Методы шифрования данных - блог веб-программиста. Основные понятия криптографии. Атаки на систему шифрования

Состоит в следующем. Каждая буква сообщения заменяется на другую, которая в русском алфавите отстоит от исходной на три позиции дальше. Таким образом, буква A заменяется на Г , Б на Д и так далее вплоть до буквы Ь , которая заменялась на Я , затем Э на A , Ю на Б и, наконец, Я на В .

АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ Листинг 1.1. Исходный алфавит

Таблица 1.1. Перебор вариантов для поиска ключа при использовании метода Цезаря
Перехваченная криптограмма ЧСЮЭЮЪ
1 ШТЯЮЯЫ 17 ЗВОНОК
2 ЩУАЯАЬ 18 ИГПОПЛ
3 ЪФБАБЭ 19 ЙДРПРМ
4 ЫХВБВЮ 20 КЕСРСН
5 ЬЦГВГЯ 21 ЛЁТСТО
6 ЭЧДГДА 22 МЖУТУП
7 ЮШЕДЕБ 23 НЗФУФР
8 ЯЩЁЕЁВ 24 ОИХФХС
9 АЪЖЁЖГ 25 ПЙЦХЦТ
10 БЫЗЖЗД 26 РКЧЦЧУ
11 ВЬИЗИЕ 27 СЛШЧШФ
12 ГЭЙИЙЁ 28 ТМЩШЩХ
13 ДЮКЙКЖ 29 УНЪЩЪЦ
14 ЕЯЛКЛЗ 30 ФОЫЪЫЧ
15 ЁАМЛМИ 31 ХПЬЫЬШ
16 ЖБНМНЙ 32 ЦРЭЬЭЩ

Мы видим, что единственное слово , имеющее смысл, – это ЗВОНОК . Это слово располагается на 17 месте. Следовательно, если шифрованный текст сдвинуть на 17 позиций вперед получится открытый текст . Это означает, что для получения шифрованного текста открытый текст нужно сдвинуть на (33-17)=16 позиций. Таким образом, получили, что при шифровании ключ n=16 .

Так как ни при каком другом сдвиге не получилось осмысленного сообщения, то, скорее всего, мы правильно дешифровали это сообщение. Такое допущение о единственности решения вполне обоснованно, когда исходное сообщение составлено на одном из естественных языков (в рассмотренном примере – русском) и содержит более пяти-шести знаков. Но если сообщение очень короткое, возможных решений может быть несколько. Единственное решение также очень трудно найти, если исходное сообщение, состоит, например, из цифр.

Так, например, пусть исходный алфавит состоит из арабских цифр, то есть имеет вид

0 1 2 3 4 5 6 7 8 9.

Один из абонентов желает переслать другому секретный код замка, состоящий из пяти цифр и равный 12345 . Отправитель и получатель заранее договорились о том, что ключ шифрования n будет равен 3 . Отправитель шифрует выбранным ключом исходное сообщение 12345 , получает 45678 и переправляет полученное значение своему абоненту. Возможно, противник перехватит криптограмму и попытается вскрыть ее, используя, как и раньше, метод последовательного перебора. Так как исходный алфавит состоял из 10 символов, то значение ключа может лежать в диапазоне от 1 до 9 . Выпишем, как и раньше все варианты, которые получаются сдвигом каждого знака перехваченного сообщения на 1, 2, 3, ... , 9 позиций соответственно (

Методы: объяснительно-иллюстративный, частично-поисковый.

  • Создать условия для повышения познавательного интереса к предмету.
  • Способствовать развитию аналитико-синтезирующего мышления.
  • Способствовать формированию умений и навыков, носящих общенаучный и обще интеллектуальный характер.

Задачи:

образовательные:

  • обобщить и систематизировать знания основных понятий: код, кодирование, криптография;
  • познакомится с простейшими способами шифрования и их создателями;
  • отрабатывать умения читать шифровки и шифровать информацию;

развивающие:

  • развивать познавательную деятельность и творческие способности учащихся;
  • формировать логическое и абстрактное мышление;
  • развивать умение применять полученные знания в нестандартных ситуациях;
  • развивать воображение и внимательность;

воспитательные:

  • воспитывать коммуникативную культуру;
  • развивать познавательный интерес.

Предлагаемая разработка может быть использована для учащихся 7–9 классов. Презентация помогает сделать материал наглядным и доступным.

Общество, в котором живёт человек, на протяжении своего развития имеет дело с информацией. Она накапливается, перерабатывается, хранится, передаётся. (Слайд 2. Презентация)

А все ли и всегда должны знать всё?

Конечно, нет.

Люди всегда стремились скрыть свои секреты. Сегодня вы познакомитесь с историей развития тайнописи, узнаете простейшие способы шифрования. У вас появится возможность расшифровать послания.

Простые приемы шифрования применялись и получили некоторое распространение уже в эпоху древних царств и в античности.

Тайнопись – криптография - является ровесницей письменности. История криптографии насчитывает не одно тысячелетие. Идея создания текстов с тайным смыслом и зашифрованными сообщениями почти так же стара, как и само искусство письма. Этому есть много свидетельств. Глиняная табличка из Угарита (Сирия) – упражнения обучающие искусству расшифровки (1200 год до н.э.). “Вавилонская теодицея” из Ирака – пример акростиха (середина II тысячелетия до н.э.).

Один из первых систематических шифров был разработан древними евреями; этот метод называется темура - “обмен”.

Самый простой из них “Атбаш”, алфавит разделялся посередине так, чтобы первые две буквы, А и Б, совпадали с двумя последними, Т и Ш. Использование шифра темура можно обнаружить в Библии. Это пророчество Иеремии, сделанное в начале VI века до нашей эры, содержит проклятие, всем правителям мира, заканчивая “царем Сесаха” который при дешифровки с шифра “Атбаш” оказывается царём Вавилона.

(Слайд 3) Более хитроумный способ шифрования был изобретён в древней Спарте во времена Ликурга (V век до н.э.) Для зашифровывания текста использовалась Сциталла - жезл цилиндрической формы, на который наматывалась лента из пергамента. Вдоль оси цилиндра построчно записывался текст, лента сматывалась с жезла и передавалась адресату, имеющему Сциталлу такого же диаметра. Этот способ осуществлял перестановку букв сообщения. Ключом шифра служил диаметр Сциталлы. АРИСТОТЕЛЬ придумал метод вскрытия такого шифра. Он изобрёл дешифровальное устройство “Антисциталла”.

(Слайд 4) Задание “Проверь себя”

(Слайд 5) Греческий писатель ПОЛИБИЙ использовал систему сигнализации, которая применялась как метод шифрования. С его помощью можно было передавать абсолютно любую информацию. Он записывал буквы алфавита в квадратную таблицу и заменял их координатами. Устойчивость этого шифра была велика. Основной причиной этого являлась возможность постоянно менять последовательность букв в квадрате.

(Слайд 6) Задание “Проверь себя”

(Слайд 7) Особую роль в сохранении тайны сыграл способ шифрования, предложенный ЮЛИЕМ ЦЕЗАРЕМ и описанный им в “Записках о галльской войне.

(Слайд 8) Задание “Проверь себя”

(Слайд 9) Существует несколько модификаций шифра Цезаря. Один из них алгоритм шифра Гронсфельда (созданный в 1734 году бельгийцем Хосе де Бронкхором, графом де Гронсфельд, военным и дипломатом). Шифрование заключается в том, что величина сдвига не является постоянной, а задается ключом (гаммой).

