Перечень самых эффективных солнечных батарей. Кпд солнечных батарей

Ежедневно на нашу планету поступают миллиарды киловатт солнечной энергии. Люди уже давно начали использовать эту энергию для своих нужд. С течением прогресса для преобразования энергии солнечного света стали использовать солнечные батареи. Но эффективны ли эти приборы? Сколько составляет КПД солнечных батарей, и от чего он зависит? Каков их срок окупаемости и как можно вычислить рентабельность использования солнечных батарей? Эти вопросы волнуют каждого, кто планирует или уже решил приобрести солнечные панели, поэтому этой актуальной теме посвящена настоящая статья.

Давайте вкратце разберем, на чем основан принцип действия солнечных панелей. В основе лежит физическое свойство полупроводников. Вследствие выбивания фотонами света электронов с внешней орбиты атомов, образуется достаточно большое количество свободных электронов. После замыкания цепи и возникает электрический ток. Но, как правило, одного-двух фотоэлементов для получения достаточной мощности не хватает, поэтому, в состав солнечных модулей чаще всего входит несколько солнечных батарей. Чем больше фотоэлементов соединяют вместе, то есть чем больше площадь солнечных панелей, тем больше и производимая ими мощность. Помимо площади панелей ощутимое влияние на производимую мощность оказывают интенсивность солнечного света и угол падения лучей.

Разбираем понятие КПД

Значение КПД панели получают путем деления мощности электрической энергии на мощность солнечного света, падающего на панель. На сегодняшний день среднее значение этого показателя на практике составляет 12-25%, в теории же эта цифра приближается к 80-85%. В чем же причина такой большой разницы? В первую очередь, это зависит от используемых для изготовления солнечных панелей материалов. Как уже известно, основной элемент, входящий в состав панелей, это кремний. Один из главных недостатков этого вещества – способность поглощать лишь инфракрасное излучение, то есть энергия ультрафиолетовых лучей тратится впустую. Поэтому одно из основных направлений, в котором работают ученые, пытающиеся увеличить КПД солнечных панелей – это разработка многослойных модулей.

Многослойные батареи представляют собой конструкцию, состоящую из слоев различных материалов. Их подбирают в расчете на кванты разной энергии. То есть один слой поглощает энергию зеленого цвета, второй – синего, третий – красного. В теории различные комбинации этих слоев могут дать значение КПД 87%. Но это, к сожалению, лишь теория. Как показывает практика, изготовление подобных конструкций в производственных масштабах очень трудоемкое занятие, да и стоимость таких модулей очень высока.

На КПД солнечных модулей влияет и вид используемого кремния. Панели, изготовленные из монокристаллического кремния, имеют более высокий коэффициент полезного действия, нежели панели из поликристаллического кремния. Но и цена монокристаллических батарей выше.

Основное правило: при более высоком КПД для генерации электроэнергии заданной мощности потребуется модуль меньшей площади, то есть в состав солнечной панели будет включено меньшее количество фотоэлементов.

Как быстро окупятся солнечные батареи?

Стоимость солнечных батарей сегодня достаточно высока. А с учетом небольшого значения КПД панелей, вопрос их окупаемости очень актуален. Срок службы батарей, работающих от солнечной энергии, составляет порядка 25 и более лет. О том, чем обусловлен столь долгий срок эксплуатации, мы поговорим чуть позже, а пока выясним озвученный выше вопрос.

На срок окупаемости влияют:

  • Тип выбранного оборудования. Однослойные фотоэлементы имеют более низкий КПД в сравнении с многослойными, но и гораздо меньшую цену.
  • Географическое положение, то есть чем больше солнечного света в Вашей местности, тем быстрее окупится установленный модуль.
  • Стоимость оборудования. Чем больше средств Вы потратили на приобретение и монтаж элементов, входящих в состав солнечной системы энергосбережения, тем длиннее срок окупаемости.
  • Стоимость энергоресурсов в Вашем регионе.

