Matlab описание функций. Matlab функции

). Среди средств общего назначения, используемых в хемометрике, особое место занимает пакет MatLab. Его популярность необычайно высока. Это объясняется тем, что MatLab является мощным и универсальным обработки многомерных данных. Сама структура пакета делает его удобным средством для проведения матричных вычислений. Спектр проблем, исследование которых может, осуществлено при помощи MatLab, охватывает: матричный анализ, обработку сигналов и изображений, нейронные сети и многие другие. MatLab - это язык высокого уровня, имеющий открытый код, что дает возможность опытным пользователям разбираться в запрограммированных алгоритмах. Простой встроенный язык программирования позволяет легко создавать собственные алгоритмы. За много лет использования MatLab создано огромное количество функций и ToolBox (пакетов специализированных средств). Самым популярным является пакет PLS ToolBox компании Eigenvector Research, Inc .

1. Базовые сведения

1.1. Рабочая среда MatLab

Чтобы запустить программу дважды щелкните на иконку . Перед Вами откроется рабочая среда, изображенная на рисунке.

Рабочая среда MatLab 6.х немного отличается от рабочей среды предыдущих версий, она имеет более удобный интерфейс для доступа ко многим вспомогательным элементам

Рабочая среда MatLab 6.х содержит следующие элементы:

    панель инструментов с кнопками и раскрывающимся списком;

    окно с вкладками Launch Pad и Workspace , из которого можно получить доступ к различным модулям ToolBox и к содержимому рабочей среды;

    окно с вкладками Command History и Current Directory , предназначенное для просмотра и повторного вызова ранее введенных команд, а также для установки текущего каталога;

    командное окно, в котором находится приглашение к вводу » и мигающий вертикальный курсор;

    строку состояния.

Если в рабочей среде MatLab 6.х отсутствуют некоторые окна, приведенные на рисунке, то следует в меню View выбрать соответствующие пункты: Command Window , Command History , Current Directory , Workspase , Launch Pad .

Команды следует набирать в командном окне. Символ » , обозначающий приглашение к вводу командной строки, набирать не нужно. Для просмотра рабочей области удобно использовать полосы скроллинга или клавиши Home , End , для перемещения влево или вправо, и PageUp , PageDown для перемещения вверх или вниз. Если вдруг после перемещения по рабочей области командного окна пропала командная строка с мигающим курсором, просто нажмите Enter .

Важно помнить, что набор любой команды или выражения должен заканчиваться нажатием на Enter , для того, чтобы программа MatLab выполнила эту команду или вычислила выражение.

1.2. Простейшие вычисления

Наберите в командной строке 1+2 и нажмите Enter . В результате в командном окне MatLab отображается следующее:

Рис. 2 Графическое представление метода главных компонент

Что сделала программа MatLab? Сначала она вычислила сумму 1+2 , затем записала результат в специальную переменную ans и вывела ее значение, равное 3 , в командное окно. Ниже ответа расположена командная строка с мигающим курсором, обозначающая, что MatLab готов к дальнейшим вычислениям. Можно набирать в командной строке новые выражения и находить их значения. Если требуется продолжить работу с предыдущим выражением, например, вычислить (1+2)/4.5 , то проще всего воспользоваться уже имеющимся результатом, который хранится в переменной ans . Наберите ans/4.5 (при вводе десятичных дробей используется точка) и нажмите Enter , получается

Рис. 3 Графическое представление метода главных компонент

1.3. Эхо команд

Выполнение каждой команды в MatLab сопровождается эхом. В приведенном выше примере - это ответ ans = 0.6667 . Часто эхо затрудняет восприятие работы программы и тогда его можно отключить. Для этого команда должна завершаться символом точка с запятой. Например

Рис. 4 Пример ввода функции ScoresPCA

1.4. Сохранение рабочей среды. MAT файлы

Самый простой способ сохранить все значения переменных - использовать в меню File пункт Save Workspase As. При этом появляется диалоговое окно Save Workspase Variables , в котором следует указать каталог и имя файла. По умолчанию предлагается сохранить файл в подкаталоге work основного каталога MatLab. Программа сохранит результаты работы в файле с расширением mat . Теперь можно закрыть MatLab. В следующем сеансе работы для восстановления значений переменных следует открыть этот сохраненный файл при помощи подпункта Open меню File . Теперь все переменные, определенные в прошлом сеансе, опять стали доступными. Их можно использовать во вновь вводимых командах.

1.5. Журнал

В MatLab имеется возможность записывать исполняемые команды и результаты в текстовый файл (вести журнал работы), который потом можно прочитать или распечатать из текстового редактора. Для начала ведения журнала служит команда diary . В качестве аргумента команды diary следует задать имя файла, в котором будет храниться журнал работы. Набираемые далее команды и результаты их исполнения будут записываться я в этот файл, например последовательность команд

производит следующие действия:

    открывает журнал в файле exampl-1.txt ;

    производит вычисления;

    сохраняет все переменные в MAT файле work-1.mat ;

    сохраняет журнал в файле exampl-1.txt в подкаталоге work корневого каталога MatLab и закрывает MatLab;

Посмотрите содержимое файла exampl-1.txt в каком-нибудь текстовом редакторе. В файле окажется следующий текст:

a1=3;
a2=2.5;
a3=a1+a2

Save work-1
quit

1.6. Система помощи

Окно справки MatLab появляется после выбора опции Help Window в меню Help или нажатием кнопки вопроса на панели инструментов. Эта же операция может быть выполнена при наборе команды helpwin . Для вывода окна справки по отдельным разделам, наберите helpwin topic . Окно справки предоставляет Вам такую же информацию, как и команда help , но оконный интерфейс обеспечивает более удобную связь с другими разделами справки. Используя адрес Web-страницы фирмы Math Works , вы можете выйти на сервер фирмы и получить самую последнюю информацию по интересующим вас вопросам. Вы можете ознакомиться с новыми программными продуктами или найти ответ на возникшие проблемы на странице технической поддержки .

