Помехи в радиоканалах. Основные виды помех и искажений в системах связи

Параграф 2.2: Искажения и помехи в каналах связи.

Раздел 2: Каналы электросвязи

Параграф 2.1: Определœение классификации каналов связи.

Каналом передачи информации принято называть совокупность технических средств, предназначенных для передачи сообщений. Под техническими средствами при этом принято понимать как технические устройства, осуществляющие обработку сообщений сигналов, так и линии связи, физическая среда, в которой располагается сигнал между функциями связи.

Классификация каналов связи возможна по следующим признакам:

1. по назначению

2. по характеру линии связи

3. по диапазону используемых ими частот

4. по характеру сигнала на входе и выходе канала

По назначению каналы делят:

­ телœефонные

­ телœеграфные

­ передача данных

­ телœевизионные

­ фототелœеграфные

­ звукового вещания

Учитывая зависимость оттого, распространяется сигнал между пунктами связи в свободном пространстве или по направленным линиям различают:

­ канал радиосвязи

­ канал проводной связи (воздушные, кабельные, волоконно-оптические линии связи)

На воздушных проводных линиях используются частоты не свыше 150кГц, т.к. на более высоких частотах возрастают помехи и увеличиваются затухания. Коаксиальные кабели, являющиеся основой сетей магистральной дальней связи пропускают диапазон частот до сотен МГц. Радиосвязь осуществляется с помощью электромагнитных волн, распространяется в частично ограниченном(к примеру: землей и ионосферой) пространстве. Сегодня в радиосвязи применяют частоты примерно от 3*103 – 3*1012Гц. Этот диапазон принято в соответствии с десятичной классификации подразделять следующим образом:

Наименование волн Длина волн Наименование частот Частоты
Декакилометровые (сверх длинные; СВД) 100…10 км ОНЧ 3…30 кГц
Километровые (длинные; ДВ) 10…1 км НЧ 30…300 кГц
Гектаметровые (средние; СВ) 1000…100 м СЧ 300…3000 кГц
Декаметровые (короткие; КВ) 100…10 м ВЧ 3…30 МГц
Метровые (ультракороткие; УКВ) 10…1 м ОВЧ 30…300 МГц
Дециметровые 100…10 см УВЧ 300…3000 МГц
Сантиметровые 10…1 см СВЧ 3…30 ГГц
Миллиметровые 10…1 мм КВЧ 30…300 ГГц
Децимиллиметровые 1…0,1 мм ГПЧ 300…3000 ГГц

В таблице, в скобках, указаны не стандартные, но используемые на практике названия диапазонов волн. Диапазон децимиллиметровых волн уже вплотную подходит к диапазону инфракрасных волн. Сегодня, благодаря созданию и широкому внедрению квантовых генераторов или лазеров, освоен и диапазон световых волн (оптический диапазон). Практически, в оптико-волоконных линиях связи используются частоты порядка 1014 Гц (длины волн:1,55; 1,35; 0,85 микронов). Важно заметить, что для современного этапа развития техники связи характеризуется тенденция к переходу на более высокие частоты. Это вызвано крайне важно стью повышать скорость передачи информации, меньше интенсивность помех, высокочастотный диапазон, возможность применения помехоустойчивых широкополосных методов модуляции. Применение систем связи с расширенным спектром дает дополнительные возможности по защите информации. По характеру сигналов на входе и выходе канала различают:

­ дискретные каналы

­ непрерывные каналы

­ полунепрерывные каналы

Всякий дискретный и полу непрерывный канал обязательно содержит внутри себя непрерывный канал – линию связи. Дискретность и непрерывность канала не связана с характером передаваемых сообщений. Можно передавать дискретные сообщения по непрерывному каналу и наоборот.