Средние цифры срока окупаемости для стран Южной Европы составляют 1,5-2 года, для стран Средней Европы – 2,5-3,5 года, а в России срок окупаемости равен примерно 2-5 годам. В ближайшем будущем эффективность солнечных батарей значительно увеличится, связано это с разработкой более совершенных технологий, позволяющих увеличивать КПД и снижать себестоимость панелей. А как следствие уменьшится и срок, в течение которого система энергосбережения на солнечной энергии окупит себя.

Сколько прослужат солнечные батареи?

В состав солнечных панелей не входят механические подвижные части, поэтому они достаточно надежны и долговечны. Как уже упоминалось выше, срок их службы составляет более 25 лет. При правильной эксплуатации они могут прослужить и 50 лет. Большим плюсом является то, что столь долгий срок службы обходится без крупных поломок, достаточно лишь систематически очищать зеркала фотоэлементов от пыли и других загрязнений. Это необходимо для лучшего поглощения энергии, а, следовательно, и для более высокого показателя КПД.

Долгий период службы является одним из главных критериев при принятии решения «приобретать или нет солнечные батареи». После того как батареи окупят сами себя, получаемая Вами электрическая энергия, будет абсолютно бесплатной. Даже если период окупаемости будет максимальным (порядка 6 лет), Вы как минимум 20-25 лет не будете платить за энергоресурсы.

Последние разработки, увеличивающие показатель КПД

Чуть ли не каждый день ученые по всему миру заявляют о разработке нового метода, позволяющего увеличить коэффициент полезного действия солнечных модулей. Познакомимся с самыми интересными из них. В прошлом году компания Sharp представила общественности солнечный элемент, эффективность которого составила 43,5%. Этой цифры они смогли добиться с помощью установки линзы для фокусировки энергии непосредственно в элементе.

Не отстают от компании Sharp и немецкие физики. В июне 2013 года они представили свой фотоэлемент площадью всего в 5,2 кв. мм, состоящий из 4-х слоев полупроводниковых элементов. Такая технология позволила добиться КПД в 44,7%. Максимальная эффективность в данном случае также достигается за счет помещения вогнутого зеркала в фокус.

В октябре 2013 года были опубликованы результаты работ ученых из Стэнфорда. Они разработали новый жаропрочный композит, способный увеличить производительность фотоэлементов. Теоретическое значение КПД составляет около 80%. Как мы писали выше, полупроводники, в состав которых входит кремний, способны поглощать лишь ИК-излучение. Так вот действие нового композитного материала направлено на перевод высокочастотного излучения в инфракрасное.

Следующими стали английский ученые. Они разработали технологию, способную увеличить эффективность элементов на 22%. Они предложили на гладкой поверхности тонкопленочных панелей разместить наношипы из алюминия. Этот металл был выбран по причине того, что солнечный свет им не поглощается, а, наоборот, рассеивается. Следовательно, увеличивается количество поглощаемой солнечной энергии. Отсюда и рост производительности солнечной батареи.

Здесь приведены лишь основные разработки, но дело ими не ограничивается. Ученые борются за каждую десятую долю процента, и пока им это удается. Будем надеяться, что в ближайшем будущем показатели эффективности солнечных батарей будут на должном уровне. Ведь тогда и выгода от использования панелей будет максимальной.

Статью подготовила Абдуллина Регина

В Москве уже применяют новые технологии освещения улиц и парков, я думаю, там экономическая эффективность была просчитана:

Один из самых распространенных вопросов, который возникает при решении установить солнечные батареи для личных нужд, является вопрос о том, какие солнечные панели являются самыми эффективными? Однако, такая формулировка не совсем верна. Прежде всего, буквальный ответ на этот вопрос для рядового потребителя не имеет значения. Попробуем разобраться почему?