2. Матрицы

2.1. Скаляры, векторы и матрицы

В MatLab можно использовать скаляры, векторы и матрицы. Для ввода скаляра достаточно приписать его значение какой-то переменной, например

Заметим, что MatLab различает заглавные и прописные буквы, так что p и P - это разные переменные. Для ввода массивов (векторов или матриц) их элементы заключают в квадратные скобки. Так для ввода вектора-строки размером 1×3, используется следующая команда, в которой элементы строки отделяются пробелами или запятыми.

При вводе вектора-столбца элементы разделяют точкой с запятой. Например,

Вводить небольшие по размеру матрицы удобно прямо из командной строки. При вводе матрицу можно рассматривать как вектор-столбец, каждый элемент которого является вектором-строкой.

или матрицу можно трактовать как вектор строку, каждый элемент которой является вектором-столбцом.

2.2. Доступ к элементам

Доступ к элементам матриц осуществляется при помощи двух индексов - номеров строки и столбца, заключенных в круглые скобки, например команда B(2,3) выдаст элемент второй строки и третьего столбца матрицы B . Для выделения из матрицы столбца или строки следует в качестве одного из индексов использовать номер столбца или строки матрицы, а другой индекс заменить двоеточием. Например, запишем вторую строку матрицы A в вектор z

Также можно осуществлять выделение блоков матриц при помощи двоеточия. Например, выделим из матрицы P блок отмеченный цветом

Если необходимо посмотреть переменные рабочей среды, в командной строке необходимо набрать команду whos .

Видно, что в рабочей среде содержатся один скаляр (p ), четыре матрицы (A, B, P, P1 ) и вектор-строка (z ).

2.3. Основные матричные операции

При использовании матричных операций следует помнить, что для сложения или вычитания матрицы должны быть одного размера, а при перемножении число столбцов первой матрицы обязано равняться числу строк второй матрицы. Сложение и вычитание матриц, так же как чисел и векторов, осуществляется при помощи знаков плюс и минус

а умножение - знаком звездочка * . Введем матрицу размером 3×2

Умножение матрицы на число тоже осуществляется при помощи звездочки, причем умножать на число можно как справа, так и слева. Возведение квадратной матрицы в целую степень производится с использованием оператора ^

Проверьте полученный результат, умножив матрицу Р саму на себя.

2.4. Создание матриц специального вида

Заполнение прямоугольной матрицы нулями производится встроенной функцией zeros

Единичная матрица создается при помощи функции eye

Матрица, состоящая из единиц, образуется в результате вызова функции ones

MatLab предоставляет возможность заполнения матриц случайными числами. Результатом функции rand является матрица чисел, равномерно распределенных между нулем и единицей, а функции randn - матрица чисел, распределенных по нормальному закону с нулевым средним и единичной дисперсией.

Функция diag формирует диагональную матрицу из вектора, располагая элементы по диагонали.

2.5. Матричные вычисления

MatLab содержит множество различных функций для работы с матрицами. Так, например, транспонирование матрицы производится при помощи апострофа "

Нахождение обратной матрицы проводится с помощью функции inv для квадратных матриц

3. Интегрирование MatLab и Excel

Интегрирование MatLab и Excel позволяет пользователю Excel обращаться к многочисленным функциям MatLab для обработки данных, различных вычислений и визуализации результата. Надстройка excllink.xla реализует данное расширение возможностей Excel. Для связи MatLab и Excel определены специальные функции.

3.1. Конфигурирование Excel

Перед тем как настраивать Excel на совместную работу с MatLab, следует убедиться, что Excel Link входит в установленную версию MatLab. В подкаталоге exclink основного каталога MatLab или подкаталога toolbox должен находиться файл с надстройкой excllink.xla . Запустите Excel и в меню Tools выберите пункт Add-ins . Откроется диалоговое окно, содержащее информацию о доступных в данный момент надстройках. Используя кнопку Browse , укажите путь к файлу excllink.xla . В списке надстроек диалогового окна появится строка Excel Link 2.0 for use with MatLab с установленным флагом. Нажмите OK , требуемая надстройка добавлена в Excel.

Обратите внимание, что в Excel теперь присутствует панель инструментов Excel Link , содержащая три кнопки: putmatrix , getmatrix , evalstring . Эти кнопки реализуют основные действия, требуемые для осуществления взаимосвязи между Excel и MatLab - обмен матричными данными, и выполнение команд MatLab из среды Excel. При повторных запусках Excel надстройка excllink.xla подключается автоматически.

Согласованная работа Excel и MatLab требует еще нескольких установок, которые приняты в Excel по умолчанию (но могут быть изменены). В меню Tools перейдите к пункту Options , открывается диалоговое окно Options . Выберите вкладку General и убедитесь, что флаг R1C1 reference style выключен, т.е. ячейки нумеруются A1 , A2 и т.д. На вкладке Edit должен быть установлен флаг Move selection after Enter .

3.2. Обмен данными между MatLab и Excel

Запустите Excel, проверьте, что проделаны все необходимые настройки так, как описано в предыдущем разделе (MatLab должен быть закрыт). Введите в ячейки с A1 по C3 матрицу, для отделения десятичных знаков используйте точку в соответствии с требованиями Excel.