(Слайд 10) Для того, кто передаёт шифровку, важна её устойчивость к дешифрованию. Эта характеристика шифра называется криптостойкостью. Повысить криптостойкость позволяют шифры много алфавитной или многозначной замены. В таких шифрах каждому символу открытого алфавита ставятся в соответствие не один, а несколько символов шифровки.

(Слайд 11) Научные методы в криптографии впервые появились в арабских странах. Арабского происхождения и само слово шифр (от арабского "цифра"). Арабы первыми стали заменять буквы цифрами с целью защиты исходного текста. О тайнописи и её значении говорится даже в сказках “Тысячи и одной ночи”. Первая книга, специально посвящённая описанию некоторых шифров, появилась в 855 г., она называлась “Книга о большом стремлении человека разгадать загадки древней письменности”.

(Слайд 12) Итальянский математик и философ ДЖЕРОЛАМО КАРДАНО написал книгу "О тонкостях", в которой имеется часть, посвященная криптографии.

Его вклад в науку криптография содержит два предложения:

Первое - использовать открытый текст в качестве ключа.

Второе - он предложил шифр, называемый ныне "Решетка Кардано".

Кроме данных предложений Кардано дает "доказательство" стойкости шифров, основанное на подсчете числа ключей.

Решётка Кардано представляет собой лист из твердого материала, в котором через неправильные интервалы сделаны прямоугольные вырезы высотой для одной строчки и различной длины. Накладывая эту решетку на лист писчей бумаги, можно было записывать в вырезы секретное сообщение. Оставшиеся места заполнялись произвольным текстом, маскирующим секретное сообщение. Этим методом маскировки пользовались многие известные исторические лица, кардинал Ришелье во Франции и русский дипломат А. Грибоедов. На основе такой решетки Кардано построил шифр перестановки.

(Слайд 13) Задание “Проверь себя”

(Слайд 14) Увлекались тайнописью и в России. Используемые шифры - такие же, как в западных странах - значковые, замены, перестановки.

Датой появления криптографической службы в России следует считать 1549 год (царствование Ивана IV), с момента образования "посольского приказа", в котором имелось "цифирное отделение".

Петр I полностью реорганизовал криптографическую службу, создав "Посольскую канцелярию". В это время применяются для шифрования коды, как приложения к "цифирным азбукам". В знаменитом "деле царевича Алексея" в обвинительных материалах фигурировали и "цифирные азбуки".

(Слайд 15) Задание “Проверь себя”

(Слайд 16) Много новых идей в криптографии принес XIX век. ТОМАС ДЖЕФФЕРСОН создал шифровальную систему, занимающую особое место в истории криптографии - "дисковый шифр". Этот шифр реализовывался с помощью специального устройства, которое впоследствии назвали шифратором Джефферсона.

В 1817 г. ДЕСИУС УОДСВОРТ сконструировал шифровальное устройство, которое внесло новый принцип в криптографию. Нововведение состояло в том, что он сделал алфавиты открытого и шифрованного текстов различных длин. Устройство, с помощью которого он это осуществил, представляло собой диск, с двумя подвижными кольцами с алфавитами. Буквы и цифры внешнего кольца были съемными и могли собираться в любом порядке. Эта шифрсистема реализует периодическую многоалфавитную замену.

(Слайд 17) Способов кодирования информации можно привести много.

Капитан французской армии ШАРЛЬ БАРБЬЕ разработал в 1819 году систему кодирования ecriture noctrume – ночное письмо. В системе применялись выпуклые точки и тире, недостаток системы её сложность, так как кодировались не буквы, а звуки.

ЛУИ БРАЙЛЬ усовершенствовал систему, разработал собственный шифр. Основы этой системы используются поныне.

(Слайд 18) СЭМЮЕЛЬ МОРЗЕ разработал в 1838 году систему кодирования символов с помощью точки и тире. Он же является изобретателем телеграфа (1837год) – устройства в котором использовалась эта система. Самое важное в этом изобретении – двоичный код, то есть использованием для кодирования букв только двух символов.

(Слайд 19) Задание “Проверь себя”

(Слайд 20) В конце XIX века криптография начинает приобретать черты точной науки, а не только искусства, ее начинают изучать в военных академиях. В одной из них был разработан свой собственный военно-полевой шифр, получивший название "Линейка Сен-Сира". Она позволила существенно повысить эффективность труда шифровальщика, облегчить алгоритм реализации шифра Виженера. Именно в этой механизации процессов шифрования-дешифрования и заключается вклад авторов линейки в практическую криптографию.

В истории криптографии XIX в. ярко запечатлелось имя ОГЮСТА КЕРКГОФФСА. В 80-х годах XIX века издал книгу "Военная криптография" объемом всего в 64 страницы, но они обессмертили его имя в истории криптографии. В ней сформулированы 6 конкретных требований к шифрам, два из которых относятся к стойкости шифрования, а остальные - к эксплуатационным качествам. Одно из них ("компрометация системы не должна причинять неудобств корреспондентам") стало называться "правилом Керкгоффса". Все эти требования актуальны и в наши дни.

В XX веке криптография стала электромеханической, затем электронной. Это означает, что основными средствами передачи информации стали электромеханические и электронные устройства.

(Слайд 21) Во второй половине XX века, вслед за развитием элементной базы вычислительной техники, появились электронные шифраторы. Сегодня именно электронные шифраторы составляют подавляющую долю средств шифрования. Они удовлетворяют все возрастающим требованиям по надежности и скорости шифрования.

В семидесятых годах произошло два события, серьезно повлиявших на дальнейшее развитие криптографии. Во-первых, был принят (и опубликован!) первый стандарт шифрования данных (DES), "легализовавший" принцип Керкгоффса в криптографии. Во-вторых, после работы американских математиков У. ДИФФИ и М. ХЕЛЛМАНА родилась "новая криптография"- криптография с открытым ключом.

(Слайд 22) Задание “Проверь себя”

(Слайд 23) Роль криптографии будет возрастать в связи с расширением ее областей приложения:

  • цифровая подпись,
  • аутентификация и подтверждение подлинности и целостности электронных документов,
  • безопасность электронного бизнеса,
  • защита информации, передаваемой через интернет и др.

Знакомство с криптографией потребуется каждому пользователю электронных средств обмена информацией, поэтому криптография в будущем станет "третьей грамотностью" наравне со "второй грамотностью" - владением компьютером и информационными технологиями.

В наш компьютерный век человечество все больше отказывается от хранения информации в рукописном или печатном виде, предпочитая для документы. И если раньше крали просто бумаги или пергаменты, то сейчас взламывают именно электронную информацию. Сами же алгоритмы шифрования данных были известны еще с незапамятных времен. Многие цивилизации предпочитали зашифровывать свои уникальные знания, чтобы они могли достаться только человеку сведущему. Но давайте посмотрим, как все это отображается на нашем мире.

Что собой представляет система шифрования данных?

Для начала следует определиться с тем, что собой представляют криптографические системы вообще. Грубо говоря, это некий специальный алгоритм записи информации, который был бы понятен только определенному кругу людей.