На самом деле, важный вопрос не в том, как выбрать самые эффективные солнечные батареи, а в том, какие из них имеют лучшее соотношение цены и качества. Если у вас на крыше есть место для установки десяти солнечных панелей и есть выбор между солнечными панелями с условным классом энергоэффективности "A", которые немного более эффективны, но в два раза дороже солнечных панелей класса "B", то, скорее всего, с точки зрения экономии целесообразней выбрать панели класса "B". Одним словом, главная задача состоит в том, чтобы выяснить, какие варианты доступны в конкретной ситуации и проанализировать экономический эффект от каждого из них.
В любом случае, если вы действительно хотите знать самые эффективные солнечные панели (или солнечные модули), то некоторые из них приведены ниже с указанием производителя и значения коэффициента полезного действия (КПД):

  • солнечные панели с эффективностью 44,4% от Sharp. Концентрирующие трехслойные солнечные модули от мирового лидера среди производителей солнечных батарей очень сложны и не используются в жилых или общественных зданиях потому, что они баснословно дороги. В основном, такие солнечные модули нашли применение в космической отрасли, где огромное значение имеет эффективность при сравнительно небольших размерах и массе;
  • солнечные модули с КПД 37,9% производства Sharp. Эти трехслойные солнечные панели являются более простым аналогом предыдущих с тем отличием, что в них не применяются специальные устройства для концентрации солнечного света на модуль. Соответственно, цена таких панелей ниже на стоимость этих устройств;
  • солнечные батареи с эффективностью 32,6% от испанского исследовательского института солнечной энергетики (IES) и университета (UPM). Представляют собой еще более простые двухслойные модули с концентратором солнечного света, однако их использование в жилых или общественных зданиях по-прежнему слишком дорого.

Существует около десятка или около того других видов солнечных панелей, которыми можно было продолжить этот список. Некоторые из них имеют очень высокий КПД, но их цена очень велика, в то время как другие достаточно дешевы, но имеют очень низкую эффективность. Конечно, некоторые из них неэффективны и дороги одновременно. Но, тем не менее, представляют определенный исследовательский интерес. Ключ, как отмечалось ранее, в том, чтобы найти оптимальный баланс между стоимостью и эффективностью.
Существует мнение, что сегодня гораздо меньше научных исследований посвящены солнечным батареям, нежели фотоэлементам, лежащим в основе технологии производства солнечных батарей – это то, за чем проводят время ученые многих мировых институтов и университетов. Никто даже не будет пробовать изготовить солнечную батарею, которая не будет продаваться по причине слабой товарной привлекательности ее компонентов – солнечных модулей. Сегодня на рынке существует множество различных типов солнечных батарей (точнее, солнечных модулей) самых разных производителей. Итак, давайте взглянем на лидеров в различных категориях:

  • солнечные модули с КПД 36% производства компании Amonix удерживают общий рекорд производительности. Тем не менее, они сделаны с применением концентрирующих устройств, и не используются для бытовых целей;
  • солнечные модули с эффективностью 21,5% от американской компании Sun Power установили коммерческий рекорд эффективности. Солнечные модули Sun Power SPR-327NE-WHT-D являются лидером по показателям эффективности по результатам полевых испытаний. Солнечные модули, занявшие второе и третье места в этом тесте, также являются разработкой компании Sun Power;
  • тонкопленочные солнечные модули с эффективностью 17,4% от компании Q-Cells удерживают рекорд в этой категории. Тонкопленочные солнечные батареи широко используются, но не в жилых зданиях. Q-Cells - немецкая компания, которая в 2012 году подала на банкротство, а затем была приобретена корейской компанией Hanwha;
  • тонкопленочные солнечные модули на основе кадмий-теллурового (CdTe) фотоэлектрического преобразования эффективностью 16,1% от First Solar являются лидерами в своей категории. Опять же, солнечные батареи на основе таких модулей, как правило, не используется для бытовых целей, но помогают компании удерживать высокие позиции среди производителей солнечных батарей . Американская компания FirstSolar являлась лидером по производству солнечных батарей на американском рынке и занимала второе место в мировом рейтинге в прошлом году. Несмотря на довольно небольшой КПД 16,1% в этой категории, относительно дешевые солнечные модули First Solar являются оптимальным выбором для многих отраслей;
  • последний пример для демонстрации того, что список самых эффективных солнечных панелей очень длинный и не ограничивается приведенными выше экземплярами, отметим гибкие солнечные модули эффективностью 15,5% от компании MiaSole, лидирующие в этой категории. Естественно, для некоторых целей необходимы не просто солнечные батареи, а гибкие солнечные панели. Но, вероятно, это не Ваш случай...

