Понятие двойственности в линейном программировании. Теория двойственности в линейном программировании. Нужна помощь по изучению какой-либы темы

Динамического программирования

1. Динамическое программирование. Основные понятия…………………2

2. Суть метода динамического программирования………………………..4

3. Пример решения задачи методом динамического программирования………………………………………………………...7

Список используемых источников……………………………………...11

1. Динамическое программирование. Основные понятия.

Динамическое программирование (ДП) в теории вычислительных систем - способ решения сложных задач путём разбиения их на более простые подзадачи. Он применим к задачам с оптимальной подструктурой, выглядящим как набор перекрывающихся подзадач, сложность которых чуть меньше исходной. В этом случае время вычислений, по сравнению с «наивными» методами, можно значительно сократить.

Ключевая идея в динамическом программировании достаточно проста. Как правило, чтобы решить поставленную задачу, требуется решить отдельные части задачи (подзадачи), после чего объединить решения подзадач в одно общее решение. Часто многие из этих подзадач одинаковы. Подход динамического программирования состоит в том, чтобы решить каждую подзадачу только один раз, сократив тем самым количество вычислений. Это особенно полезно в случаях, когда число повторяющихся подзадач экспоненциально велико.

Динамическое программирование представляет собой математический аппарат, который подходит к решению некоторого класса задач путем их разложения на части, небольшие и менее сложные задачи. При этом отличительной особенностью является решение задач по этапам, через фиксированные интервалы, промежутки времени, что и определило появление термина динамическое программирование. Следует заметить, что методы динамического программирования успешно применяются и при решении задач, в которых фактор времени не учитывается. В целом математический аппарат можно представить как пошаговое или поэтапное программирование. Решение задач методами динамического программирования проводится на основе сформулированного Р. Э. Беллманом принципа оптимальности: оптимальное поведение обладает тем свойством, что каким бы ни было первоначальное состояние системы и первоначальное решение, последующее решение должно определять оптимальное поведение относительно состояния, полученного в результате первоначального решения.
Из этого следует, что планирование каждого шага должно проводиться с учетом общей выгоды, получаемой по завершении всего процесса, что и позволяет оптимизировать конечный результат по выбранному критерию.



Таким образом, динамическое программирование в широком смысле представляет собой оптимальное управление процессом, посредством изменения управляемых параметров на каждом шаге, и, следовательно, воздействуя на ход процесса, изменяя на каждом шаге состояние системы.

В целом динамическое программирование представляет собой стройную теорию для восприятия и достаточно простую для применения в коммерческой деятельности при решении как линейных, так и нелинейных задач.

Динамическое программирование является одним из разделов оптимального программирования. Для него характерны специфические методы и приемы, применительные к операциям, в которых процесс принятия решения разбит на этапы (шаги). Методами динамического программирования решаются вариантные оптимизационные задачи с заданными критериями оптимальности, с определенными связями между переменными и целевой функцией, выраженными системой уравнений или неравенств. При этом, как и в задачах, решаемых методами линейного программирования, ограничения могут быть даны в виде равенств или неравенств. Однако если в задачах линейного программирования зависимости между критериальной функцией и переменными обязательно линейны, то в задачах динамического программирования эти зависимости могут иметь еще и нелинейный характер. Динамическое программирование можно использовать как для решения задач, связанных с динамикой процесса или системы, так и для статических задач, связанных, например, с распределением ресурсов. Это значительно расширяет область применения динамического программирования для решения задач управления. А возможность упрощения процесса решения, которая достигается за счет ограничения области и количества, исследуемых при переходе к очередному этапу вариантов, увеличивает достоинства этого комплекса методов.

Вместе с тем динамическому программированию свойственны и недостатки. Прежде всего, в нем нет единого универсального метода решения. Практически каждая задача, решаемая этим методом, характеризуется своими особенностями и требует проведения поиска наиболее приемлемой совокупности методов для ее решения. Кроме того, большие объемы и трудоемкость решения многошаговых задач, имеющих множество состояний, приводят к необходимости отбора задач малой размерности либо использования сжатой информации. Последнее достигается с помощью методов анализа вариантов и переработки списка состояний.

Для процессов с непрерывным временем динамическое программирование рассматривается как предельный вариант дискретной схемы решения. Получаемые при этом результаты практически совпадают с теми, которые получаются методами максимума Л. С. Понтрягина или Гамильтона-Якоби-Беллмана.