Выделите на листе данные ячейки и нажмите кнопку putmatrix , появляется окно Excel с предупреждением о том, что MatLab не запущен. Нажмите OK , дождитесь открытия MatLab.

Появляется диалоговое окно Excel со строкой ввода, предназначенной для определения имени переменной рабочей среды MatLab, в которую следует экспортировать данные из выделенных ячеек Excel. Введите к примеру, М и закройте окно при помощи кнопки OK . Перейдите к командному окну MatLab и убедитесь, что в рабочей среде создалась переменная М , содержащая массив три на три:

Проделайте некоторые операции в MatLab с матрицей М , например, обратите ее.

Вызов inv для обращения матрицы, как и любой другой команды MatLab можно осуществить прямо из Excel. Нажатие на кнопку evalstring , расположенную на панели Excel Link , приводит к появлению диалогового окна, в строке ввода которого следует набрать команду MatLab

IM=inv(M) .

Результат аналогичен полученному при выполнении команды в среде MatLab.

Вернитесь в Excel, сделайте текущей ячейку A5 и нажмите кнопку getmatrix . Появляется диалоговое окно со строкой ввода, в которой требуется ввести имя переменной, импортируемой в Excel. В данном случае такой переменной является IM . Нажмите OK , в ячейки с A5 по A7 введены элементы обратной матрицы.

Итак, для экспорта матрицы в MatLab следует выделить подходящие ячейки листа Excel, а для импорта достаточно указать одну ячейку, которая будет являться верхним левым элементом импортируемого массива. Остальные элементы запишутся в ячейки листа согласно размерам массива, переписывая содержащиеся в них данные, поэтому следует соблюдать осторожность при импорте массивов.

Вышеописанный подход является самым простым способом обмена информацией между приложениями - исходные данные содержатся в Excel, затем экспортируются в MatLab, обрабатываются там некоторым образом и результат импортируется в Excel. Пользователь переносит данные при помощи кнопок панели инструментов Excel Link . Информация может быть представлена в виде матрицы, т.е. прямоугольной области рабочего листа. Ячейки, расположенные в строку или столбец, экспортируются, соответственно, в векторы -строки и векторы -столбцы MatLab. Аналогично происходит и импорт векторов-строк и векторов-столбцов в Excel.

4. Программирование

4.1. М-файлы

Работа из командной строки MatLab затрудняется, если требуется вводить много команд и часто их изменять. Ведение дневника при помощи команды diary и сохранение рабочей среды незначительно облегчают работу. Самым удобным способом выполнения групп команд MatLab является использование М-файлов, в которых можно набирать команды, выполнять их все сразу или частями, сохранять в файле и использовать в дальнейшем. Для работы с М-файлами предназначен редактор М-файлов. С его помощью можно создавать собственные функции и вызывать их, в том числе и из командного окна.

Раскройте меню File основного окна MatLab и в пункте New выберите подпункт M-file . Новый файл открывается в окне редактора M-файлов, которое изображено на рисунке.

М-файлы в MatLab бывают двух типов: файл-программы (Script M-Files ), содержащие последовательность команд, и файл-функции, (Function M-Files ), в которых описываются функции, определяемые пользователем.

4.2. Файл-программа

Наберите в редакторе команды, приводящие к построению двух графиков на одном графическом окне

Сохраните теперь файл с именем mydemo.m в подкаталоге work основного каталога MatLab, выбрав пункт Save as меню File редактора. Для запуска на выполнение всех команд, содержащихся в файле, следует выбрать пункт Run в меню Debug . На экране появится графическое окно Figure 1 , содержащее графики функций.

Команды файл-программы осуществляют вывод в командное окно. Для подавления вывода следует завершать команды точкой с запятой. Если при наборе сделана ошибка и MatLab не может распознать команду, то происходит выполнение команд до неправильно введенной, после чего выводится сообщение об ошибки в командное окно.

Очень удобной возможностью, предоставляемой редактором М-файлов, является выполнение части команд. Закройте графическое окно Figure 1 . Выделите при помощи мыши, удерживая левую кнопку, или клавишами со стрелками при нажатой клавише Shift , первые четыре команды и выполните их из пункта Text . Обратите внимание, что в графическое окно вывелся только один график, соответствующий выполненным: командам. Запомните, что для выполнения части команд их следует выделить и нажать клавишу F9 .

Отдельные блоки М-файла можно снабжать комментариями, которые пропускаются при выполнении, но удобны при работе с М-файлом. Комментарии начинаются со знака процента и автоматически выделяются зеленым цветом, например:

Открытие существующего М-файла производится при помощи пункта Open меню File рабочей среды, либо редактора М-файлов.

4.3. Файл-функция

Рассмотренная выше файл-программа является только последовательностью команд MatLab, она не имеет входных и выходных аргументов. Для использования численных методов и при программировании собственных приложений в MatLab необходимо уметь составлять файл-функции, которые производят необходимые действия с входными аргументами и возвращают результат действия в выходных аргументах. Разберем несколько простых примеров, позволяющих понять работу с файл-функциями.

Проводя предобработку данных многомерного анализа хемометрики часто применяет центрирование . Имеет смысл один раз написать файл-функцию, а потом вызывать его всюду, где необходимо производить центрирование. Откройте в редакторе М-файлов новый файл и наберите

Слово function в первой строке определяет, что данный файл содержит файл-функцию. Первая строка является заголовком функции, в которой размещается имя функции и списка входных и выходных аргументов. В примере имя функции centering , один входной аргумент X и один выходной - Xc. После заголовка следуют комментарии, а затем - тело функции (оно в данном примере состоит из двух строк), где и вычисляется ее значение. Важно, что вычисленное значение записывается в Xc . Не забудьте поставить точку с запятой для предотвращения вывода лишней информации на экран. Теперь сохраните файл в рабочем каталоге. Обратите внимание, что выбор пункта Save или Save as меню File приводит к появлению диалогового окна сохранения файла, в поле File name которого уже содержится название centering . Не изменяйте его, сохраните файл функцию в файле с предложенным именем!