В этом смысле постороннему человеку все, что он видит, должно (а в принципе, так и есть) казаться бессмысленным набором символов. Прочесть такую последовательность сможет только тот, кто знает правила их расположения. В качестве самого простого примера можно определить алгоритм шифрования с написанием слов, скажем, задом наперед. Конечно, это самое примитивное, что можно придумать. Подразумевается, что если знать правила записи, восстановить исходный текст труда не составит.

Зачем это нужно?

Для чего все это придумывалось, наверное, объяснять не стоит. Посмотрите, ведь какие объемы знаний, оставшиеся от древних цивилизаций, сегодня находятся в зашифрованном виде. То ли древние не хотели, чтобы мы это узнали, то ли все это было сделано, чтобы человек смог ними воспользоваться только тогда, когда достигнет нужного уровня развития - пока что об этом можно только гадать.

Впрочем, если говорить о сегодняшнем мире, защита информации становится одной из самых больших проблем. Посудите сами, ведь сколько имеется документов в тех же архивах, о которых правительства некоторых стран не хотели бы распространяться, сколько секретных разработок, сколько новых технологий. А ведь все это, по большому счету, и является первоочередной целью так называемых хакеров в классическом понимании этого термина.

На ум приходит только одна фраза, ставшая классикой принципов деятельности Натана Ротшильда: «Кто владеет информацией, тот владеет миром». И именно поэтому информацию приходится защищать от посторонних глаз, дабы ей не воспользовался кто-то еще в своих корыстных целях.

Криптография: точка отсчета

Теперь, прежде чем рассматривать саму структуру, которую имеет любой алгоритм шифрования, немного окунемся в историю, в те далекие времена, когда эта наука только зарождалась.

Считается, что искусство сокрытия данных активно начало развиваться несколько тысячелетий назад до нашей эры. Первенство приписывают древним шумерам, царю Соломону и египетским жрецам. Только много позже появились те же рунические знаки и символы, им подобные. Но вот что интересно: иногда алгоритм шифрования текстов (а в то время шифровались именно они) был таков, что в той же один символ мог означать не только одну букву, но и целое слово, понятие или даже предложение. Из-за этого расшифровка таких текстов даже при наличии современных криптографических систем, позволяющих восстановить исходный вид любого текста, становится абсолютно невозможной. Если говорить современным языком, это достаточно продвинутые, как принято сейчас выражаться, симметричные алгоритмы шифрования. На них остановимся отдельно.

Современный мир: виды алгоритмов шифрования

Что касается защиты конфиденциальных данных в современно мире, отдельно стоит остановиться еще на тех временах, когда компьютеры были человечеству неизвестны. Не говоря уже о том, сколько бумаги перевели алхимики или те же тамплиеры, пытаясь скрыть истинные тексты об известных им знаниях, стоит вспомнить, что со времени возникновения связи проблема только усугубилась.

И тут, пожалуй, самым знаменитым устройством можно назвать немецкую шифровальную машину времен Второй мировой под названием «Энигма», что в переводе с английского означает «загадка». Опять же, это пример того, как используются симметричные алгоритмы шифрования, суть которых состоит в том, что шифровщик и дешифровальщик знают ключ (алгоритм), изначально примененный для сокрытия данных.

Сегодня такие криптосистемы используются повсеместно. Самым ярким примером можно считать, скажем, алгоритм являющийся международным стандартом. С точки зрения компьютерной терминологии, он позволяет использовать ключ длиной 256 бит. Вообще современные алгоритмы шифрования достаточно разнообразны, а разделить их условно можно на два больших класса: симметричные и асимметричные. Они, в зависимости от области назначения, сегодня применяются очень широко. И выбор алгоритма шифрования напрямую зависит от поставленных задач и метода восстановления информации в исходном виде. Но в чем же состоит разница между ними?

Симметричные и асимметричные алгоритмы шифрования: в чем разница

Теперь посмотрим, какое же кардинальное различие между такими системами, и на каких принципах строится их применение на практике. Как уже понятно, алгоритмы шифрования бывают связаны с геометрическими понятиями симметрии и асимметрии. Что это значит, сейчас и будет выяснено.

Симметричный алгоритм шифрования DES, разработанный еще в 1977 году, подразумевает наличие единого ключа, который, предположительно, известен двум заинтересованным сторонам. Зная такой ключ, нетрудно применить его на практике, чтобы прочитать тот же бессмысленный набор символов, приведя его, так сказать, в читабельный вид.

А что представляют собой асимметричные алгоритмы шифрования? Здесь применяются два ключа, то есть для кодирования исходной информации использует один, для расшифровки содержимого - другой, причем совершенно необязательно, чтобы они совпадали или одновременно находились у кодирующей и декодирующей стороны. Для каждой из них достаточно одного. Таким образом, в очень высокой степени исключается попадание обоих ключей в третьи руки. Однако, исходя из современной ситуации, для многих злоумышленников кражи такого типа особо проблемой и не являются. Другое дело - поиск именно того ключа (грубо говоря, пароля), который подойдет для расшифровки данных. А тут вариантов может быть столько, что даже самый современный компьютер будет обрабатывать их в течение нескольких десятков лет. Как было заявлено, ни одна из имеющихся в мире компьютерных систем взломать доступ к нему и получить то, что называется «прослушкой», не может и не сможет в течение ближайших десятилетий.

Наиболее известные и часто применяемые алгоритмы шифрования

Но вернемся в мир компьютерный. Что на сегодня предлагают основные алгоритмы шифрования, предназначенные для защиты информации на современном этапе развития компьютерной и мобильной техники?

В большинстве стран стандартом де-факто является криптографическая система AES на основе 128-битного ключа. Однако параллельно с ней иногда используется и алгоритм который хоть и относится к шифрованию с использованием открытого (публичного) ключа, тем не менее является одним из самых надежных. Это, кстати, доказано всеми ведущими специалистами, поскольку сама система определяется не только степенью шифрования данных, но и сохранением целостности информации. Что касается ранних разработок, к коим относится алгоритм шифрования DES, то он безнадежно устарел, а попытки его замены начали проводиться еще в 1997 году. Вот тогда-то на его основе и возник новый расширенный (Advanced) стандарт шифрования AES (сначала с ключом 128 бит, потом - с ключом 256 бит).

Шифрование RSA

Теперь остановимся на технологии RSA которая относится к системе асимметричного шифрования. Предположим, один абонент отправляет другому информацию, зашифрованную при помощи этого алгоритма.

Для шифрования берутся два достаточно больших числа X и Y, после чего вычисляется их произведение Z, называемое модулем. Далее выбирается некое постороннее число A, удовлетворяющее условию: 1< A < (X - 1) * (Y - 1). Оно обязательно должно быть простым, то есть не иметь общих делителей с произведением (X - 1) * (Y - 1), равным Z. Затем происходит вычисление числа B, но только так, что (A * B - 1) делится на (X - 1) * (Y - 1). В данном примере A - открытый показатель, B - секретный показатель, (Z; A) - открытый ключ, (Z; B) - секретный ключ.

Что происходит при пересылке? Отправитель создает зашифрованный текст, обозначенный как F, с начальным сообщением M, после чего следует A и умножение на модуль Z: F = M**A*(mod Z). Получателю остается вычислить несложный пример: M = F**B*(mod Z). Грубо говоря, все эти действия сводятся исключительно к возведению в степень. По тому же принципу работает и вариант с создание цифровой подписи, но уравнения тут несколько сложнее. Чтобы не забивать пользователю голову алгеброй, такой материал приводиться не будет.