Динамическое программирование применяется для решения задач, в которых поиск оптимума возможен при поэтапном подходе, например, распределение дефицитных капитальных вложений между новыми направлениями их использования; разработка правил управления спросом или запасами, устанавливающими момент пополнения запаса и размер пополняющего заказа; разработка принципов календарного планирования производства и выравнивания занятости в условиях колеблющегося спроса на продукцию; составление календарных планов текущего и капитального ремонтов оборудования и его замены; поиск кратчайших расстояний на транспортной сети; формирование последовательности развития коммерческой операции и т. д.


Суть метода динамического программирования.

В основу метода динамического программирования положен принцип оптимальности , сформулированный в 1957 г. американским математиком Ричардом Беллманом: «Оптимальное поведение обладает тем свойством, что каковы бы ни были первоначальные состояние и решение в начальный момент времени, последующие решения должны составлять оптимальное поведение относительно состояния, получающегося в результате первого решения».

Физическая сущность принципа оптимальности заключается в том, что ошибка выбора решения в данный момент не может быть исправлена в будущем.

Рассматривается следующая общая задача. Имеется некоторая физическая система, в которой происходит какой-то процесс, состоящий из n шагов. Эффективность процесса характеризуется некоторым показателем W , который называют выигрышем . Пусть общий выигрыш W за все n шагов процесса складывается из выигрышей на отдельных шагах

где w i - выигрыш на i -м шаге. Если W обладает таким свойством, то его называют аддитивным критерием .

Процесс, о котором идет речь, представляет собой управляемый процесс, т.е. имеется возможность выбирать какие-то параметры, влияющие на его ход и исход, причем на каждом шаге выбирается какое-то решение, от которого зависит выигрыш на данном шаге. Это решение называется шаговым управлением . Совокупность всех шаговых управлений представляет собой управление процессом в целом. Обозначим его буквой U , а шаговые управления - буквами . Тогда

Шаговые управления в общем случае не числа, а, как правило, векторы, функции и т.п.

В модели динамического программирования процесс на каждом шаге находится в одном из состояний s множества состояний S . Считается, что всякому состоянию сопоставлены некоторые шаговые управления. Эти управления таковы, что управление, выбранное в данном состоянии при любой предыстории процесса, определяет полностью следующее состояние процесса. Обычно выделены два особых состояния: s 0 - начальное и s w - конечное.

Итак, пусть каждому состоянию поставлено множество допустимых шаговых управлений , и каждому шаговому управлению , соответствует - состояние, в которое процесс попадает из s i в результате использования шагового управления u . Пусть процесс находится в начальном состоянии s 0 . Выбор переводит процесс в состояние s 1 = σ(s 0 ,u 1), выбор - в состояние s 2 = σ(s 1 ,u 2) и т.д. В результате получается траектория процесса, которая состоит из последовательности пар

и заканчивается конечным состоянием. Для единообразия можно считать, что включает только одно состояние , оставляющее процесс в том же конечном состоянии. Следует отметить, что множества допустимых состояний и управлений

конечны и U s для различных s не пересекаются.

В общем виде задача динамического программирования формулируется следующим образом: найти такую траекторию процесса, при которой выигрыш (2.1)будет максимальным.

То управление, при котором достигается максимальный выигрыш, называется оптимальным управлением . Оно состоит из совокупности шаговых управлений

Тот максимальный выигрыш, который достигается при этом управлении обозначим W max :

W max = max U {W (u )}. (2.5)

Рассмотрим на примере задачи о рюкзаке, что понимается под шагом, состоянием, управлением и выигрышем.

Загрузку рюкзака можно представить себе как процесс, состоящий из n шагов. На каждом шаге требуется ответить на вопрос: взять данный предмет в рюкзак, или нет? Таким образом, шаг процесса - присваивание переменной x i значения 1 или 0.

Теперь определим состояния. Очевидно, что текущее состояние процесса характеризует остаточная грузоподъёмность рюкзака - вес, который остался в нашем распоряжении до конца (до полной укладки рюкзака). Следовательно, под состоянием перед i -м шагом понимается величина

(2.6)

при этом s 0 является начальным состоянием, которому соответствует величина b - исходная грузоподъемность рюкзака.

Управление на i -м шаге означает присваивание двоичной переменной x i значения 0 или 1. Значит, на каждом шаге имеем всего два управления. Причем допустимость управления u i , устанавливающего x i = 1, определяется условием

(2.8)

Шаговый выигрыш можно определить как . Поэтому

(2.10)

Требуется найти оптимальное управление , при котором величина выигрыша (2.10) обращается в максимум.