Теперь созданную функцию можно использовать так же, как и встроенные sin , cos и другие. Вызов собственных функций может осуществляться из файл-программы и из другой файл-функции. Попробуйте сами написать файл-функцию, которая будет шкалировать матрицы, т.е. делить каждый столбец на величину среднеквадратичного отклонения по этому столбцу.

Можно написать файл-функции с несколькими входными аргументами, которые размещаются в списке через запятую. Можно также создавать и функции, возвращающие несколько значений. Для этого выходные аргументы добавляются через запятую в список выходных аргументов, а сам список заключается в квадратные скобки. Хорошим примером является функция, переводящая время, заданное в секундах, в часы, минуты и секунды.

При вызове файл-функций с несколькими выходными аргументами результат следует записывать в вектор соответствующей длины.

4.4 Создание графика

MatLab имеет широкие возможности для графического изображения векторов и матриц, а также для создания комментариев и печати графиков. Дадим описание несколько важных графических функций.

Функция plot имеет различные формы, связанные с входными параметрами, например plot(y) создает кусочно-линейный график зависимости элементов y от их индексов. Если в качестве аргументов заданы два вектора, то plot(x,y) создаст график зависимости y от x . Например, для построения графика функции sin в интервале от 0 до 2π, сделаем следующее

Программа построила график зависимости, который отображается в окне Figure 1

MatLab автоматически присваивает каждому графику свой цвет (исключая случаи, когда это делает пользователь), что позволяет различать наборы данных.

Команда hold on позволяет добавлять кривые на существующий график. Функция subplot позволяет выводить множество графиков в одном окне

4.5 Печать графиков

Пункт Print в меню File и команда print печатают графику MatLab. Меню Print вызывает диалоговое окно, которое позволяет выбирать общие стандартные варианты печати. Команда print обеспечивает большую гибкость при выводе выходных данных и позволяет контролировать печать из М-файлов. Результат может быть послан прямо на принтер, выбранный по умолчанию, или сохранен в заданном файле.

5. Примеры программ

В этом разделе приведены наиболее употребительные алгоритмы, используемые при анализе многомерных данных. Рассмотрены как простейшие методы преобразования данных центрирование и шкалирование, так и алгоритмы для анализа данных - PCA, PLS.

5.1. Центрирование и шкалирование

Часто при анализе требуется преобразовать исходные данные. Наиболее используемыми методами преобразования данных выступают центрирование и шкалирование каждой переменной на стандартное отклонение. В приводился код функции для центрирования матрицы. Поэтому ниже показан только код функции, которая шкалирует данные. Обратите внимание, что исходная матрица должна быть центрирована

function Xs = scaling(X)
% scaling: the output matrix is Xs
% matrix X must be centered

Xs = X * inv(diag(std(X)));

%end of scaling

5.2. SVD/PCA

Наиболее популярным способом сжатия данных в многомерном анализе является метод главных компонент (PCA) . С математической точки зрения PCA - это декомпозиция исходной матрицы X , т.е. представление ее в виде произведения двух матриц T и P

X = TP t + E

Матрица T называется матрицей счетов (scores) , матрица - матрицей остатков.

Простейший способ найти матрицы T и P - использовать SVD разложение через стандартную функцию MatLab, называемую svd .

function = pcasvd(X)

Svd(X);
T = U * D;
P = V;

%end of pcasvd

5.3 PCA/NIPALS

Для построения PCA счетов и нагрузок, используется рекуррентный алгоритм NIPALS , который на каждом шагу вычисляет одну компоненту. Сначала исходная матрица X преобразуется (как минимум – центрируется; см. ) и превращается в матрицу E 0 , a =0. Далее применяют следующий алгоритм.

t 2. p t = t t E a / t t t 3. p = p / (p t p ) ½ 4. t = E a p / p t p 5. Проверить сходимость, если нет, то идти на 2

После вычисления очередной (a -ой) компоненты, полагаем t a =t и p a =p E a +1 = E a t p a на a +1.

Код алгоритма NIPALS может быть написан и самими читателями, в данном же пособии авторы приводят свой вариант. При расчете PCA, можно вводить число главных компонент (переменная numberPC ). Если же не известно, сколько необходимо компонент, следует написать в командной строке = pcanipals (X) и тогда программа задаст число компонент равным наименьшему из показателей размерности исходной матрицы X .

function = pcanipals(X, numberPC)

% calculation of number of components
= size(X); P=; T=;

If lenfth(numberPC) > 0
pc = numberPC{1};
elseif (length(numberPC) == 0) & X_r < X_c
pc = X_r;
else
pc = X_c;
end;

for k = 1:pc
P1 = rand(X_c, 1); T1 = X * P1; d0 = T1"*T1;
P1 = (T1" * X/(T1" * T1))"; P1 = P1/norm(P1); T1 = X * P1; d = T1" * T1;

While d - d0 > 0.0001;
P1 = (T1" * X/(T1" * T1)); P1 = P1/norm(P1); T1 = X * P1; d0 = T1"*T1;
P1 = (T1" * X/(T1" * T1)); P1 = P1/norm(P1); T1 = X * P1; d = T1"*T1;
end