Подводя итоги, посоветуем при выборе солнечных батарей для своих нужд не делать акцент на гипотетических и не относящихся к делу превосходствах. Забудьте о том, чтобы стараться выбрать «самые эффективные солнечные батареи ». Ищите панели, четко отвечающие конкретным целям, а не пытайтесь найти солнечные батареи, которые были разработаны для спутников НАСА.
Диаграмма, составленная национальной лабораторией возобновляемой энергии США, наглядно демонстрирует большое разнообразие технологий производства солнечных батарей и достижения каждой из них в плане эффективности.

Пришло время рассказать о том, насколько эффективна солнечная энергетика в Московской области. Целый год я собирал статистику выработки солнечной энергии с двух 100-ваттных солнечных панелей, установленных на крыше загородного дома и подключенных в сеть с использованием грид инвертора. Я уже писал об этом год назад. А сейчас пора подвести итоги.

Сейчас вы узнаете то, о чем никогда не расскажут продавцы солнечных панелей.

Ровно год назад, в октябре 2015 года, в качестве эксперимента я решил записаться в ряды «зеленых», спасающих нашу планету от преждевременной гибели, и приобрел солнечные панели максимальной мощностью 200 ватт и грид-инвертор рассчитанный максимум на 300 (500) ватт вырабатываемой мощности. На фотографии вы можете увидеть структуру поликристаллической 200-ваттной панели, но через пару дней после покупки стало ясно, что в одиночной конфигурации у неё слишком низкое напряжение, недостаточное для правильной работы моего грид-инвертора.

Поэтому мне пришлось её поменять на две 100-ваттных монокристаллических панели. Теоретически они должны быть немного эффективнее, по факту же они просто дороже. Это панели высокого качества, российского бренда Sunways. За две панели я заплатил 14 800 рублей.

Вторая статья расходов - грид-инвертор китайского производства. Производитель никак себя не обозначил, но устройство сделано качественно, а вскрытие показало, что внутренние компоненты рассчитаны на мощность до 500 ватт (вместо 300, написанных на корпусе). Стоит такой грид всего 5 000 рублей. Грид - это гениальное устройство. С одной стороны к нему подключается + и - от солнечных панелей, а с другой стороны он с помощью обычной электрической вилки подключается совершенно в любую электрическую розетку в вашем доме. В процессе работы грид подстраивается под частоту в сети и начинает "выкачивать" переменный ток (сконвертированный из постоянного) в вашу домашную сеть 220 вольт.

Грид работает только при наличии напряжения в сети и его нельзя рассматривать как резервный источник питания. Это его единственный минус. А колоссальным плюсом грид инвертора является то, что вам в принципе не нужны аккумуляторы. Ведь именно аккумуляторы являются самым слабым звеном в альтернативной энергетике. Если та же солнечная панель гарантированно отработает более 25 лет (то есть через 25 лет она потеряет примерно 20% своей производительности), то срок службы обыкновенного свинцового аккумулятора в аналогичных условиях составит 3-4 года. Гелевые и AGM аккумуляторы прослужат дольше, до 10 лет, но они и стоят в 5 раз дороже обычных аккумуляторов.

Поскольку у меня есть сетевое электричество, то мне никакие аккумуляторы не нужны. Если же делать систему автономной, то нужно добавить к бюджету еще 15-20 тысяч рублей на аккумулятор и контроллер к нему.

Теперь, что касается выработки электроэнергии. Вся энергия вырабатываемая солнечными панелями в реальном времени попадает в сеть. Если в доме есть потребители этой энергии, то она вся будет израсходована, а счетчик на вводе в дом «крутиться» не будет. Если же моментальная выработка электроэнергии превысит потребляемую в данный момент, то вся энергия будет передана обратно в сеть. То есть счетчик будет «крутиться» в обратную сторону. Но тут есть нюансы.

Во-первых, многие современные электронные счетчики считают проходящий через них ток без учета его направления (то есть вы будете платить за отдаваемую обратно в сеть электроэнергию). А во-вторых, российское законодательство не разрешает частным лицам продавать электроэнергию. Такое разрешено в Европе и именно поэтому там каждый второй дом обвешан солнечными панелями, что в совокупности с высокими сетевыми тарифами позволяет действительно экономить.

