преобразования . В результате цифровые время импульсные вольтметры с ГЛИН являются наименее точными среди цифровых вольтметров.

Цифровые вольтметры с двойным интегрированием отличаются от времяимпульсных вольтметров принципом работ Ы. В них в тече-ние времени цикла измерения формируются два временных интервала — и . В первом интервале обеспечивается интегрирование измеряемого напряжения , во втором — опорного напряжения. Вре-мя цикла измерения предварительно устанавливают кратным периоду действующей на входе помехи, что приводит к улучшению помехоустойчивости вольтметра.

На рисунке 3.14 приведены структурная схема цифрового вольтме-тра с двойным интегрированием и временные диаграммы, поясняющие его работу.

Рис. 3.14. Структурная схема (а) и временные диаграммы (6) цифрового вольтметра с двойным интегрированием

При (в момент начала измерения) управляющее устройство вырабатывает калиброванный импульс с длительностью

, (3.21) переводит ключ в положение 2 и от источника образцового напряжения (ИОН) в интегратор подает-ся образцовое отрицательное напряжение становится равным нулю, устройство сравнения выдает сигнал, по-ступающий на триггер, и возвращает последний в исходное состояние. На выходе триггера сформированный импульс напряжения

; ; (3.25)

Из полученных соотношений следует, что погрешность результата измерения зависит только от уровня образцового напряжения, а не от нескольких параметров (как в кодоимпульсном вольт метре), но здесь также имеет место погрешность дискретности.

Преимуществами вольтметра с двойным интегрированием являются высокая помехозащищенность и более высокий класс точ-ности (0,005-0,02%) по сравнению с вольтметрами с ГЛИН.

Цифровые вольтметры со встроенным микропроцессором являются комбинированными и относятся к вольтметрам наивысшего класса точности. Принцип их работы основан на методах поразрядного уравновешивания и времяимпульсного интегрирующего преобразования.

Микропроцессор и дополнительные преобразователи, включенные в схему такого вольтметра, расширяют возможности при-бора, делая его универсальным в части измерения большого числа параметров. Такие вольтметры измеряют напряжение постоянного и переменного тока, силу тока, сопротивление резисторов, часто-ту колебаний и другие параметры. При использовании совместное с осциллографом могут измерять временные параметры: период, длительность импульсов и т.д. Наличие в схеме вольтметра микропроцессора позволяет осуществлять автоматическую коррекциям погрешности измерений, диагностику отказов, автоматическую калибровку.

На рисунке 3.15 приведена структурная схема цифрового вольтметра со встроенным микропроцессором.


Рис. 3.15. Структурная схема цифрового вольтметра со встроенным микропроцессором

С помощью соответствующих преобразователей блок нормали-зации сигналов приводит входные измеряемые параметры (97 стр) к унифицированному сигналу , поступающему на вход АЦП, ко-торый выполняет преобразование методом двойного интегрирования. Выбор режима работы вольтметра для заданного вида измерений осу-ществляет блок управления АЦП с дисплеем. Этот же блок обеспечи-вает нужную конфигурацию системы измерения.

Микропроцессор является основой блока управления и связан с другими блоками через сдвигающие регистры. С помощью клавиа-туры, находящейся на панели управления, обеспечивается управление микропроцессором. Управление может осуществляться также и через стандартный интерфейс подключаемого канала связи. В постоянном запоминающем устройстве (ПЗУ) хранится программа работы микро-процессора, которая реализуется с помощью оперативного запомина-ющего устройства (ОЗУ).

Встроенные высокостабильные и точные резистивные делители опорного напряжения, дифференциальный усилитель (ДУ) и ряд внеш-них элементов (аттенюатор, устройство выбора режима, блок опорного напряжения ) выполняют непосредственно измерения. Все блоки синхронизируются сигналами от генератора тактовых импульсов.

Включение в схему вольтметра микропроцессора и ряда дополнительных преобразователей позволяет выполнять автоматическую коррекцию погрешностей, автоматическую калибровку и диагностику отказов.

Основными параметрами цифровых вольтметров являются точность преобразования, время преобразования, пределы изменения входной величины, чувствительность.

Точность преобразования определяется погрешностью квантова-ния по уровню, характеризуемой числом разрядов в выходном коде.

Погрешность цифрового вольтметра имеет две составляющие. Пер-вая составляющая (мультипликативная) зависит от измеряемой вели-чины, вторая составляющая (аддитивная) не зависит от измеряемой величины.

Такое представление связано с дискретным принципом измерения аналоговой величины, так как в процессе квантования возникает абсо-лютная погрешность, обусловленная конечным числом уровней квантования. Абсолютная погрешность измерения напряжения выражается как

знаков) или ( знаков), (3.27)

где — действительная относительная погрешность измерения;

— значение измеряемого напряжения;

конечное значение на выбранном пределе измерения;

т знаков — значение, определяемое единицей младшего разряда ЦИ (аддитивная погрешность дискретности). Основную действительную относительную погрешность измере-ния можно представить и в другом виде:

(3.2)

Где a, b — постоянные числа, характеризующие класс точности прибора.

Первое слагаемое погрешности (а) не зависит от показаний при-бора, а второе (b) увеличивается при уменьшении .

Время преобразования — это время, затрачиваемое на выполнение одного преобразования аналоговой величины в цифровой код.

Пределы изменения входной величины это диапазоны преобразования входной величины, которые полностью определяются числом разрядов и «весом» наименьшего разряда.

Чувствительность (разрешающая способность) — это наименьшее различимое преобразователем изменение значения входной величины.

К основным метрологическим характеристикам вольтметров, которые необходимо знать для правильного выбора прибора, относятся следующие характеристики:

Параметр измеряемого напряжения (среднеквадратичное, ампли-тудное);

Диапазон измерения напряжения;

Частотный диапазон;

Допустимая погрешность измерений;

Входной импеданс ().

Эти характеристики приводятся в техническом описании и паспор-те прибора.




Top