X = X - T1 * P1; P = cat(1, P, P1"); T = ;
end

О вычислении PCA с помощью надстройки Chemometrics рассказано в пособии

5.4 PLS1

Самым популярным способом для многомерной калибровки является метод проекции на латентные структуры (PLS). В этом методе проводится одновременная декомпозиция матрицы предикторов X и матрицы откликов Y :

X =TP t +E Y =UQ t +F T =XW (P t W ) –1

Проекция строится согласованно – так, чтобы максимизировать корреляцию между соответствующими векторами X -счетов t a и Y -счетов u a . Если блок данных Y включает несколько откликов (т.е. K >1), можно построить две проекции исходных данных – PLS1 и PLS2. В первом случае для каждого из откликов y k строится свое проекционное подпространство. При этом и счета T (U ) и нагрузки P (W , Q ) , зависят от того, какой отклик используется. Этот подход называется PLS1. Для метода PLS2 строится только одно проекционное пространство, которое является общим для всех откликов.

Детальное описание метода PLS приведено в этой книге Для построения PLS1 счетов и нагрузок, используется рекуррентный алгоритм. Сначала исходные матрицы X и Y центрируют

= mc(X);
= mc(Y);

и они превращаются в матрицу E 0 и вектор f 0 , a =0. Далее к ним применяет следующий алгоритм

1. w t = f a t E a 2. w = w / (w t w ) ½ 3. t = E a w 4. q = t t f a / t t t 5. u = q f a / q 2 6. p t = t t E a / t t t

После вычисления очередной (a -ой) компоненты, полагаем t a =t и p a =p . Для получения следующей компоненты надо вычислить остатки E a +1 = E a t p t и применить к ним тот же алгоритм, заменив индекс a на a +1.

Приведем код этого алгоритма, взятый из книги

function = pls(x, y)
%PLS: calculates a PLS component.
%The output vectors are w, t, u, q and p.
%
% Choose a vector from y as starting vector u.

u = y(:, 1);

% The convergence criterion is set very high.
kri = 100;

% The commands from here to end are repeated until convergence.
while (kri > 1e - 10)

% Each starting vector u is saved as uold.
uold = u; w = (u" * x)"; w = w/norm(w);
t = x * w; q = (t" * y)"/(t" * t);
u = y * q/(q" * q);

% The convergence criterion is the norm of u-uold divided by the norm of u.
kri = norm(uold - u)/norm(u);
end;

% After convergence, calculate p.
p = (t" * x)"/(t" * t);

% End of pls

О вычислении PLS1 с помощью надстройки Chemometrics Add In рассказано в пособии Проекционные методы в системе Excel.

5.5 PLS2

Для PLS2 алгоритм выглядит следующим образом. Сначала исходные матрицы X и Y преобразуют (как минимум – центрируют; см. ), и они превращаются в матрицы E 0 и F 0 , a =0. Далее к ним применяет следующий алгоритм.

1. Выбрать начальный вектор u 2. w t = u t E a 3. w = w / (w t w ) ½ 4. t = E a w 5. q t = t t F a / t t t 6. u = F a q / q t q 7. Проверить сходимость, если нет, то идти на 2 8. p t = t t E a / t t t

После вычисления очередной (a -ой) PLS2 компоненты надо положить: t a =t , p a =p, w a =w , u a =u и q a =q . Для получения следующей компоненты надо вычислить остатки E a +1 = E a t p t и F a +1 = F a tq t и применить к ним тот же алгоритм, заменив индекс a на a +1.

Приведем код, которой также заимствован из из книги .

function = plsr(x, y, a)
% PLS: calculates a PLS component.
% The output matrices are W, T, U, Q and P.
% B contains the regression coefficients and SS the sums of
% squares for the residuals.
% a is the numbers of components.
%
% For a components: use all commands to end.

For i=1:a
% Calculate the sum of squares. Use the function ss.
sx = ;
sy = ;

% Use the function pls to calculate one component.
= pls(x, y);

% Calculate the residuals.
x = x - t * p";
y = y - t * q";

% Save the vectors in matrices.
W = ;
T = ;
U = ;
Q = ;
P = ;
end;

% Calculate the regression coefficients after the loop.
B=W*inv(P"*W)*Q";

% Add the final residual SS to the sum of squares vectors.
sx=;
sy=;

% Make a matrix of the ss vectors for X and Y.
SS = ;

%Calculate the fraction of SS used.
= size(SS);
tt = (SS * diag(SS(1,:).^(-1)) - ones(a, b)) * (-1)

%End of plsr

function = ss(x)
%SS: calculates the sum of squares of a matrix X.
%

ss=sum(sum(x. * x));
%End of ss

О вычислении PLS2 с помощью надстройки Chemometrics Add In рассказано в пособии Проекционные методы в системе Excel.

Заключение

MatLab ­ это это очень популярный инструмент для анализа данных. По данным опроса, его используют до трети всех исследователей, тогда как программа the Unsrambler применяется только 16% ученых. Главным недостатком MatLab являются его высокая цена. Кроме того, MatLab хорош для рутинных расчетов. Отсутствие интерактивности делает его неудобным при выполнении поисковых, исследовательских расчетов для новых, неисследованных массивов данных.

M-файлы являются обычными текстовыми файлами, которые создаются с помощью текстового редактора. Для операционной среды персонального компьютера система MATLAB поддерживает специальный встроенный редактор/отладчик, хотя можно использовать и любой другой текстовый редактор с ASCII-кодами.

Открыть редактор можно двумя способами:

  • из меню File выбрать опцию New, а затем M-File.
  • использовать команду редактирования edit.