Что делать в России? Не ставить солнечные панели, которые могут выработать энергии больше, чем текущее дневное энергопотребление в доме. Именно по этой причине у меня всего две панели суммарной мощностью 200 ватт, которые с учетом потерь инвертора могут отдать в сеть примерно 160-170 ватт. А мой дом стабильно круглосуточно потребляет примерно 130-150 ватт в час. То есть вся выработанная солнечными панелями энергия будет гарантированно потреблена внутри дома.

Для контроля вырабатываемой и потребляемой энергии я пользуюсь Smappee. Я уже писал про него в прошлом году. У него два трансформатора тока, которые позволяют вести учет как сетевой, так и вырабатываемой солнечными панелями электроэнергии.

Начнём с теории, и перейдем к практике.

В интернете есть много калькуляторов солнечных электростанций, вот можно посмотреть на то, что он из себя представляет. Из моих исходных данных согласно калькулятору следует, что среднегодовая выработка электроэнергии моих солнечных панелей составит 0,66 квтч/сутки , а суммарная выработка за год - 239,9 квтч .

Это данные для идеальных погодных условий и без учета потерь на конвертацию постоянного тока в переменный (вы же не собираетесь переделывать электроснабжение своего домохозяйства на постоянное напряжение?). В реальности полученную цифру можно смело делить на два.

Сравниваем с реальными данными по выработке за год:

2015 год - 5,84 квтч
Октябрь - 2,96 квтч (с 10 октября)
Ноябрь - 1,5 квтч
Декабрь - 1,38 квтч
2016 год - 111,7 квтч
Январь - 0,75 квтч
Февраль - 5,28 квтч
Март - 8,61 квтч
Апрель - 14 квтч
Май - 19,74 квтч
Июнь - 19,4 квтч
Июль - 17,1 квтч
Август - 17,53 квтч
Сентябрь - 7,52 квтч
Октябрь - 1,81 квтч (до 10 октября)

Всего: 117,5 квтч

Вот график выработки и потребления электроэнергии в загородном доме за последние 6 месяцев (апрель-октябрь 2016 года). Именно за апрель-август солнечными панелями была выработана львиная доля (более 70%) электрической энергии. В остальные месяцы года выработка была невозможна по большей части из-за облачности и снега. Ну и не забываем, что КПД грида по конвертации постоянного тока в переменный примерно 60-65%.

Солнечные панели установлены практически в идеальных условиях. Направление строго на юг, поблизости нет высоких домов отбрасывающих тень, угол установки относительно горизонта - ровно 45 градусов. Этот угол даст максимальную среднегодовую выработку электроэнергии. Конечно можно было купить поворотный механизм с электроприводом и функцией слежения за солнцем, но это бы увеличило бюджет всей установки практически в 2 раза, тем самым отодвинув срок её окупаемости в бесконечность.

По выработке солнечной энергии в солнечные дни у меня нет никаких вопросов. Она полностью соответствует расчетным. И даже снижение выработки зимой, когда солнце не поднимается высоко над горизонтом не было бы настолько критично, если бы не... облачность. Именно облачность является главным врагом фотовольтаики. Вот вам почасовая выработка за два дня: 5 и 6 октября 2016 года. Пятого октября светило солнце, а 6 октября небо затянули свинцовые тучи. Солнце, ау! Ты где спряталось?

Зимой есть еще одна небольшая проблема - снег. Решить её можно только одним способом, установить панели практически вертикально. Либо каждый день вручную очищать их от снега. Но снег это ерунда, главное чтобы светило солнце. Пусть даже низко над горизонтом.

Итак, подсчитаем расходы:

Грид инвертор (300-500 ватт) - 5 000 рублей
Монокристаллическая солнечная панель (Grade A - высшего качества) 2 шт по 100 ватт - 14 800 рублей
Провода для подключения солнечных панелей (сечением 6 мм2) - 700 рублей
Итого: 20 500 рублей.

За прошедший отчетный период было выработано 117,5 квтч, по текущему дневному тарифу (5,53 руб/квтч) это составит 650 рублей .