Что же касается взлома, то алгоритм шифрования RSA ставит перед злоумышленником практически нерешаемую задачу: вычислить ключ B. Это теоретически можно было бы сделать с применением доступных средств факторинга (разложением на сомножители исходных чисел X и Y), однако на сегодняшний день таких средств нет, поэтому сама задача становится не то что трудной - она вообще невыполнима.

Шифрование DES

Перед нами еще один, в прошлом достаточно эффективный алгоритм шифрования с максимальной длиной блока 64 бита (символа), из которой значащими являются только 56. Как уже было сказано выше, эта методика уже устарела, хотя достаточно долго продержалась в качестве стандарта криптосистем, применяемых в США даже для оборонной промышленности.

Суть его симметричного шифрования заключается в том, что для этого применяется некая последовательность из 48 бит. При этом для операций используется 16 циклов из выборки ключей в 48 бит. Но! Все циклы по принципу действия аналогичны, поэтому на данный момент вычислить искомый ключ труда не составляет. К примеру, один из самых мощных компьютеров в США стоимостью более миллиона долларов «ломает» шифрование в течение примерно трех с половиной часов. Для машин рангом ниже на то, чтобы вычислить даже последовательность в максимальном ее проявлении, требуется не более 20 часов.

Шифрование AES

Наконец, перед нами самая распространенная и, как считалось до недавнего времени, неуязвимая система - алгоритм шифрования AES. Он сегодня представлен в трех модификациях - AES128, AES192 и AES256. Первый вариант применяется больше для обеспечения информационной безопасности мобильных устройств, второй задействован на более высоком уровне. Как стандарт, эта система была официально внедрена в 2002 году, причем сразу же ее поддержка была заявлена со стороны корпорации Intel, производящей процессорные чипы.

Суть ее, в отличие от любой другой симметричной системы шифрования, сводится к вычислениям на основе полиноминального представления кодов и операций вычисления с двумерными массивами. Как утверждает правительство Соединенных Штатов, для взлома ключа длиной 128 бит дешифратору, пусть даже самому современному, потребуется порядка 149 триллионов лет. Позволим себе не согласиться с таким компетентным источником. Компьютерная техника за последние сто лет сделала скачок, соизмеримый с так что особо обольщаться не стоит, тем более что сегодня, как оказалось, существуют системы шифрования и покруче, чем те, которые США объявили совершенно стойкими ко взлому.

Проблемы с вирусами и дешифровкой

Конечно же, речь идет о вирусах. В последнее время появились довольно специфичные вирусы-вымогатели, которые шифруют все содержимое жесткого диска и логических разделов на зараженном компьютере, после чего жертва получает письмо с уведомлением о том, что все файлы зашифрованы, а расшифровать их может только указанный источник после оплаты кругленькой суммы.

При этом, что самое важное, указывается, что при шифровании данных была применена система AES1024, то есть длина ключа в четыре раза больше ныне существующей AES256, а количество вариантов при поиске соответствующего дешифратора возрастает просто неимоверно.

А если исходить из заявления правительства США о сроке, отводимом для дешифрования ключа длиной 128 бит, то что можно сказать о времени, которое потребуется на поиск решения для случая с ключом и его вариантами длиной 1024 бита? Вот тут-то США и прокололись. Они ведь считали, что их система компьютерной криптографии совершенна. Увы, нашлись какие-то спецы (судя по всему, на постсоветском пространстве), которые превзошли «незыблемые» американские постулаты по всем параметрам.

При всем этом даже ведущие разработчики антивирусного ПО, в том числе «Лаборатория Касперского», специалисты, создавшие «Доктора Веба», корпорация ESET и многие другие мировые лидеры просто разводят руками, дескать, на расшифровку такого алгоритма попросту нет средств, умалчивая при этом о том, что и времени не хватит. Конечно, при обращении в службу поддержки предлагается отправить зашифрованный файл и, если есть, желательно его оригинал - в том виде, в каком он был до начала шифрования. Увы, даже сравнительный анализ пока не дал ощутимых результатов.

Мир, которого мы не знаем

Да что там говорить, если мы гонимся за будущим, не имея возможности расшифровать прошлое. Если посмотреть на мир нашего тысячелетия, можно заметить, что тот же римский император Гай Юлий Цезарь в некоторых своих посланиях использовал симметричные алгоритмы шифрования. Ну а если взглянуть на Леонардо да Винчи, так вообще становится как-то не по себе от одного осознания того, что в области криптографии этот человек, чья жизнь покрыта неким флером тайны, на века превзошел свою современность.

До сих пор многим не дает покоя так называемая «улыбка Джоконды», в которой есть что-то такое притягательное, чего современный человек понять не способен. Кстати сказать, на картине относительно недавно были найдены некие символы (в глазу, на платье и т. д.), которые явно свидетельствуют о том, что во всем этом содержится какая-то зашифрованная великим гением информация, которую сегодня, увы, извлечь мы не в состоянии. А ведь мы даже не упомянули о разного рода масштабных конструкциях, которые способны были перевернуть понимание физики того времени.

Конечно, некоторые умы склоняются исключительно к тому, что в большинстве случаев было использовано так называемое «золотое сечение», однако и оно не дает ключа ко всему тому огромному хранилищу знаний, которое, как считается, либо нам непонятно, либо потеряно навеки. По всей видимости, криптографам предстоит проделать еще неимоверную кучу работы, чтобы понять, что современные алгоритмы шифрования порой не идут ни в какое сравнение с наработками древних цивилизаций. К тому же, если сегодня существуют общепринятые принципы защиты информации, то те, которые использовались в древности, к сожалению, нам совершенно недоступны и непонятны.

И еще одно. Существует негласное мнение, что большинство древних текстов невозможно перевести только потому, что ключи к их дешифровке тщательно охраняются тайными обществами вроде масонов, иллюминатов и т. д. Даже тамплиеры оставили тут свой след. Что уж говорить о том, что до сих пор абсолютно недоступной остается библиотека Ватикана? Не там ли хранятся основные ключи к пониманию древности? Многие специалисты склоняются именно к этой версии, считая, что Ватикан намеренно утаивает эту информацию от общества. Так это или нет, пока не знает никто. Но одно можно утверждать совершенно точно - древние системы криптографии ни в чем не уступали (а может, и превосходили) тем, что используются в современном компьютерном мире.

Вместо послесловия

Напоследок стоит сказать, что здесь были рассмотрены далеко не все аспекты, связанные с нынешними криптографическими системами и методиками, которые они используют. Дело в том, что в большинстве случаев пришлось бы приводить сложные математические формулы и представлять вычисления, от которых у большинства пользователей просто голова кругом пойдет. Достаточно взглянуть на пример с описанием алгоритма RSA, чтобы сообразить, что все остальное будет выглядеть намного сложнее.

Тут главное - понять и вникнуть, так сказать, в суть вопроса. Ну а если говорить о том, что представляют собой современные системы, предлагающие хранить конфиденциальную информацию таким образом, чтобы она была доступна ограниченному кругу пользователей, здесь выбор невелик. Несмотря на наличие множества криптографических систем, те же алгоритмы RSA и DES явно проигрывают специфике AES. Впрочем, и большинство современных приложений, разработанных для совершенно разнящихся между собой операционных систем, используют именно AES (естественно, в зависимости от области применения и устройства). Но вот «несанкционированная» эволюция этой криптосистемы, мягко говоря, многих, особенно ее создателей, повергла в шок. Но в целом, исходя из того, что имеется на сегодняшний день, многим пользователям нетрудно будет понять, что такое криптографические системы шифрования данных, зачем они нужны и как работают.