Пример

Команда edit poof запускает редактор и открывает файле poof.m. Если имя файла опущено, то запускается редактор и открывается файл без имени.
Теперь можно записать, например, функцию fact, приведенную выше, вводя строки текста и сохраняя их в файле с именем fact.m в текущем каталоге.
Как только такой файл создан, можно выполнить следующие команды:

  • Вывести на экран имена файлов текущего каталога:
    what
  • Вывести на экран текст M-файла fact.m:
    type fact
  • Вызвать функцию fact с заданными параметрами:
    fact (5)
    ans= 120

М-сценарии

Сценарии являются самым простым типом M-файла – у них нет входных и выходных аргументов. Они используются для автоматизации многократно выполняемых вычислений. Сценарии оперируют данными из рабочей области и могут генерировать новые данные для последующей обработки в этом же файле. Данные, которые используются в сценарии, сохраняются в рабочей области после завершения сценария и могут быть использованы для дальнейших вычислений.

Пример
Следующие операторы вычисляют радиус-вектор rho для различных тригонометрических функций от угла theta и строят последовательность графиков в полярных координатах.

Создайте М-файл petals.m, вводя указанные выше операторы. Этот файл является сценарием. Ввод команды petals.m в командной строке системы MATLAB вызывает выполнение операторов этого сценария.

После того, как сценарий отобразит первый график, нажмите клавишу Return, чтобы перейти к следующему графику. В сценарии отсутствуют входные и выходные аргументы; программа petals.m сама создаёт переменные, которые сохраняются в рабочей области системы MATLAB. Когда выполнение завершено, переменные (i, theta и rho) остаются в рабочей области. Для того чтобы увидеть этот список, следует воспользоваться командой whos.

М-функции

М-функции являются M-файлами, которые допускают наличие входных и выходных аргументов. Они работают с переменными в пределах собственной рабочей области, отличной от рабочей области системы MATLAB.

Пример

Функция average - это достаточно простой M-файл, который вычисляет среднее значение элементов вектора:
function y = average (x)
% AVERAGE Среднее значение элементов вектора.
% AVERAGE(X), где X - вектор. Вычисляет среднее значение элементов вектора.
% Если входной аргумент не является вектором, генерируется ошибка.
= size(x);
if (~((m == 1) | (n == 1)) | (m == 1 & n == 1))
error("Входной массив должен быть вектором’)
end
y =sum(x)/length(x); % Собственно вычисление

Попробуйте ввести эти команды в M-файл, именуемый average.m. Функция average допускает единственный входной и единственный выходной аргументы. Для того чтобы вызвать функцию average, надо ввести следующие операторы:

z = 1:99;
average(z)
ans = 50

Структура М-функции. M-функция состоит из:

  • строки определения функции;
  • первой строки комментария;
  • собственно комментария;
  • тела функции;
  • строчных комментариев;

Строка определения функции. Строка определения функции сообщает системе MATLAB, что файл является М-функцией, а также определяет список входных аргументов.

Пример
Строка определения функции average имеет вид:
function y = average(x)
Здесь:

  1. function - ключевое слово, определяющее М-функцию;
  2. y - выходной аргумент;
  3. average - имя функции;
  4. x - входной аргумент.

Каждая функция в системе MATLAB содержит строку определения функции, подобную приведенной.

Если функция имеет более одного выходного аргумента, список выходных аргументов помещается в квадратные скобки. Входные аргументы, если они присутствуют, помещаются в круглые скобки. Для отделения аргументов во входном и выходном списках применяются запятые.

Пример

function = sphere(theta, phi, rho)

Имена входных переменных могут, но не обязаны совпадать с именами, указанными в строке определения функции.

Первая строка комментария . Для функции average первая строка комментария выглядит так:

% AVERAGE Среднее значение элементов вектора

Это - первая строка текста, которая появляется, когда пользователь набирает команду help <имя_функции>. Кроме того, первая строка комментария выводится на экран по команде поиска lookfor. Поскольку эта строка содержит важную информацию об M-файле, она должна быть тщательно составлена.

Комментарий . Для M-файлов можно создать online-подсказку, вводя текст в одной или более строках комментария.

Пример

Сформируем несколько строк комментария

% Функция average(x) вычисляет среднее значение элементов вектора x.
% Если входной аргумент не является вектором, выдается ошибка.

Тогда при вводе команды подсказки help <имя_функции>, система MATLAB отображает строки комментария, которые размещаются между строкой определения функции и первой пустой строкой, либо началом программы. Команда help <имя_функции> игнорирует комментарии, размещенные вне этой области.

Пример

help sin
SIN Sine.
SIN(X) is the sine of the elements of X
SIN(X) вычисляет функцию синуса элементов массива X.

MATLAB выводит на экран строки файла Contents.m по команде help <имя_каталога>.

Если каталог не содержит файла Contents.m, то по команде help <имя_каталога> распечатывается первая строка комментария для каждого M-файла данного каталога.

Тело функции . Тело функции содержит код языка MATLAB, который выполняет вычисления и присваивает значения выходным аргументам. Операторы в теле функции могут состоять из вызовов функций, программных конструкций для управления потоком команд, интерактивного ввода/вывода, вычислений, присваиваний, комментариев и пустых строк.

Пример

Тело функции average включает ряд простейших операторов программирования:

Как уже говорилось ранее, комментарии отмечаются знаком (%). Строка комментария может быть размещена в любом месте M-файла, в том числе и в конце строки.

Пример

% Найти сумму всех элементов вектора x
y = sum(x) % Использована функция sum
.

Кроме строк комментариев в текст М-файла можно включать пустые строки. Однако надо помнить, что пустая строка может служить указателем окончания подсказки.