Если предположить, что стоимость сетевых тарифов не изменится (на самом деле они изменяются в большую сторону 2 раза в год), то свои вложения в альтернативную энергетику я смогу вернуть только через 32 года!

А уж если добавить аккумуляторы, то вся эта система никогда себя не окупит. Поэтому солнечная энергетика при наличии сетевого электричества может быть выгодна только в одном случае - когда у нас электроэнергия будет стоить как в Европе. Вот будет стоить 1 квтч сетевого электричества более 25 рублей, вот тогда солнечные панели будут очень выгодны.

Пока же использовать солнечные панели выгодно только там, где нет сетевого электричества, а его проведение стоит слишком дорого. Предположим, что у вас его загородный дом, расположенный в 3-5 км от ближайшей электрической линии. Причем она высоковольтная (то есть потребуется установка трансформатора), а у вас нет соседей (не с кем разделить расходы). То есть за подключение к сети вам придется заплатить условно 500 000 рублей, а после этого еще и платить по сетевым тарифам. Вот в этом случае вам будет выгоднее купить на эту сумму солнечные панели, контроллер и аккумуляторы - ведь после ввода системы в эксплуатацию вам уже больше платить не нужно будет.

А пока стоит рассматривать фотовольтаику исключительно, как хобби.

При постоянно растущих ценах на электроэнергию поневоле начнешь задумываться об использовании природных источников для электроснабжения. Одна из таких возможностей — солнечные батареи для дома или дачи. При желании они могут обеспечить полностью все потребности даже большого дома.

Устройство системы электропитания от солнечных батарей

Преобразовывать энергию солнца в электричество – эта идея длительное время не давала спать ученым. С открытием свойств полупроводников это стало возможным. В солнечных батареях используются кремниевые кристаллы. При попадании на них солнечного света в них образуется направленное движение электронов, которое называется электрическим током. При соединении достаточного количества таких кристаллов получаем вполне приличные по величине токи: одна панель площадью чуть больше метра (1,3-1,4 м2 при достаточном уровне освещенности может выдать до 270 Вт (напряжение 24 В).

Так как освещенность меняется в зависимости от погоды, времени суток, напрямую подключать устройства к солнечным батареям не получается. Нужна целая система. Кроме солнечных панелей требуется:

  • Аккумулятор. На протяжении светового дня под воздействием солнечных лучей солнечные батареи вырабатывают электрический ток для дома, дачи. Он не всегда используется в полном объеме, его излишки накапливаются в аккумуляторе. Накопленная энергия расходуется ненастную погоду.
  • Контролер. Не обязательная часть, но желательная (при достаточном количестве средств). Отслеживает уровень заряда аккумулятора, не допуская его чрезмерного разряда или превышения уровня максимального заряда. Оба этих состояния губительны для аккумулятора, так что наличие контролера продлевает срок эксплуатации аккумулятора. Также контролер обеспечивает оптимальный режим работы солнечных панелей.
  • Преобразователь постоянного тока в переменный (инвертор). Не все устройства рассчитаны на постоянный ток. Многие работают от переменного напряжения в 220 вольт. Преобразователь дает возможность получить напряжение 220-230 В.

Солнечные батареи для дома — только часть системы

Установив солнечные батареи для дома или дачи, можно стать совершенно независимым от официального поставщика. Но для этого надо иметь большое количество батарей, некоторое количество аккумуляторов. Комплект, который вырабатывает 1,5 кВт а сутки стоит около 1000$. Этого достаточно для обеспечения потребностей дачи или части электрооборудования в доме. Комплект солнечных батарей для производства 4 кВт в сутки стоит порядка 2200$, на 9 кВт в сутки — 6200$. Так как солнечные батареи для дома — модульная система, можно купить установку, которая будет обеспечивать часть потребностей, постепенно увеличивая ее производительность.

Виды солнечных батарей

С ростом цен на энергоносители идея использования энергии солнца для получения электроэнергии становится все более популярной. Тем более, что с развитием технологий солнечные преобразователи становятся эффективнее и, одновременно, дешевле. Так что, при желании, можно свои нужды обеспечить установив солнечные батареи. Но они бывают разных типов. Давайте разбираться.