Передача сообщений и соответствующих им электрических сигналов через реальные каналы связи сопровождается их изменениями. Эти изменения обусловлены несовершенством реальных каналов. Их можно подразделить:

­ детерминированные

­ случайные

Детерминированные изменения сигнала в непрерывном канале определяется построением канала и сводится к изменению масштаба (ослаблению или усилению), задержки (изменение формы сигнала). В дискретном канале детерминированные изменения приводят лишь к задержке, т.к. там входные и выходные сигналы имеют фиксированную импульсную форму. Случайные изменения сигнала в непрерывном так и в дискретном каналах обусловлены помехой, действующей в непрерывном канале. Помеха – случайный процесс, налагающийся на передаваемые сигналы, а также, случайные изменения параметров канала, к примеру, коэффициент передачи. В непрерывном канале, помеха приводит к случайным изменениям формы, масштаба и задержки сигнала. В дискретном канале – к ошибкам. С точки зрения передачи информации, важно подразделœение изменения сигнала на обратимые, т.е не приводящие к потере информации и необратимые. Детерминированным обратным преобразованием входного сигнала является преобразование вида:

.

Выходной канал Y(t) отличается от входного X(t) масштабом k и задержкой t. Масштаб должна быть легко восстановлен с помощью соответствующего усиления или ослабления сигнала. Задержка сигнала приводит к задержке приема сообщений. В случае если X(t) в последнем выражении узкополосный сигнал, его удобно представить в квазигармонической форме:

где - медленно меняющиеся функции времени. При малой задержке t, можно считать, что , и выходной сигнал канала Y(t) можно записать в виде:

Фазовый сдвиг в канале.

При узкополосном сигнале малая задержка сводится к некоторому сдвигу фаз. Необратимыми изменениями сигнала являются изменения его формы, вызываемые влиянием линœейных и нелинœейных искажений и помех. При введении этих понятий полагаем, что канал имеет эквивалентную схему замещения в виде четырехполюсника с постоянными параметрами.

Линœейными искажениями называются изменения сигнала, которые возникают в инœерционном (содержит реактивные элементы) линœейном четырехполюснике с постоянными параметрами. Во временной области линœейные искажения объясняются отличием формы импульсной реакции от . Условием отсутствия искажений является равенство , ĸᴏᴛᴏᴩᴏᴇ точно возможно только в безынерционном четырехполюснике. При выполнении этого условия, сигнал на выходе канала связан с входным сигналом X(t) в соответствии с интегралом Дюамеля случайным соотношением:

Откуда, в соответствии с фильтрующим свойством d функции , что соответствует случаю наличия в канале лишь обратимых искажений. В частотной области линœейные искажения объясняются нарушением тех соотношений амплитуд и фаз гармонических составляющих, которые существуют в передаваемом сигнале. Нарушения соотношений амплитуд называют частотными, а фаз – фазовыми искажениями. Для их отсутствия нужно, чтобы для всœех гармонических составляющих сигнала были одинаковы: , .

Поскольку , для выполнения равенства крайне важно, чтобы была линœейной функцией частоты, ᴛ.ᴇ. , где . Неравномерность амплитудно-частотной характеристики и нелинœейность фазы частотной характеристики приводит к возникновению искажений формы передаваемых импульсов. Импульсы расплываются во времени вследствие чего, возникает их взаимная (межсимвольная) интерференция (наложение).

Нелинœейными называются искажения сигнала, которые возникают в нелинœейном безынерционном четырехполюснике с постоянными параметрами из-за нелинœейности их амплитудных характеристик.

Амплитудной характеристикой принято называть зависимость сигнала на выходе четырехполюсника от сигнала на его входе . Коэффициент передачи четырехполюсника в случаи, когда такая зависимость нелинœейная, зависит от уровня поступающего на его вход сигнала.

В результате нелинœейных искажений, спектры сигналов расширяются, в них появляются дополнительные гармонические составляющие, вследствие чего, форма сигналов также изменяется.