Имена М-функций . В системе MATLAB на имена М-функций налагаются те же ограничения, что и на имена переменных - их длина не должна превышать 31 символа. Более точно, имя может быть и длиннее, но система MATLAB принимает во внимание только первые 31 символ. Имена М-функций должны начинаться с буквы; остальные символы могут быть любой комбинацией букв, цифр и подчеркиваний.

Имя файла, содержащего М-функцию, составляется из имени функции и расширения “.m”.

Пример

average.m
Если имя файла и имя функции в строке определения функции разные, то используется имя файла, а внутреннее имя игнорируется. Хотя имя функции, определенное в строке определения функции, может и не совпадать с именем файла, настоятельно рекомендуется использовать одинаковые имена.

Двойственность функций и команд . Команды системы MATLAB - это операторы вида:
load
help

Многие команды могут быть модифицированы добавлением операндов:
load August17.dat
help magic
type rank

Альтернативный метод задания модификаторов - определить их в качестве строковых аргументов функции:

load("August17.dat")
help("magic")
type("rank")

В этом заключается двойственность понятий команды и функции в системе MATLAB. Любая команда вида

command argument

может быть записана в форме функции

command("argument").

Преимущество функционального описания проявляется, когда строка аргументов формируется по частям. Следующий пример показывает, как может быть обработана последовательность файлов August1.dat, August2.dat, и т.д. Здесь используется функция int2str, которая переводит целое число в строку символов, что помогает сформировать последовательность имён файлов.

for d = 1:31
s = ["August" int2str(d) ".dat"]
load(s) %Загрузить файл с именем August"d".dat
% Операторы обработки файла
end

Инструкция

В среде MATLAB есть несколько режимов работы. Самый простой – это ввод команд непосредственно в окно команд (Command Window ).
Если оно не видно в интерфейсе программы, значит нужно его открыть. Найти окно команд можно через меню Desktop -> Command Window .
Давайте для примера введём в это окно последовательно друг за другом команды "x = ; y = sqrt(x); plot(y);", и нажмём клавишу "Ввод" (Enter ). Программа моментально создаст переменные X, создаст переменную Y и посчитает её значения по заданной функции, а затем построит её график.
Стрелками клавиатуры "Вверх" и "Вниз" в окне команд мы можем переключаться между всеми введёнными командами, тут же изменять их при необходимости, и по нажатию Enter снова отправлять среде MATLAB на исполнение.
Удобно? Безусловно. И главное - очень быстро. Все эти действия занимают несколько секунд.
Но что если нужна более сложная организация команд? Если нужно циклическое исполнение каких-то команд? Вводить команды вручную по одной, а потом долго искать их в истории может быть довольно утомительным делом.

Чтобы упростить жизнь учёному, инженеру или студенту, служит окно редактора (Editor ). Давайте откроем окно редактора через меню Desktop -> Editor .
Здесь можно создавать новые переменные, строить графики, писать программы (скрипты), создавать компоненты для обмена с другими средами, создавать приложения с пользовательским интерфейсом (GUI), а также редактировать уже имеющиеся. Но нас в данный момент интересует написание программы, содержащей функции для повторного использования в будущем. Поэтому идём в меню File и выбираем New -> M-File .

В поле редактора напишем простую программу, но чуть-чуть усложним её:

function draw_plot(x)
y = log(x); % Задаём первую функцию
subplot(1, 2, 1), plot(x, y); % Строим первый график
y = sqrt(x); % Задаём вторую функцию
subplot(1, 2, 2), plot(x, y); % Строим второй график

Мы добавили вторую функцию и будем выводить сразу два графика рядом друг с другом. Знаком процента обозначаются в среде MATLAB комментарии.
Не забудем сохранить программу. Стандартное расширение файла с программой Матлаб – *.m .
Теперь закройте редактор и окно с графиком, который мы построили ранее.

Переходим обратно в окно команд.
Можно очистить историю команд, чтобы лишняя информация нас не отвлекала. Для этого кликните правой кнопкой мыши на поле ввода команд и в открывшемся контекстном меню выберите пункт Clear Command Window .
Переменная X у нас осталась после предыдущего эксперимента, мы её не изменяли и не удаляли. Поэтому в окно команд можно сразу ввести:
draw_plot(x);
Вы увидите, что MATLAB прочитает нашу функцию из файла и выполнит её, нарисовав график.

2. Синтаксис определения и вызова M-функций .

Текст M-функции должен начинаться с заголовка , после которого следует тело функции .

Заголовок определяет " интерфейс" функции (способ взаимодействия с ней) и устроен следующим образом:

function [ RetVal1, RetVal2,… ] = FunctionName(par1, par2,…)

Здесь провозглашается функция (с помощью неизменного "ключевого" слова function) с именем FunctionName, которая принимает входные параметры par1, par2,…, и вырабатывает (вычисляет) выходные (возвращаемые) значения RetVal1, RetVal2…

По-другому говорят, что аргументами функции являются переменные par1, par2,.., а значениями функции (их надо вычислить) являются переменные RetVal1, RetVal2,… .

Указанное в заголовке имя функции (в приведённом примере - FunctionName) должно служить именем файла, в который будет записан текст функции. Для данного примера это будет файл FunctionName.m (расширение имени, по-прежнему, должно состоять лишь из одной буквы m). Рассогласования имени функции и имени файла не допускается!

Тело функции состоит из команд, с помощью которых вычисляются возвращаемые значения. Тело функции следует за заголовком функции. Заголовок функции плюс тело функции в совокупности составляют определение функции.