Методы аутентификации

Аутентификация - выдача определённых прав доступа абоненту на основе имеющегося у него идентификатора. IEEE 802.11 предусматривает два метода аутентификации:

1. Открытая аутентификация (англ. Open Authentication ):

Рабочая станция делает запрос аутентификации, в котором присутствует только MAC-адрес клиента. Точка доступа отвечает либо отказом, либо подтверждением аутентификации. Решение принимается на основе MAC-фильтрации, т.е. по сути это защита на основе ограничения доступа, что не безопасно.

2. Аутентификация с общим ключом (англ. Shared Key Authentication ):

Необходимо настроить статический ключ шифрования алгоритма WEP (англ. Wired Equivalent Privacy ). Клиент делает запрос у точки доступа на аутентификацию, на что получает подтверждение, которое содержит 128 байт случайной информации. Станция шифрует полученные данные алгоритмом WEP (проводится побитовое сложение по модулю 2 данных сообщения с последовательностью ключа) и отправляет зашифрованный текст вместе с запросом на ассоциацию. Точка доступа расшифровывает текст и сравнивает с исходными данными. В случае совпадения отсылается подтверждение ассоциации, и клиент считается подключенным к сети.
Схема аутентификации с общим ключом уязвима к атакам «Man in the middle». Алгоритм шифрования WEP – это простой XOR ключевой последовательности с полезной информацией, следовательно, прослушав трафик между станцией и точкой доступа, можно восстановить часть ключа.
IEEE начал разработки нового стандарта IEEE 802.11i, но из-за трудностей утверждения, организация WECA (англ. Wi-Fi Alliance ) совместно с IEEE анонсировали стандарт WPA (англ. Wi-Fi Protected Access ). В WPA используется TKIP (англ.Temporal Key Integrity Protocol , протокол проверки целостности ключа), который использует усовершенствованный способ управления ключами и покадровое изменение ключа.

WPA также использует два способа аутентификации:

1. Аутентификация с помощью предустановленного ключа WPA-PSK (англ. Pre-Shared Key ) (Enterprise Autentification);

2. Аутентификация с помощью RADIUS-сервера (англ. Remote Access Dial-in User Service )

Шифрова́ние - способ преобразования открытой информации в закрытую и обратно. Применяется для хранения важной информации в ненадёжных источниках или передачи её по незащищённым каналам связи. Шифрование подразделяется на процесс зашифровывания и расшифровывания.

В зависимости от алгоритма преобразования данных, методы шифрования подразделяются на гарантированной или временнойкриптостойкости.

В зависимости от структуры используемых ключей методы шифрования подразделяются на



§ симметричное шифрование: посторонним лицам может быть известен алгоритм шифрования, но неизвестна небольшая порция секретной информации - ключа, одинакового для отправителя и получателя сообщения;

§ асимметричное шифрование: посторонним лицам может быть известен алгоритм шифрования, и, возможно, открытый ключ, но неизвестен закрытый ключ, известный только получателю.

Существуют следующие криптографические примитивы:

§ Бесключевые

1. Хеш-функции

2. Односторонние перестановки

3. Генераторы псевдослучайных чисел

§ Симметричные схемы

1. Шифры (блочные,потоковые)

2. Хеш-функции

4. Генераторы псевдослучайных чисел

5. Примитивы идентификации

§ Асимметричные схемы

3. Примитивы идентификации

Шифрование данных на диске
Система Zserver - средство защиты конфиденциальной информации, хранимой и обрабатываемой на корпоративных серверах, методом шифрования данных на диске. Zserver работает по принципу «прозрачного» шифрования разделов жестких дисков. Система автоматически, в online режиме, осуществляет шифрование информации при записи на диск и расшифровывает при чтении с него. Это обеспечивает хранение данных на диске в зашифрованном виде и невозможность использования их без ключа шифрования даже при изъятии сервера или носителя. Система Zserver обеспечивает шифрование файлов и папок на диске, а также всей служебной информации - таблицы размещения файлов и т. д. Таким образом, система Zserver не только надежно защищает конфиденциальные данные, но и скрывает сам факт их наличия от посторонних. Информация на защищенных дисках хранится в зашифрованном виде и становится доступна, только когда администратор сети предоставит пользователю соответствующие полномочия. Права доступа к защищенным дискам устанавливаются средствами операционной системы. Шифрование файлов и папок на диске осуществляется программным драйвером. Ключи шифрования данных на диске вводятся при загрузке сервера со смарт-карты, защищенной PIN-кодом. Не зная PIN-кода, воспользоваться смарт-картой нельзя. Три попытки неправильного ввода PIN-кода заблокируют карту. Смарт-карта необходима только при подключении защищенных носителей, и в процессе работы не требуется. При перезагрузке сервера без смарт-карты, защищенные диски не будут доступны. Система Zserver предоставляет возможность удаленного ввода ключей шифрования и администрирования системы с любой рабочей станции локальной сети, или через Интернет. В настоящее время разработаны системы Zserver, которые работают под управлением следующих операционных систем: Windows 2000/XP/2003/2008 (32- и 64-разрядные); Linux с ядром 2.6.x.

Данные в этом случае рассматриваются как сообщения, и для защиты их смысла используется классическая техника шифрования .

Криптография предполагает наличие трех компонентов: данных, ключа и криптографического преобразования. При шифровании исходными данными будет сообщение, а результирующими - шифровка. При расшифрований они меняются местами. Считается, что криптографическое преобразование известно всем, но, не зная ключа, с помощью которого пользователь закрыл смысл сообщения от любопытных глаз, требуется потратить невообразимо много усилий на восстановление текста сообщения. (Следует еще раз повторить, что нет абсолютно устойчивого от вскрытия шифрования. Качество шифра определяется лишь деньгами, которые нужно выложить за его вскрытие от $10 и до $1000000.) Такое требование удовлетворяется рядом современных криптографических систем, например, созданных по "Стандарту шифрования данных Национального бюро стандартов США" DES и ГОСТ 28147-89. Так как ряд данных критичен к некоторым их искажениям, которые нельзя обнаружить из контекста, то обычно используются лишь такие способы шифрования, которые чувствительны к искажению любого символа. Они гарантируют не только высокую секретность, но и эффективное обнаружение любых искажений или ошибок.

Виды шифров

Внимание исследователей неоднократно обращалось к шифрованной переписке в России петровского времени. Уже непосредственно с конца XVIII в. стали появляться в печати публикации шифрованных текстов и шифров - так называемых «цифирных азбук» или «ключей» к тайному письму.