Для рассмотрения помех в непрерывных каналах выходной сигнал Y(t) можно представить в виде:

Аддитивная помеха обусловлена возникновением в канале случайной ЭДС. Основные причины, вызывающие аддитивные помехи:

1. тепловые шумы в радиоэлектронных элементах

2. наводки, обусловленные природными или промышленными процессами.

Аддитивные помехи делят:

­ сосредоточенные

­ флуктуационные

Сосредоточенные характеризуются сосредоточенностью энергии в полосœе частот (узкополосные или сосредоточенные по спектру) или на отрезке времени (импульсные помехи). Узкополосная помеха имеет спектр, составляющий наибольшую часть полосы пропускания каналов. Чаще всœего эти помехи обусловлены действием посторонних источников, к примеру, сосœедних станций в радиосвязи. Импульсные помехи – случайные последовательности относительно коротких импульсов, создаваемые промышленными установками и атмосферными источниками.

Флуктуационная помеха занимает промежуточное положение между сосредоточенными по спектру импульсными помехами. Она характеризуется размытостью энергии по частоте и по времени, в связи с этим подавить ее невозможно. Борьба с флуктуационной помехой реализуется путем использования оптимальных методов приема сигналов. Основная причина возникновения – тепловой шум, математической моделью которого является белый шум.

Мультипликативная помеха обуславливается случайными изменениями коэффициента передачи канала, они возникают из-за изменения характеристик среды, в которой располагаются сигналы; коэффициента усиления электронных схем при изменении питающих напряжения; из-за замирания сигналов в результате взаимного наложения и различных затуханий при многолучевом распространение радиоволн.

Помимо мультипликативных и аддитивные помех существуют помехи, влияние которых на сигнал зависит от самого сигнала нелинœейным образом. К числу таких помех относится, к примеру, существующие для оптических каналов связи помехи квантовый шум, вызванный дискретной природой излучения светового сигнала. Интенсивность этой помехи коррелированна с интенсивностью самого сигнала.

Параграф 2.2: Искажения и помехи в каналах связи. - понятие и виды. Классификация и особенности категории "Параграф 2.2: Искажения и помехи в каналах связи." 2017, 2018.

Помехи в каналах связи

В микроэлектронных устройствах линии связи чаще всего являются электрически разомкнутыми линиями без потерь. Входное сопротивление таких линий носит емкостной характер, и его можно представить в виде конденсатора , включенного параллельно приемнику сигнала и имеющего входной импеданс (рис. 4.29). В линии связи возникают помехи, источником которых являются тепловые шумы элементов линии, ЭДС гальванических пар и термопар, возникающих в местах контакта разнородных металлов. Напряжение помех такого вида включено последовательно с . Помехи такого вида зависят только от собственных параметров канала связи, поэтому будем называть их внутренними.

При наличии нескольких каналов связи обычно обратный провод делают общим для всех или для нескольких линий связи из соображений экономии проводов или из-за невозможности изолирования общих выводов нескольких источников и приемников сигналов. Этот факт отмечен введением в эквивалентную схему .

· токовые (последовательные) внешние помехи, напряжение которых включено последовательно с ; - напряжение помехи, наводимой из второго канала связи в первый; - напряжение помехи, наводимой из первого канала связи во второй;

· потенциальные (параллельные) внешние помехи и соответственно, напряжение которых включено параллельно соответствующего канала: и . Такое разделение вида помех позволяет получить обобщенные формулы для расчета значения помех на входе приемника сигнала.

Для параллельной внешней помехи

где - изображение напряжения помехи, наводимой из второго канала в первый;

Изображение сигнала второго канала связи;

р - комплексная переменная;

Из рис. 4.29 следует, что

В процессе прохождения по реальным каналам связи сигналы подвергаются искажениям, поэтому получаемые сообщения воспроизводятся с некоторыми ошибками. Эти ошибки обусловлены характеристиками тракта передачи, а также помехами, воздействующими на сигнал. Изменение характеристик тракта, как правило, имеет регулярный характер, и поэтому их можно в большинстве случаев устранить посредством соответствующей коррекции. Помехи же, воздействующие на сигнал, имеют случайный характер, то есть они заранее неизвестны, и поэтому их влияние нельзя полностью устранить.