3. Пример решения задачи методом динамического программирования.

Задание . Инвестор выделяет средства в размере 5 тыс. ден. ед., которые должны быть распределены между тремя предприятиями.

Требуется, используя принцип оптимальности Беллмана, построить план распределения инвестиций между предприятиями, обеспечивающий наибольшую общую прибыль, если каждое предприятие при инвестировании в него средств x тыс. ден. ед. приносит прибыль p;(x) тыс. ден. ед. (i=1, 2 и 3) по следующим данным:


Решение . Составим математическую модель задачи.

1.Число шагов равно 3.

2.Пусть s - количество средств, имеющихся в наличии перед данным шагом, и характеризующих состояние системы на каждом шаге.

3. Управление на i-ом шаге (i=1,2,3) выберем x i - количество средств, инвестируемых в i- ое предприятие.

4. Выигрыш p i (x i) на i-ом шаге - это прибыль, которую приносит i-ое предприятие при инвестировании в него средств xi. Если через выигрыш в целом обозначить общую прибыль W, то W=p 1 (x 1)+ p 2 (x 2)+ p 3 (x 3).

5. Если в наличии имеются средства в количестве s тыс. ден. ед. и в i-ое предприятие инвестируется x тыс. ден. ед, то для дальнейшего инвестирования остается (s-x) тыс. ден. ед. Таким образом, если на i-ом шаге система находилась в состоянии s и выбрано управление x, то на (i+1)-ом шаге система будет находится в состоянии (s-x), и, следовательно, функция перехода в новое состояние имеет вид: f i (s, x) = s-x.

6.На последнем (i=3) шаге оптимальное управление соответствует количеству средств, имеющихся в наличии, а выигрыш равен доходу, приносимым последним предприятием: x 3 (s)=s, W 3 (s)=p 3 (s).

7.Согласно принципу оптимальности Беллмана, управление на каждом шаге нужно выбирать так, чтобы оптимальной была сумма выигрышей на всех оставшихся до конца процесса шагах, включая выигрыш на данном шаге. Основное функциональное уравнение примет вид

W 2 (s) = max{p 2 (x) + W 3 (s - x)}

Проведем пошаговую оптимизацию, по результатам которой заполним таблицу.

s i=3 i=2 i=1
x 3 (s) W 3 (s) x 2 (s) W 2 (s) x i (s) W i (s)
4,27 4,27
7,64 7,64
10,25 10,97
15,93 15,93
16,12 19,26 19,26

В первой колонке таблицы записываются возможные состояния системы, в верхней строке - номера шагов с оптимальным управлением и выигрышем на каждом шаге, начиная с последнего. Так как для последнего шага i=3 функциональное уравнение имеет вид x 3 (s)=s, W3(s)=p3(s), то две колонки таблицы, соответствующие i=3, заполняются автоматически по таблице исходных данных.

На шаге i=2 основное функциональное уравнение имеет вид

W 2 (s) = max{p 2 (x) + W 3 (s - x)}


Поэтому для проведения оптимизации на этом шаге заполним таблицу для различных состояний s при шаге i=3.

s x s-x p 2 (x) W 3 (s-x) p 2 (x)+W 3 (s-x) W 2 (s)
4,27 4,27 4,27
3,33 3,33
7,64 7,64 7,64
3,33 4,27 7,6
4,87 4,87
10,25 10,25 10,97
3,33 7,64 10,97
4,87 4,27 9,14
5,26 5,26
15,93 15,93 15,93
3,33 10,25 13,58
4,87 7,64 12,51
5,26 4,27 9,53
7,34 7,34
16,12 16,12 19,26
3,33 15,93 19,26
4,87 10,25 15,12
5,26 7,64 12,9
7,34 4,27 11,61
9,49 9,49

На шаге i=1 основное функциональное уравнение имеет вид

W x (s) = max{ p x (x) + W 2 (s - x)}

а состояние системы перед первым шагом s=5, поэтому для проведения оптимизации на этом шаге заполним таблицу.

s x s-x p i (x) W 2 (s-x) p i (x)+W 2 (s-x) Wi(s)
19,26 19,26 19,26
3,22 15,93 19,15
3,57 10,97 14,54
4,12 7,64 11,76
4,27 8,27
4,85 4,85

Видно, что наибольшее значение выигрыша составляет 19,26. При этом оптимальное управление на первом шаге составляет x 1 (s 1)=0 (s 1 =5), на втором шаге x 2 (s 2) =1 (s 2 =s 1 -x 1 =5) и на третьем шаге x 3 (s 3) =4 (s 3 =s 2 -x 2 =4).