Сама солнечная батарея — некоторое количество фотоэлементов, которые расположены в общем корпусе, защищенные прозрачной лицевой панелью. Для бытового использования фотоэлементы производят на основе кремния, так как он относительно недорог, и элементы на его основе имеют неплохой КПД (порядка 20-24%). На основе кремниевых кристаллов изготавливают монокристаллические, поликристаллические и тонкопленочные (гибкие) фотоэлементы. Некоторое количество этих фотоэлементов электрически соединены между собой (последовательно и/или параллельно) и выведены на клеммы, расположенные на корпусе.

Фотоэлементы установлены в закрытом корпусе. Корпус солнечной батареи делают из анодированного алюминия. Он легкий, не подвержен коррозии. Лицевую панель делают из прочного стекла, которое должно выдерживать снего-ветровые нагрузки. К тому же оно должно обладать определенными оптическими свойствами — иметь максимальную прозрачность, чтобы пропускать как можно больше лучей. Вообще, из-за отражения теряется значительное количество энергии, так что требования к качеству стекла высокие и еще оно покрывается антибликовым составом.

Виды фотоэлементов для солнечных батарей

Солнечные батареи для дома делают на основе кремневых элементов трех типов;


Если у вас скатная крыша и фасад развернут на юг или восток, слишком сильно думать о занимаемой площади не имеет смысла. Вполне могут устроить поликристаллические модули. При равном количестве производимой энергии они стоят немного дешевле.

Как правильно выбрать систему солнечных батарей для дома

Есть распространенные заблуждения, которые заставляют вас тратить лишние деньги на приобретение чересчур дорогого оборудования. Ниже приведем рекомендации того, как правильно выстроить систему электропитания от солнечных батарей и не потратить лишних денег.

Что надо купить

Далеко не все компоненты солнечной электростанции жизненно необходимы для работы. Без некоторых частей вполне можно обойтись. Они служат для повышения надежности, но без них система работоспособна. Первое, что стоит запомнить — приобретайте солнечные батареи в конце зимы, начале весны. Во-первых, погода в это время отличная, много солнечных дней, снег отражает солнце, увеличивая общую освещенность. Во-вторых, в это время традиционно объявляют скидки. Далее советы такие:


Если воспользоваться только этими советами, и подключить только технику, которая работает от постоянного напряжения, система солнечных батарей для дома обойдется в гораздо более скромную сумму чем самый дешевый комплект. Но это еще не все. Можно еще часть оборудования оставить «на потом» или вообще обойтись без него.

Без чего можно обойтись

Стоимость комплекта солнечных батарей на 1 кВт в сутки — более тысячи долларов. Немалые вложения. Поневоле задумаешься, а стоит ли оно того и каков же будет срок окупаемости. При нынешних тарифах ждать пока отобьются свои деньги придется не один год. Но можно затраты уменьшить. Не за счет качества, но за счет незначительного снижения комфортности эксплуатации системы и за счет разумного подхода к подбору ее компонентов.


Итак, если бюджет ограничен, можно обойтись несколькими солнечными панелями и аккумуляторными батареями, емкость которых на 20-25% выше максимального заряда солнечных панелей. Для мониторинга состояния купите автомобильные часы, которые еще измеряют напряжение. Это избавит вас от необходимости несколько раз в день измерять заряд на АКБ. Вместо этого вам надо будет время от времени смотреть на показания часов. Для старта это все. В дальнейшем можно докупать солнечные батареи для дома, увеличивать количество АКБ. При желании, можно купить инвертор.

Определяемся с размерами и количеством фотоэлементов

В хороших солнечных батареях на 12 вольт должно быть 36 элементов, на 24 вольта — 72 фотоэлемента. Это количество оптимально. При меньшем числе фотоэлементов вы никогда не получите заявленный ток. И это — лучший из вариантов.

Не стоит покупать сдвоенные солнечные панели — по 72 и 144 элемента соответственно. Во-первых, они очень большие, что неудобно при перевозке. Во-вторых, при аномально низких температурах, которые у нас периодически случаются, они первыми выходят из строя. Дело в том, что ламинирующая пленка при морозах сильно уменьшается в размерах. На больших панелях из-за большого натяжения она отслаивается или даже рвется. Теряется прозрачность, катастрофически падает производительность. Панель идет в ремонт.