Помехой принято называть любое случайное воздействие на сигнал, которое снижает достоверность воспроизведения передаваемых сообщений. Существующие помехи весьма разнообразны по своей природе и физическому воздействию.

В радиоканалах различают:

· Атмосферные помехи, обусловлены грозовыми электрическими процессами. Наиболее вредное воздействие эти помехи оказывают в области длинных и средних волн. Первым обнаружили их негативное влияние изобретатель радио А. С. Попов;

· Индустриальные помехи, возникающие из-за резких изменений тока в цепях электроустройств. Это помехи это помехи от электротранспорта, систем зажигания двигателей, медицинских установок, электродвигателей;

· Помехи от посторонних радиостанций, возникающие вследствие плохой фильтрации гармоник сигнала, недостаточной стабильности частот, нарушения регламента рабочий частот, нелинейности каналов, что приводит к образованию новых колебаний;

· Космические помехи, обусловленные электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектов.

В каналах проводной связи основными видами помех являются импульсные шумы и прерывание связи. Импульсные шумы возникают при автоматической коммутации и вследствие перекрестных наводок. Прерывание связи называется явление, при котором сигнал либо резко затухает, либо совсем пропадает, например, из-за нарушения контактов при соединении.

Все казанные помехи относятся к внешним помехам, однако имеются и внутренние помехи, возникающие в аппаратуре, например в усилителях и преобразованиях частот. Внутренние помехи обусловлены, главным образом, наличием тепловых шумов - хаотического движения носителей заряда (электронов) в проводниках. Эти помехи принципиально неустранимы.

В общем случае влияние помех на полезный сигнал можно представить в виде оператора

В зависимости от характера взаимодействия с сигналом помехи подразделяются на аддитивные и мультипликативные.

Аддитивной называется помеха, которая при образовании выходного сигнала представляется в виде слагаемого:

Мультипликативной называется помеха, которая при образовании выходного сигнала представляется в виде множителя входного сигнала:

где K(t) - некоторый случайный процесс.

Примером мультипликативной помехи являются замирания, заключающиеся в случайном изменении уровню и соответственно мощности сигнала из-за непостоянства условий распространения радиоволн. В проводных каналах мультипликативной помехой может быть прерывание связи, при котором сигнал в линии резко затухает.

К аддитивным помехам можно отнести все рассмотренные виды внешних и внутренних помех.

В реальных каналах имеются и аддитивные, и мультипликативные помехи, поэтому в них

Схема действия помех в линии связи показана на рисунке 1.3.


Рис. 1.4

В заключение отметим, что между сигналом и помехой отсутствует принципиальное различие. Более того, они существуют как единое целое, хотя и противоположные по своему действию. Например, излучение передатчика радиостанции, являясь полезным для приемника того абонента, которому оно предназначено, одновременно может служить помехой для приемников тех абонентов, которым оно не предназначено.

Помехами называются посторонние электромагнитные возмущения n(t), накладывающиеся на передаваемые сигналы S(t) и препятствующие приему сигналов.

По форме помехи делятся на несколько видов:

  • синусоидальные - от промышленной сети с частотой 50 Гц, от медицинских установок и различных аппаратов;
  • импульсные - в виде отдельных импульсов или групп импульсов (например, помехи от систем зажигания двигателей внутреннего сгорания);
  • хаотические - типа теплового шума (например, броуновское движение заряженных частиц).

По характеру мешающего воздействия помехи также делятся на несколько видов:

  • аддитивные - когда в канале связи помеха u(t) складывается с полезным сигналом S{t), т.е. Z(t) = S(t ) + u(t);
  • мультипликативные - когда воздействие помехи n(t) эквивалентно изменению коэффициента передачи канала связи, т.е. Z{t) = S(t) n(t).