Это означает, что (0, 1, 4) - оптимальный план распределения инвестиций между предприятиями.

Таким образом, для получения наибольшей общей прибыли в размере 19,26 тыс. ден. ед., необходимо вложить 1 тыс. ден. ед. во второе предприятие и 4 тыс. ден. ед. в третье предприятие.

Список используемых источников

1. Беллман Р., Динамическое программирование, пер. с англ., М., 1960

2. Болтянский В. Г.,Математические методы оптимального управления, М., 1966

ДИНАМИЧЕСКОЕ ПРОГРАММИРОВАНИЕ, раздел оптимального управления, посвящённый теории и методам решения многошаговых задач. В задачах оптимального управления среди возможных управлений ищется то, при котором достигается экстремальное (наименьшее или наибольшее) значение так называемой целевой функции - некоторой числовой характеристики процесса. В динамическом программировании под многошаговостью понимают либо многоступенчатую структуру процесса, либо то, что управление разбивается на ряд последовательных этапов (шагов), соответствующих, как правило, различным моментам времени. Иногда многошаговость проистекает из существа процесса, но она может вводиться и искусственно для того, чтобы обеспечить возможность применения методов динамического программирования. Под программированием в динамическом программировании понимают принятие решений (планирование), а слово «динамическое» указывает на существенную роль времени и порядка выполнения операций. Методы динамического программирования являются составной частью методов, используемых в исследовании операций, и применяются в задачах оптимального планирования (например, в задачах об оптимальном распределении ресурсов, в теории управления запасами, в задачах замены оборудования) и при решении многих технических проблем (например, в задачах управления последовательными химическими процессами, в задачах оптимальной прокладки дорог).

Пусть процесс управления некоторой системой Х состоит из m шагов (этапов); на i-м шаге управление y i переводит систему из состояния x i-1 , в котором она находилась после (i - 1)-го шага, в новое состояние x i . При этом задана функция f i (х, у), и новое состояние определяется по этой функции значениями x i-1 , y i так, что x i = f i (x i-1 , y i), i = 1, 2,..., m. Таким образом, управления у 1 , у 2 , ..., у m переводят систему из начального состояния х 0 ∈ Х 0 в конечное состояние х m ∈ Х m , где Х 0 и Х m - совокупности допустимых начальных и конечных состояний системы Х.

Одна из возможных постановок задач динамического программирования состоит в следующем. При заданном начальном состоянии х 0 требуется выбрать управления у 1 , у 2 , ..., у m таким образом, чтобы система Х перешла в допустимое конечное состояние и при этом заданная целевая функция F(х 0 , у 1 , х 1 ,..., у m , х m) достигла максимального значения F*, т. е.

где максимум берётся по всем управлениям у 1 , ..., у m , для которых х m ∈ Х m .

В динамическом программировании обычно предполагается, что целевая функция является аддитивной. В рассмотренном примере это означает, что

Кроме того, в динамическом программировании предполагается, что в задаче отсутствует последействие: решения (управления), принимаемые на шаге i, оказывают влияние только на состояние x i системы в момент i. Оба упомянутых ограничительных условия можно ослабить, но только за счёт существенного усложнения метода.

В основе динамического программирования лежит принцип оптимальности, сформулированный Р. Беллманом. Пусть выбраны некоторые управления у 1 , у 2 , ..., y k и тем самым траектория х 0 , х 1 , ...,x k состояний и требуется завершить процесс, т. е. выбрать у k+1 , ..., у m (а значит, и x k+1 , ..., х m).

Если завершающая часть процесса не будет оптимальной в смысле достижения максимума функции

то и весь процесс не будет оптимальным. Пользуясь принципом оптимальности Беллмана, можно получить основное функциональное соотношение динамического программирования, которое состоит в следующем. Пусть ω m (х) = 0,

k = 1, 2, ..., m, где максимум берётся по всем управлениям у, допустимым на шаге k. Соотношение, определяющее зависимость ω k-1 от ω k , называется уравнением Беллмана. Смысл этих функций достаточно ясен: если система на шаге k-1 оказалась в состоянии х, то ω k-1 (х) есть максимально возможное значение функции F k . Одновременно с построением функций ω k-1 (х) находятся условные оптимальные управления y k (х) на каждом шаге, т. е. значения оптимального управления при всевозможных предположениях о состоянии х системы на шаге k-1. Окончательно оптимальные управления находятся последовательным вычислением величин ω 0 (х 0) = F*, у 1 , х 1 , у 2 , ..., у m , x m .