Второй фактор. На больших по размерам панелях должна быть больше толщина корпуса и стекла. Ведь увеличивается парусность и снеговые нагрузки. Но далеко не всегда это делают, так как значительно возрастает цена. Если вы видите сдвоенную панель, а цена на нее ниже, чем на две «обычных», лучше ищите что-то другое.

Еще раз: лучший выбор — солнечная панель для дома на 12 вольт, состоящая из 36 фотоэлементов. Это оптимальный вариант, проверенный практикой.

Технические характеристики: на что обратить внимание

В сертифицированных солнечных батареях всегда указывается рабочий ток и напряжение, а также напряжение холостого хода и ток КЗ. При этом стоит учесть, что все параметры обычно указываются для температуры +25°C. В солнечный день на крыше батарея разогревается до температур, значительно превышающих эту цифру. Это объясняет наличие большего рабочего напряжения.

Также обратите внимание на напряжение холостого хода. В нормальных батареях оно порядка 22 В. И все бы ничего, но если проводить работы на оборудовании не отключив солнечные батареи, напряжение холостого ходы выведет из строя инвертор или другую подключенную технику, не рассчитанную на подобный вольтаж. Потому при любых работах — переключении проводов, подключении/отключении аккумуляторов и т.д. и т.п — первое что вы должны сделать — отключить солнечные батареи (снять клеммы). Перебрав схему, их подключаете последними. Такой порядок действий сохранит вам много нервов (и денег).

Корпус и стекло

Солнечные батареи для дома имеют алюминиевый корпус. Этот металл не корродирует, при достаточной прочности имеет небольшую массу. Нормальный корпус должен быть собран из профиля, в котором присутствуют, как минимум, два ребра жесткости. К тому же стекло должно быть вставлено в специальный паз, а не закреплено сверху. Все это — признаки нормального качества.

Еще при выборе солнечной батареи обратите внимание на стекло. В нормальных батареях оно не гладкое, а текстурированное. На ощупь — шершавое, если провести ногтями, слышен шорох. К тому же должно иметь качественное покрытие, которое сводит к минимуму блики. Это означает что в нем не должно ничего отражаться. Если хоть под каким-то углом видны отражения окружающих предметов, лучше найдите другую панель.

Выбор сечения кабеля и тонкости электрического подключения

Подключать солнечные батареи для дома необходимо медным одножильным кабелем. Сечение жилы кабеля зависит от расстояния между модулем и АКБ:

  • расстояние менее 10 метров:
    • 1,5 мм2 на одну солнечную батарею мощностью 100 Вт;
    • на две батареи — 2,5 мм2;
    • три батареи — 4,0 мм2;
  • расстояние больше 10 метров:
    • для подключения одной панели берем 2,5 мм2;
    • двух — 4,0 мм2;
    • трех — 6,0 мм2.

Можно брать сечение больше, но не меньше (будут большие потери, а оно нам не надо). При покупке проводов, обратите внимание на фактическое сечение, так как сегодня заявленные размеры очень часто не соответствуют действительным. Для проверки придется измерять диаметр и считать сечение (как это делать, прочесть можно ).

При сборе системы можно плюсы солнечных батарей провести используя многожильный кабель подходящего сечения, а для минуса использовать один толстый. Перед подключением к аккумуляторам все «плюсы» пропускаем через диоды или диодные сборки с общим катодом. Это предотвращает возможность замыкания аккумулятора (может вызвать возгорание) при замыкании или обрыве проводов между батареями и аккумулятором.

Диоды используют типа SBL2040CT, PBYR040CT. Если такие на нашли, можно снять со старых блоков питания персональных компьютеров. Там обычно стоят SBL3040 или подобные. Пропускать через диоды желательно. Не забудьте что они сильно греются, так что монтировать их надо на радиаторе (можно на едином).

Еще в системе необходим блок предохранителей. По одному на каждого потребителя. Всю нагрузку подключаем через этот блок. Во-первых, система так безопаснее. Во-вторых, при возникновении проблем, проще определить ее источник (по сгоревшему предохранителю).




Top