Аддитивные помехи, в свою очередь, подразделяются на помехи соседних радиоканалов, промышленные, естественные, флюктуаци- онные и помехи в виде случайного процесса.

Помехи соседних радиоканалов (перекрестные помехи) возникают, например, из-за перекрытия спектров соседних каналов связи (рис. 5.12). Мера борьбы - раздвигание несущих частот соседних каналов не менее чем на две полуширины спектров сигналов.

Рис. 5.12. Перекрытие спектров соседних каналов связи с несущими частотами f x и/ 2

Промыииенные помехи (искусственные помехи) возникают вследствие затухающих колебаний при искрообразовании в различных электрических устройствах (например, электромагнитное излучение промышленного оборудования, ламп накаливания). Эти помехи проявляются, например, в беспорядочном треске и щелчках в телефонах. Мера борьбы - предотвращение или уменьшение искрообразования, использование фильтров для замыкания ВЧ-колебаний в устройствах, экранирование радиоаппаратуры.

Естественные помехи могут быть атмосферными (внутриканаль- ными) и космическими. Атмосферные помехи возникают из-за электромагнитного излучения при грозовых разрядах и проявляются на длинных и средних волнах в виде сильного нерегулярного треска в телефонах и радиоприемниках. Космические помехи вызваны излучением звезд в результате протекающих в них процессов преобразования энергии. Меры борьбы - переход в ультракоротковолновый диапазон, свободный от этого вида помех.

Флюктуационные помехи, источником которых являются внутренние шумы, представляют собой случайные колебания токов и напряжений в элементах радиоаппаратуры - последовательность коротких импульсов, имеющих случайный момент появления.

Помехи в виде случайного процесса можно определить как нежелательный процесс, который сопровождает передачу сигналов в линиях связи. Примером могут служить перекрестные помехи, когда во время телефонной связи происходит ложная коммутация двух телефонных линий, в результате чего в трубке можно слышать разговор по другой линии. Другим примером являются внутриканальные помехи, которые иногда возникают в телевизионных системах под воздействием атмосферных явлений. При этом телевизионный сигнал начинает распространяться на расстояния, превышающие обычные, и возникают взаимные помехи с локальными радиостанциями, ведущими вещание на тех же частотах.

Часть помех в линии связи вносят электронные компоненты - различные шумы: тепловой, дробовой, фликер-шум.

Тепловой шум возникает в процессе теплового возбуждения атомов проводника или резистора. В результате появляются свободные электроны, которые хаотически движутся в различных направлениях с различными скоростями. Их движение приводит к появлению случайной разности потенциалов на концах проводника или резистора.

Дробовой шум присутствует везде, где через какое-либо активное устройство течет постоянный или переменный ток и происходят случайные колебания величины этого тока, которые накладываются на сигнал и искажают его. Название «дробовой шум» происходит от специфического потрескивания, которое можно услышать в наушниках, если усилить сигнал с помощью усилителя низкой частоты.

Фликер-шум возникает в полупроводниковых вакуумных устройствах вследствие дефектов кристаллической структуры материала, которые приводят к флюктуациям проводимости. Происхождение этих шумов до конца не выяснено. Фликер-шумы нельзя смоделировать, поскольку они изменяются от устройства к устройству. В большинстве случаев на частотах свыше 10 кГц фликер-шумом можно пренебречь. Условно считают, что фликер-шум занимает полосу 0,1... 10 3 Гц.

В качестве параметра для оценки качества системы используется отношение сигнал/шум - отношение максимального значения напряжения сигнала к эффективному значению напряжения шума:

Отношение сигнал/шум часто определяют в децибелах:

Иногда в качестве отношения сигнал/шум берут отношение мощности сигнала P s и средней мощности помехи Р„, также выраженное в децибелах:

Типичные значения приемлемого отношения сигнал/шум составляют около 50...60 дБ - для высококачественного радиовещания музыкальных программ, 16 дБ - для низкокачественной передачи речи, до 30 дБ - для коммерческих телефонных систем, 60 дБ - для телевизионного вещания с хорошим качеством.