С помощью динамического программирования решается не одна конкретная задача при определённом х 0 , а сразу все подобные однотипные задачи при любом начальном состоянии. Численная реализация динамического программирования довольно сложна, так как требует запоминания большого количества информации, поэтому динамическое программирование целесообразно применять в тех случаях, когда необходимо многократно решать типовые задачи (например, определение оптимального режима полёта самолёта при меняющихся погодных условиях). Обычно задача динамического программирования формулируется для дискретных процессов, но в ряде случаев динамическое программирование применяется и для решения динамических задач с непрерывными параметрами.

Динамическое программирование дало новый подход ко многим задачам вариационного исчисления. Важный раздел динамического программирования составляют стохастические задачи динамического программирования, т. е. задачи, в которых на состояние системы и на целевую функцию влияют случайные факторы.

Строгое обоснование динамического программирования следует из результатов Л. С. Понтрягина и его учеников по математической теории управляемых процессов.

Лит.: Беллман Р. Динамическое программирование. М., 1960; Математическая теория оптимальных процессов. М., 1961; Ховард Р. А. Динамическое программирование и марковские процессы. М., 1964; Хедли Дж. Нелинейное и динамическое программирование. М., 1967; Хедли Дж., Уайтин Т. Анализ систем управления запасами. М., 1969.

Большинство методов исследования операций связано в первую очередь с задачами вполне определенного содержания. Классический аппарат математики оказался малопригодным для решения многих задач оптимизации, включающих большое число переменных и/или ограничений в виде неравенств. Несомненна привлекательность идеи разбиения задачи большой размерности на подзадачи меньшей размерности, включающие всего по несколько переменных, и последующего решения общей задачи по частям. Именно на этой идее основан метод динамического программирования.

Динамическое программирование (ДП) представляет собой математический метод, заслуга создания и развития которого принадлежит, прежде всего Беллману. Метод можно использовать для решения весьма широкого круга задач, включая задачи распределения ресурсов, замены и управления запасами, задачи о загрузке. Характерным для динамического программирования является подход к решению задачи по этапам, с каждым из которых ассоциирована одна управляемая переменная. Набор рекуррентных(возвратных, периодических) вычислительных процедур, связывающих различные этапы, обеспечивает получение допустимого оптимального решения задачи в целом при достижении последнего этапа.

Происхождение названия динамическое программирование, вероятно, связано с использованием методов ДП в задачах принятия решений через фиксированные промежутки времени (например, в задачах управления запасами). Однако методы ДП успешно применяются также для решения задач, в которых фактор времени не учитывается. По этой причине более удачным представляется термин многоэтапное программирование, отражающий пошаговый характер процесса решения задачи.

Фундаментальным принципом, положенным в основу теории ДП, является принцип оптимальности. По существу, он определяет порядок поэтапного решения допускающей декомпозицию задачи (это более приемлемый путь, чем непосредственное решение задачи в исходной постановке) с помощью рекуррентных вычислительных процедур.

Динамическое программирование позволяет осуществлять оптимальное планирование управляемых процессов. Под «управляемыми» понимаются процессы, на ход которых мы можем в той или другой степени влиять.

Предпосылки динамического программирования:

  • · Характеристика системы зависит только от данного состояния системы, а не от того каким путем система пришла в это состояние.
  • · Переход системы из одного состояния в другое длится определенное конечное число шагов.
  • · Каждый шаг (Выбор определенного решения) связан с определенным эффектом (под экономическим эффектом понимается значение целевой функции задачи). Эффект от принятого решения зависит от текущего состояния, в котором находится объект управления и принятого управленческого решения(воздействия).
  • · Общий эффект за несколько шагов складывается из эффектов на каждом шаге.