Первым, кто опубликовал шифр, который использовался внутри страны для переписки правительства с наместниками и военачальниками (о Булавине и восстании на Дону), был И. И. Голиков. К. Я. Тромонин поместил в «Достопамятностях Москвы» в первой половине XIX в. шифрованное письмо 1711 г. Петра Великого к бригадиру П. И. Яковлеву М. П. Погодин напечатал в «Москвитянине» три шифрованных письма Петра к бригадиру Ф. Н. Балку и приложил шифр для них В «Материалах для истории Гангутской операции» напечатаны расшифрованные письма и четыре шифра 1713-1714 гг.. Наиболее полно шифрованная переписка петровской эпохи представлена в многотомном издании «Письма и бумаги императора Петра Великого» (1887-1956), редакторами которого были А. Ф. и И. А. Бычковы. На этом труде (который мы для краткости в дальнейшем будем называть «Письма и бумаги») нам хотелось бы остановиться особо.

Академик Иван Афанасьевич Бычков неизменно работал над изданием источников эпохи Петра Великого с начала 80–х гг. XIX века. Вначале он проводил эту работу под руководством своего отца - академика А. Ф. Бычкова, а после смерти последнего в 1899 г. продолжил ее самостоятельно. Издание было приостановлено в 1918 г., когда к печати готовился уже 2–й выпуск 7–го тома. В последующие годы своей жизни И. А. Бычков не переставал работать над подготовкой к изданию последующих томов «П. и Б.». Издание 2–го выпуска 7–го тома было поставлено в издательский план АН СССР на 1944 г. Принять участие в этой работе И. А. Бычкову не удалось: 23 марта 1944 г. в возрасте 85 лет он скончался, завещав АН СССР собранные им материалы для последующих томов.

С мая 1943 г. в Институте истории была образована специальная группа, сначала под руководством академика Ю. В. Готье, а с сентября 1943 г. - под председательством доктора исторических наук А. И. Андреева, работающая над изучением петровской эпохи. После смерти И. А. Бычкова издание «Писем и бумаг» было поручено Институтом этой группе.

А. Ф. и И. А. Бычковы в своем издании «Писем и бумаг» опубликовали не только расшифрованную ими корреспонденцию, но также и некоторые шифры и зашифрованные письма целиком, если их не удалось прочесть. Заметим, кстати, что такой же материал А Ф. Бычков поместил в сборнике Русского исторического общества, выпущенном в 1873 г.. Работу Бычковых по опубликованию шифров Петра I продолжил во 2–м выпуске 7–го тома указанного издания А. И. Андреев, но в дальнейшем печатание шифров Петра I в этом издании было приостановлено.

Шифрованная переписка начала XVIII в. дает богатый материал для наблюдений за шифрами, употреблявшимися в России в это время. А. Ф. Бычков в комментариях к своему изданию неоднократно останавливается на вопросах расшифрования наиболее трудных в этом смысле, по его мнению, текстов.

Российские «цифирные азбуки» и ключи 1700-1720–х гг. представляют собой уже знакомые нам по древнерусским рукописным памятникам шифры замены, где элементы открытого текста, которые мы в дальнейшем будем называть шифрвеличинами, заменяются условными обозначениями - шифробозначениями. Тексты, подлежащие зашифрованию, писались на русском, французском, немецком и даже греческом языках. В различных шифрах шифрвеличинами выступали отдельные буквы, слова и стандартные выражения. В качестве шифробозначений использовались элементы как правило специально составлявшихся с этой целью алфавитов, которые могли представлять собой буквы кириллицы, латиницы, других азбук (например, глаголицы), цифры, особые значки. Часть из таких значков, имевших порой весьма причудливые очертания, были, как нам кажется, нейтральны по значению, другие же являлись символами, к нашему времени почти совершенно забытыми и известными лишь узкому кругу лиц, а в ту далекую эпоху несли определенную смысловую нагрузку. К этим последним относятся символы планет, одновременно являвшиеся символами металлов и дней недели:

Луна - серебро - понедельник

Меркурий - ртуть - среда

Венера - медь - пятница

Солнце - золото - воскресенье

Марс - железо - вторник

Юпитер - олово - четверг

Сатурн - свинец - суббота

В шифрах петровской эпохи употреблялись только индо–арабские цифры, что явилось, вероятно, следствием того, что именно Петром I в начале XVIII в. была выведена из употребления архаическая буквенная кириллическая нумерация, употреблявшаяся до этого. Реформировал Петр и кириллическое письмо, введя новые виды шрифтов, которые определяют современный облик русской письменности. Однако старые графемы продолжают использоваться в качестве тайнописи.

Употреблялись как шифробозначения и буквенные сочетания. Таким образом, в то время в России использовались однобуквенные, двубуквенные, цифровые, буквенно–слоговые шифры замены.

Первые государственные шифры были шифрами простой или взаимно–однозначной замены, в которых каждой шифрвеличине соответствует только одно шифробозначение, и каждому шифробозначению соответствует одна шифрвеличина.

В российские шифры рассматриваемого периода, как правило, вводятся «пустышки» - шифробозначения, которым не соответствует никакого знака открытого текста. Хотя обычно для этого использовалось всего пять-восемь шифрвеличин в качестве пустышек, очевидно, что введение их в шифртекст, получающийся в результате замены элементов открытого текста шифробозначениями, отражает стремление создателей шифров осмыслить дешифрование шифрпереписки. Эти пустышки разбивают структурные лингвистические связи открытого текста и, в определенной мере, изменяют статистические закономерности, то есть именно те особенности текста, которые используют в первую очередь при дешифровании шифра простой замены. Кроме того, они изменяют длину передаваемого открытого сообщения, что усложняет привязку текста к шифрсообщению. Поэтому, видимо, не случайно, по сведениям Д. Кана, первый такой русский шифр был дешифрован англичанами лишь в 1725 г. Кроме того, в некоторых шифрах шифробозначения–пустышки могли использоваться для зашифрования точек и запятых, содержавшихся в открытом тексте. Как правило, это особо оговаривалось в кратких правилах пользования шифром, которые помещались в этих случаях в шифры.

Внешне шифр Петровской эпохи представляет собой лист бумаги, на котором от руки написана таблица замены: под горизонтально расположенными в алфавитной последовательности буквами кириллической или иной азбуки, соответствующей языку открытого сообщения, подписаны элементы соответствующего шифралфавита. Ниже могут помещаться пустышки, краткие правила пользования, а также небольшой словарь, называвшийся «суплемент» и содержащий некоторое количество слов (имен собственных, географических наименований) или каких–то устойчивых словосочетаний, которые могли активно использоваться в текстах, предназначенных для зашифрования с помощью данного шифра.

Самый ранний из исследованных нами пятидесяти с лишним шифров описанного типа представляет особый интерес.

Это - «цифирная азбука» 1700 г. для переписки Коллегии иностранных дел с российским послом в Константинополе Петром Толстым.

Азбука П. А. Толстого, написанная рукой Петра I. 1700 г.

Она представляет собой шифр простой замены, в котором кириллической азбуке соответствует специально составленный алфавит. Здесь же имеются две записи. Первая из них: «Список с образцовой цифирной азбуки, какова написана и послана в Турскую землю с послом и стольником с Толстым сими литеры». Вторая особенно интересна: «Такову азбуку азволнил (изволил. - Т. С.) во 1700 г. написать своею рукою Великий государь по друго диво еси же». Из этого следует, что автором данной цифири был сам Петр Великий.

Очень похожий шифр для переписки И. А. Толстого с князем В. В. Долгоруким сохранился в подлинном письме Петра князю Долгорукому. Копия с этого шифра воспроизведена А. Ф. Бычковым.