Отношение сигнал/шум уменьшается при прохождении сигнала через каскады усиления или преобразования в приемных устройствах систем связи, так как каждый каскад добавляет собственный шум. Если рассматривать многокаскадный усилитель, то общий коэффициент усиления определяется произведением коэффициентов усиления каждого каскада:

В идеальном случае, когда каскады не вносят собственных шумов, на выходе отношение сигнал/шум не изменится, так как

Реально каждый /-каскад вносит шумы и помехи:

Тогда отношение сигнал/шум на выходе /-каскада будет составлять

При расчете общего отношения сигнал/шум всех каскадов системы необходимо раздельно вычислить полезный сигнал 5 отах ВЬ1Х и уровень шума л вых (/) с учетом коэффициентов передачи каскадов G, и уровня шумов «,(/), внесенных в каждый каскад.

1.7. Помехи и искажения

Общие сведения. В реальном канале сигнал при передаче искажается и сообщение воспроизводится с некоторой ошибкой. Причиной таких ошибок являются искажения, вносимые самим каналом, и помехи, воздействующие на сигнал.

Частотные и временные характеристики канала определяют так называемые линейные искажения. Кроме того, канал может вносить и нелинейные искажения, обусловленные нелинейностью тех или иных его звеньев. Как линейные, гак и нелинейные искажения обусловлены известными характеристиками канала и поэтому, в принципе, могут быть устранены путем надлежащей коррекции.

Следует четко отделить искажения от помех, имеющих случайный характер. Помехи заранее неизвестны и поэтому не могут быть полностью устранены.

Под помехой понимается любое воздействие, накладывающееся на полезный сигнал и затрудняющее его прием. Помехи весьма разнообразны как по своему происхождению, так и по физическим свойствам. В радиоканалах наиболее распространенными являются атмосферные помехи, обусловленные электрическими процессами в атмосфере и, прежде всего, грозовыми разрядами. Энергия этих помех сосредоточена, главным образом, в области длинных и средних волн. Сильные помехи создаются также промышленными установками. Это так называемые индустриальные помехи, возникающие из-за резких изменений тока в электрических цепях всевозможных электроустройств. Сюда относятся помехи от электротранспорта, электрических моторов, медицинских установок, систем зажигания двигателей и т. п.

Распространенным видом помех являются помехи от посторонних радиостанций и каналов. Этот вид помех обусловлен нарушением регламента распределения рабочих частот, недостаточной стабильностью частот, и плохой фильтрацией гармоник сигнала, а также нелинейными процессами в каналах, ведущими к перекрестным искажениям.

В проводных каналах связи основным видом помех являются импульсные шумы и прерывания связи. Появление импульсных помех часто связано с автоматической коммутацией и с перекрестными наводками. Прерывание связи есть явление, при котором сигнал в линии резко затухает или совсем исчезает. Такие прерывания могут быть вызваны различными причинами, из которых наиболее частыми являются нарушение контактов в реле, разъемах и т.п.

Практически в любом диапазоне частот имеют место внутренние шумы аппаратуры, обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Этот вид помех особенно сказывается в диапазоне ультракоротких волн. В этом диапазоне имеют значение и космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектах.