Оптимальная подструктура в динамическом программировании означает, что оптимальное решение подзадач меньшего размера может быть использовано для решения исходной задачи. К примеру, кратчайший путь в графе из одной вершины (обозначим s) в другую (обозначим t) может быть найден так: сначала считаем кратчайший путь из всех вершин, смежных с s, до t, а затем, учитывая веса ребер, которыми s соединена со смежными вершинами, выбираем лучший путь до t (через какую вершину лучше всего пойти). В общем случае мы можем решить задачу, в которой присутствует оптимальная подструктура, проделывая следующие три шага.

Разбиение задачи на подзадачи меньшего размера.

Нахождение оптимального решения подзадач рекурсивно, проделывая такой же трехшаговый алгоритм.

Использование полученного решения подзадач для конструирования решения исходной задачи.

Подзадачи решаются делением их на подзадачи ещё меньшего размера и т. д., пока не приходят к тривиальному случаю задачи, решаемой за константное время (ответ можно сказать сразу). К примеру, если нам нужно найти n!, то тривиальной задачей будет 1! = 1 (или 0! = 1).

Перекрывающиеся подзадачи в динамическом программировании означают подзадачи, которые используются для решения некоторого количества задач (не одной) большего размера (то есть мы несколько раз проделываем одно и то же). Ярким примером является вычисление последовательности Фибоначчи, F_3 = F_2 + F_1 и F_4 = F_3 + F_2 -- даже в таком тривиальном случае вычисления всего двух чисел Фибоначчи мы уже посчитали F_2 дважды. Если продолжать дальше и посчитать F_5, то F_2 посчитается ещё два раза, так как для вычисления F_5 будут нужны опять F_3 и F_4. Получается следующее: простой рекурсивный подход будет расходовать время на вычисление решения для задач, которые он уже решал.

Чтобы избежать такого хода событий мы будем сохранять решения подзадач, которые мы уже решали, и когда нам снова потребуется решение подзадачи, мы вместо того, чтобы вычислять его заново, просто достанем его из памяти. Этот подход называется кэширование. Можно проделывать и дальнейшие оптимизации -- например, если мы точно уверены, что решение подзадачи нам больше не потребуется, можно выкинуть его из памяти, освободив её для других нужд, или если процессор простаивает и мы знаем, что решение некоторых, ещё не посчитанных подзадач, нам понадобится в дальнейшем, мы можем решить их заранее.

Подводя итоги вышесказанного можно сказать, что динамическое программирование пользуется следующими свойствами задачи:

  • · перекрывающиеся подзадачи;
  • · оптимальная подструктура;
  • · возможность запоминания решения часто встречающихся подзадач.

Динамическое программирование обычно придерживается двух подходов к решению задач:

  • · Нисходящее динамическое программирование: задача разбивается на подзадачи меньшего размера, они решаются и затем комбинируются для решения исходной задачи. Используется запоминание для решений часто встречающихся подзадач.
  • · Восходящее динамическое программирование: все подзадачи, которые впоследствии понадобятся для решения исходной задачи просчитываются заранее и затем используются для построения решения исходной задачи. Этот способ лучше нисходящего программирования в смысле размера необходимого стека и количества вызова функций, но иногда бывает нелегко заранее выяснить, решение каких подзадач нам потребуется в дальнейшем.

Языки программирования могут запоминать результат вызова функции с определенным набором аргументов (мемоизация), чтобы ускорить «вычисление по имени». В некоторых языках такая возможность встроена (например, Scheme, Common Lisp, Perl), а в некоторых требует дополнительных расширений (C++).

Известны сериальное динамическое программирование, включённое во все учебники по исследованию операций, и несериальное динамическое программирование (НСДП), которое в настоящее время слабо известно, хотя было открыто в 1960-х годах.

Обычное динамическое программирование является частным случаем несериального динамического программирования, когда граф взаимосвязей переменных -- просто путь. НСДП, являясь естественным и общим методом для учета структуры задачи оптимизации, рассматривает множество ограничений и/или целевую функцию как рекурсивно вычислимую функцию. Это позволяет находить решение поэтапно, на каждом из этапов используя информацию, полученную на предыдущих этапах, причём эффективность этого алгоритма прямо зависит от структуры графа взаимосвязей переменных. Если этот граф достаточно разрежен, то объём вычислений на каждом этапе может сохраняться в разумных пределах.

Одним из основных свойств задач, решаемых с помощью динамического программирования, является аддитивность. Неаддитивные задачи решаются другими методами. Например, многие задачи по оптимизации инвестиций компании являются неаддитивными и решаются с помощью сравнения стоимости компании при проведении инвестиций и без них.




Top