Приводит А. Ф. Бычков и зашифрованное этим шифром письмо, написанное Петром I собственноручно. Вот его текст:

«Господин маеоръ. Письма ваши до меня дошли, из которых я выразумел, что вы намърены оба полка, то есть Кропотовъ драгунской и пъшей из Кiева, у себя держать, на что отвътствую, что пъшему, ежели опасно пройтить въ Азовъ, то удержите у себя, а конной, не мъшкавъ, конечно отправьте на Таганрогь. Также является изъ вашихъ писемъ нъкоторая медленiе, что намъ не зело прiятна, когда дождетесь нашего баталiона и Ингермонланского и Билсова полковъ, тогда тотчас.

Зашифрованный текст читается так: «Поди къ Черкаскому и, сослався з губернаторомъ азовскимъ, чини немедленно съ Божiею помощiю промыслъ надъ тьми ворами, и которые изъ нихъ есть поиманы, тъхъ вели въшать по украинскимъ городамъ. А когда будешь в Черкаскомъ, тогда добрыхъ обнадежь и чтобъ выбрали атамана доброго человека; и по совершении ономъ, когда пойдешь назадъ, то по Дону лежащие городки такожъ обнадежь, а по Донцу и протчим речкамъ лежащие городки по сей росписи разори и над людми чини по указу».

В Государственном архиве Татарстана находится собственноручное письмо Петра I И. А. Толстому, в котором он, в частности, говорит, что посылает ему цифирь для корреспонденций. Текст письма издавался несколько раз, но А. Ф. Бычков сообщает, что цифирь, которая была послана при этом письме, не сохранилась уже к концу XIX в. Бычков воспроизводит ее по изданию Голикова.

А Б В Г Д Е Ж З И К Л

ме ли ко ин зе жу ню о пы ра су

М Н О П Р С Т У Ф Х Ы

ти у хи от ца чу ше ам з ъ от

Ц Ч Ш Щ Ъ Ы Ь Ъ Ю Я

ь ъ ю я ф а бе ва гу ди

Этот шифр имел правила пользования:

«Сии слова без разделения и без точек и запятых писать, а вместо точек и запятых и разделения речей вписывать из нижеподписанных букв...» Имелся здесь и небольшой словарь с именами некоторых государственных деятелей и наименованиями нескольких воинских подразделений и географическими наименованиями. Это обстоятельство также нашло отражение в правилах пользования, где говориться: «Буде же когда случится писать нижеписанных персон имяна и прочее, то оныя писать все сплош, нигде не оставливая, а между ними ставить помянутыя буквы, которыя ничего не значат».

Письмо Петра I было такого содержания:

«Господин губернатор! Понеже вы уже известны о умножении вора Булавина и что оный идет внизъ; того ради, для лучшаго опасения сихъ нужныхъ месть, послали мы к вамъ полкъ Смоленский изъ Киева, и велели ему на спехъ иттить; а сего поручика нашего господина Пескарского послали к Вамъ, дабы уведать подлинно о вашемъ состоянии и нътъ ли какой блазни у васъ межъ солдаты. Также (от чего Боже сохрани, ежели Черкаскъ не удержится) имеешь ли надежду на своихъ солдатъ, о чемъ о всемъ дай немедленно знать чрезъ сего посланного, съ которымъ послана к вамъ цифирь для корреспонденции к намъ. Также другой ключъ для корреспонденции съ господиномъ маеоромъ (гвардии Долгорукимъ), который посланъ на техъ воровъ съ воинскими людьми, прочее наказано оному посыльному словесно.

Нами найден другой шифр этого же времени, почти полностью повторяющий утраченную, по свидетельству А. Ф. Бычкова, цифирь 1708 г.. Назовем первый шифр «цифирь А», а второй шифр - «цифирь Б». Отличия в шифробозначениях, соответствующих буквам кирилловской азбуки, отсутствуют совсем, но все же это разные шифры. Их различия сводятся к следующему: в «цифири Б» пустышек на одну больше, здесь же значительно обширнее и «суплемент».

Характер словарных величин, помещаемых в суплемент каждой данной цифири, обычно позволяет судить о том, каким темам могут быть посвящены сообщения, шифруемые с помощью этой цифири. Так, небольшой словарь в «цифири А» содержит величины, связанные с перепиской по восстанию Булавина (Булавин, губернатор Азовский, войсковой атаман и казаки и др.). И действительно, в приведенном выше письме Петра I, зашифрованном «цифирью А», отражена эта тема. В словарь же «цифири Б» включены величины, характерные для военной переписки, и не вообще, а необходимые для переписки о событиях на вполне определенном театре военных действий (графъ Фризъ, Речь Посполитая, князь Примасъ, гетманъ Огинский, Сапега, прусы польские, Литва, Великопольша и др.).

В томе IV «Писем и бумаг» опубликованы тексты белового и чернового писем, писанных собственноручно Петром I по–французски к князю Н. И. Репнину 29 января 1706 г. Частично это письмо было шифрованным. Подлинник не сохранился. Сохранился лишь сделанный у генерала Ренна перевод этого письма, причем у корреспондентов не оказалось ключа для расшифрования письма царя и шифрованные места остались не дешифрованы. В этом виде опубликовали текст письма и издатели «Писем и бумаг». Относительно отсутствия ключей генерал Ренн писал Петру:

«Пресветлейший, державнейший царь, великомилостивейший Государь. Во всепокорностъ Вашему пресветлому Величеству доношу: вчерашняго дня получил я личбу цифрами чрез посланного от Вашего пресветлого Величества смоленских полков прапорщика, по которой с господином генералом князем Никитой Ивановичем (Репниным - Т. С.) будем вразумляться. Только мое несчастие, что той личбы ключи отосланы в обозе. Благоволи, Ваше пресветлое Величество, приказать прислать ключи, а мы и без ключей покамест, как можно мыслить и по указу Вашего пресветлого Величества поступать будем, также и друг друга покидать не будем…» .

Не менее интересным для нас является и блокнот с шифрами, которыми переписывался Петр I. Он представляет собой тетрадь, листы которой скреплены веревкой. Размер тетради 20x16 см. На каждой ее странице записано по одному шифру, всего их шесть:

1) шифр Петра I, который был ему прислан из Коллегии иностранных дел во Францию в 1720 г. для переписки «от двора ко двору»;

2) шифр «для писем к графу Г. и барону П.»;

3) к князю Григорию Федоровичу Долгорукому;

4) к князю А. И. Репнину (1715 г.);

5) «азбука, которая была прислана от двора его царского величества при указе №…, а полученная 30 июля 1721 г.»;

6) «азбука цифирная, какову прислал Дмитрий Константинович Кантемир в 1721 г.».

Последний шифр с русским алфавитом отличается от предыдущих тем, что в качестве шифробозначений в нем использованы не буквы какого–либо алфавита, а числа.

Рассмотрим еще несколько шифров раннего типа, использовавшихся в эпоху Петра.

«Азбука, данная из государственной коллегии иностранных дел 3 ноября 1721 г. камер–юнкеру Михаилу Бестужеву, отправленному в Швецию», предназначалась для шифрования писем Бестужева к Петру I и в Коллегию иностранных дел. Алфавит в этом шифре русский, простая буквенно–цифирно–значковая замена. Усложнений нет. Эта и многие другие азбуки хранятся в современных им конвертах, на которых имеются надписи о том, для каких целей предназначается данный шифр. Изучение этих надписей позволяет установить, что шифры для переписки с государем или Коллегией иностранных дел в обязательном порядке вручались всем, кто направлялся за границу с государственным поручением. Это могли быть как дипломаты, так и не дипломаты. Например, сохранилась «азбука для переписки с господином бригадиром и от гвардии майором Семеном Салтыковым, который отправлен к его светлости герцегу Мекленбургскому. Дана Салтыкову 1 декабря 1721 г.».