В общем виде влияние помехи ω на передаваемый сигнал s можно выразить оператором

x =Ψ(s ,ω) (1.9)

В частном случае, когда оператор Ψ вырождается в сумм

x = s (1.10)

помеха называется аддитивной. Если же оператор может быть представлен в виде произведения

x = μs (1.11)

то помеху называют мультипликативной. Здесь μ (t ) - случайный процесс. Если μ - медленный по сравнению с сигналом процесс, то его называют замираниями. В реальных каналах обычно имеют место и аддитивные, и мультипликативные помехи, поэтому

x = μs (1.12)

Флуктуационная помеха. Среди аддитивных помех особое место занимает флуктуационная помеха, которая является случайным процессом с нормальным распределением (гауссов процесс). Такая помеха наиболее изучена и представляет наибольший интерес, как в теоретическом, так и в практическом отношениях. Этот вид помех практически имеет место во всех реальных каналах. Сумма большого числа любых помех от различных источников также имеет характер флуктуационной помехи. И, наконец, многие помехи три прохождении через приемное устройство часто приобретают свойства нормальной флуктуационной помехи.

Электрическую структуру флуктуационной помехи можно представить себе как последовательность бесконечно коротких импульсов, имеющих случайную амплитуду и следующих друг за другом через случайные промежутки времени. При этом импульсы появляются один за другим настолько часто, что переходные явления в приемнике от отдельных импульсов накладываются, образуя непрерывный случайный процесс.

С физической точки зрения случайные помехи порождаются различного рода флуктуациями, т. е. случайными отклонениями тех или иных физических величин от их средних значений. Так, источником шума в электрических цепях могут быть флуктуации тока, обусловленные дискретной природой носителей заряда (электронов, ионов). Дискретная природа электрического тока проявляется в электронных лампах и полупроводниковых приборах в виде дробового эффекта.

Наиболее распространенной причиной шума являются флуктуации, обусловленные тепловым движением. Случайное тепловое движение носителей заряда в любом проводнике вызывает случайную разность потенциалов (напряжение) на его концах. Среднее значение напряжения равно нулю, а переменная составляющая проявляется как шум. Квадрат эффективного напряжения теплового шума определяется известной формулой Найквиста

где Т - абсолютная температура, которую имеет сопротивление R ; F - полоса частот; k=вт. сек/град- постоянная Больцмана.

Длительность импульсов, составляющих флуктуационную помеху, очень мала, поэтому спектральная плотность помехи постоянна вплоть до очень высоких частот. Типичным примером флуктуационных помех являются внутренние шумы приемника. Флуктуационный характер имеют космические помехи, а также некоторые виды атмосферных и индустриальных помех.

Импульсные помехи. К импульсным или сосредоточенным по времени помехам относят помехи в виде одиночных импульсов, следующих один за другим через такие большие промежутки времени, что переходные явления в радиоприемнике от одного импульса успевают практически затухнуть к моменту прихода следующего импульса. К таким помехам относятся многие виды атмосферных и индустриальных помех. Заметим, что понятия «флуктуационная помеха» и «импульсная помеха» являются относительными. В зависимости от частоты следования импульсов одна и та же помеха может воздействовать как импульсная на приемник с широкой полосой пропускания и как флуктуационная на приемник с относительно узкой полосой пропускания.

Импульсные помехи представляют собой дискретный случайный процесс, состоящий из отдельных редких, случайно распределенных по времени и амплитуде импульсов. Статические свойства таких помех с достаточной для практических целей полнотой описываются распределением вероятностей амплитуд импульсов и распределением временных интервалов между этими импульсами.

Сосредоточенные по спектру помехи. К этому виду помех принято относить сигналы посторонних радиостанций, излучения генераторов высокой частоты различного назначения (промышленные, медицинские) и т. п. Обычно это модулированные колебания, т. е. синусоидальные колебания с изменяющимися параметрами. В одних случаях эти колебания являются непрерывными (например, сигналы вещательных и телевизионных радиостанций), в других случаях они носят импульсный характер (сигналы радиотелеграфных станций). В отличие от флуктуационных и импульсных помех, спектр которых заполняет всю полосу частот приемника, ширина спектра сосредоточенной полежи в большинстве случаев меньше полосы пропускания приемника. В диапазоне коротких волн этот вид помех является основным, определяющим помехоустойчивость связи.




Top