Сохранились и шифры канцлера Г. И. Головкина. Так, шифры, которыми пользовался канцлер в 1721, 1724 и 1726 гг. для переписки с различными государственными деятелями, подшиты в одну тетрадь. У корреспондентов Головкина были первые экземпляры этих шифров, у канцлера - вторые. В эту тетрадь включено 17 шифров. Среди них «Азбука Алексея Гавриловича Головкина», «Азбука князя Бориса Ивановича Куракина», «Азбука Алексея Бестужева», «Азбука губернатора астраханского господина Волынского», «Азбука Флорио Беневени» и др. Все эти шифры построены одинаково, хотя и имеют некоторые особенности. Так, в «Азбуке А. Г. Головкина» русский алфавит, где каждой согласной букве соответствует по одному шифробозначению, а гласной - по два, одно из которых - буква латиницы, а другое - двузначное число или два двузначных числа. Есть тринадцать пустышек (буквы кириллицы), как помечено: «пустые между слов дабы растановок не знать». Кроме того, есть особые, также буквенные обозначения для запятых и точек. Таких обозначений пять.

Азбука А. Г. Головкина. 20–е годы XVIII в.

«Азбука Алексея Бестужева» имеет десять двузначных цифровых шифробозначений для точек и запятых, в этой же функции в этом шифре выступает число 100. Алфавит в этом шифре - кириллица, шифробозначения - однозначные и двузначные числа и буквы латиницы.

«Азбука Флорио Беневени» не имеет пустышек, для обозначения точек использовались десять двузначных чисел.

В целом можно констатировать, что именно этот тип шифров простой замены был самым распространенным в государственной переписке России, по крайней мере до конца 20–х годов XVIII столетия.

Из книги Повседневная жизнь Соединенных Штатов в эпоху процветания и «сухого закона» автора Каспи Андре

Виды работы Впрочем, какую работу могла выполнять женщина? Намечались перемены. Это было связано с развитием сферы услуг. В 1900 году основные виды работ для женщины были связаны с домашним хозяйством: это хлопоты по дому, сельскохозяйственные работы, шитье, воспитание

Из книги Тайные информаторы Кремля. Нелегалы автора Карпов Владимир Николаевич

Специалист по добыванию шифров Шла весна 1921 года. Подходила к концу Гражданская война на Северном Кавказе и в Крыму. Василий Пудин был в то время помощником коменданта Реввоентрибунала 9-й армии и войск Донской области. После разгрома Врангеля 9-я армия была

Из книги Воскрешение Перуна. К реконструкции восточнославянского язычества автора Клейн Лев Самуилович

Из книги Партизанская война. Стратегия и тактика. 1941-1943 автора Армстронг Джон

1. Виды и размеры отрядов Можно сказать, что развитие партизанских отрядов в Брянской области проходило в три этапа, которые подробнее будут рассмотрены ниже. Эти три этапа не всегда совпадали по времени в различных частях региона, но везде наблюдалась одна общая

Из книги Повседневная жизнь российских железных дорог автора Вульфов Алексей Борисович

Виды сообщений Теперь о видах сообщений. До революции существовало прямое (дальнее) и местное пассажирское железнодорожное сообщение. Оно было четко регламентировано - § 28 Правил 1875 года гласил: «Дабы пассажиры могли быть передаваемы с одной железной дороги на другую

Из книги Максимилиан I автора Грёссинг Зигрид Мария

Виды на папский престол Когда Максимилиана провозгласили в Триенте императором, он уже не был молодым человеком: его светлые волосы поседели, а на лице читались следы приближающейся старости. Но его стан оставался стройным, о его ловкости и боевом духе, как и прежде,

Из книги История шифровального дела в России автора Соболева Татьяна А

Совершенствование криптографической службы и шифров МИД 15 апреля 1856 г. граф К. В. Нессельроде оставил управление МИД, сохранив за собой должность государственного канцлера. За шестидесятилетнюю верную службу престолу и государству он был осыпан милостями.Новым

Из книги Византия автора Каплан Мишель

IX ВИДЫ ДОСУГА Досуга, как мы его понимаем в наши дни, в Византии не было. Скорее так можно назвать деятельность, которой люди посвящали себя помимо основного занятия: для людей из народа - различные работы, для аристократии - служба, для женщин - домашние хлопоты. Причем

Из книги История инквизиции автора Мейкок А. Л.

Виды пыток Может показаться, что, в общем, инквизиция использовала те же методы пыток, что и светские суды – пытку водой, раму и strappado. Наиболее отвратительный вариант первого применялся в Испании. Сначала к языку обвиняемого привязывали кусочек влажной ткани, по которому

Из книги Русская кухня автора Ковалев Николай Иванович

Новые виды круп Толокно домашнего приготовления почти вышло из употребления, но взамен пришли новые виды круп.Крупа гречневая быстроразваривающаясяНа промышленных предприятиях гречневую крупу подвергают гидротермической обработке: ее пропаривают и сушат. Такая крупа

Из книги Русская кухня автора Ковалев Николай Иванович

Забытые виды каш Конечно, в столе московских государей и феодальной знати каша не играла такой роли, как в столе простого народа. Стол патриархов был ближе к народным традициям, поэтому в нем каши играли большую роль. Так, в перечне блюд патриарха Адриана названы каши

Из книги Краткая история спецслужб автора Заякин Борис Николаевич

Глава 11. Появление шифров Для передачи секретных донесений спартанцы же изобрели и оригинальный способ - письмо писалось на свитке, накрученном на специальную палочку «скиталу».Прочитать его мог только адресат, обладающий точной копией этой палочки, снова накрутив на

Из книги Приживется ли демократия в России автора Ясин Евгений Григорьевич

Виды элит Существует множество профессиональных и локальных элит. Обычно на уровне общества, страны выделяются элиты политическая (политический класс), интеллектуальная, деловая (бизнес-элита) и другие. В составе политической элиты выделяется правящая элита –

Из книги О происхождении названия «Россия» автора Клосс Борис Михайлович

УКАЗАТЕЛЬ ШИФРОВ ИСПОЛЬЗОВАННЫХ РУКОПИСЕЙ Библиотека Академии наук16.5.7 118 17.8.36 27 33.8.13 32Архангельское собр. Арх. Д. 193 90Собр. Текущих поступлений Текущ. 1107 28Государственный архив Ярославской областиГАЯО-446 57-60,69Государственный исторический музейСобр. Е. В. Барсова Барс. 1516

Из книги Дворянство, власть и общество в провинциальной России XVIII века автора Коллектив авторов

Виды наказаний Рассмотрим наказания, которые налагались полковыми кригсрехтами в соответствии с действующим военным законодательством. Из 204 случаев применения санкций в отношении нарушителей в 84 случаях речь шла лишь об аресте. При этом срок заключения, как правило, не

Из книги Учебное пособие по социальной философии автора Бенин В. Л.


Top