Как входные параметры, так и возвращаемые значения могут быть в общем случае массивами (в частном случае - скалярами) различных размерностей и размеров. Например, функция MatrProc1

function [ A, B ] = MatrProc1(X1, X2, x)

A = X1 .* X2 * x;

B = X1 .* X2 + x;

рассчитана на "приём" двух массивов одинаковых (но произвольных) размеров и одного скаляра.

Эти массивы в теле функции сначала перемножаются поэлементно, после чего результат такого перемножения ещё умножается на скаляр. Таким образом порождается первый из выходных массивов. Одинаковые размеры входных масивов X1 и X2 гарантируют выполнимость операции их поэлементного умножения. Второй выходной массив (с именем B) отличается от первого тем, что получается сложением со скаляром (а не умножением).

Вызов созданной нами функции осуществляется из командного окна системы MATLAB (или из текста какой-либо другой функции) обычным образом: записывается имя функции, после которого в круглых скобках через запятую перечисляются фактические входные параметры , со значениями которых и будут произведены вычисления. Фактические параметры могут быть заданы числами (массивами чисел), именами переменных, уже имеющими конкретные значения, а также выражениями.

Если фактический параметр задан именем некоторой переменной, то реальные вычисления будут производиться с копией этой переменной (а не с ней самой). Это называется передачей параметров по значению .

Ниже показан вызов из командного окна MATLABа ранее созданной нами для примера функции MatrProc1.

Здесь имена фактических входных параметров (W1 и W2) и переменных, в которых записываются результаты вычислений (Res1 и Res2), не совпадают с именами аналогичных переменных в определении функции MatrProc1. Очевидно, что совпадения и не требуется, тем более, что у третьего входного фактического параметра нет имени вообще! Чтобы подчеркнуть это возможное отличие, имена входных параметров и выходных значений в определении функции называют формальными.

В рассмотренном примере вызова функции MatrProc1 из двух входных квадратных матриц 2 x 2 получаются две выходные матрицы Res1 и Res2 точно таких же размеров:

Res1 =
9 6
6 6

Res2 =
6 5
5 5

Вызвав функцию

MatrProc1 = MatrProc1([ 1 2 3; 4 5 6 ], [ 7 7 7; 2 2 2 ], 1);

с двумя входными массивами размера 2x3, получим две выходные матрицы размера 2x3. То есть, одна и та же функция MatrProc1 может обрабатывать входные параметры различных размеров и размерностей! Можно вместо массивов применить эту функцию к скалярам (это всё равно массивы размера 1x1).

Теперь рассмотрим вопрос о том, можно ли использовать эту функцию в составе выражений так, как это делается с функциями, возвращающими единственное значение? Оказывается это делать можно, причём в качестве значения функции, применяемого для дальнейших вычислений, используется первое из возвращаемых функцией значений. Следующее окно системы MATLAB иллюстрирует это положение:

При вызове с параметрами 1,2,1 функция MatrProc1 возвращает два значения: 2 и 3. Для использования в составе выражения используется первое из них.

Так как вызов любой функции можно осуществить, написав произвольное выражение в командном окне MATLABа, то всегда можно совершить ошибку, связанную с несовпадением типов фактических и формальных параметров. MATLAB не выполняет никаких проверок на эту тему, а просто передаёт управление функции. В результате могут возникнуть ошибочные ситуации. Чтобы избежать (по-возможности) возникновения таких ошибочных ситуаций, предлагается в тексте M-функций осуществлять проверку входных параметров. Например, в функции MatrProc1 легко осуществить выявление ситуации, когда размеры первого и второго входных параметров различны. Для написания такого кода требуются конструкции управления, которые мы пока ещё не изучали. Самое время приступить к их изучению!

M-файлы являются обычными текстовыми файлами, которые создаются с помощью текстового редактора. Для операционной среды персонального компьютера система MATLAB поддерживает специальный встроенный редактор/отладчик, хотя можно использовать и любой другой текстовый редактор с ASCII-кодами.

Открыть редактор можно двумя способами:

  • из меню File выбрать опцию New, а затем M-File.
  • использовать команду редактирования edit.

Пример

Команда edit poof запускает редактор и открывает файле poof.m. Если имя файла опущено, то запускается редактор и открывается файл без имени.
Теперь можно записать, например, функцию fact, приведенную выше, вводя строки текста и сохраняя их в файле с именем fact.m в текущем каталоге.
Как только такой файл создан, можно выполнить следующие команды:

  • Вывести на экран имена файлов текущего каталога:
    what
  • Вывести на экран текст M-файла fact.m:
    type fact
  • Вызвать функцию fact с заданными параметрами:
    fact (5)
    ans= 120

М-сценарии

Сценарии являются самым простым типом M-файла – у них нет входных и выходных аргументов. Они используются для автоматизации многократно выполняемых вычислений. Сценарии оперируют данными из рабочей области и могут генерировать новые данные для последующей обработки в этом же файле. Данные, которые используются в сценарии, сохраняются в рабочей области после завершения сценария и могут быть использованы для дальнейших вычислений.

Пример
Следующие операторы вычисляют радиус-вектор rho для различных тригонометрических функций от угла theta и строят последовательность графиков в полярных координатах.

Создайте М-файл petals.m, вводя указанные выше операторы. Этот файл является сценарием. Ввод команды petals.m в командной строке системы MATLAB вызывает выполнение операторов этого сценария.

После того, как сценарий отобразит первый график, нажмите клавишу Return, чтобы перейти к следующему графику. В сценарии отсутствуют входные и выходные аргументы; программа petals.m сама создаёт переменные, которые сохраняются в рабочей области системы MATLAB. Когда выполнение завершено, переменные (i, theta и rho) остаются в рабочей области. Для того чтобы увидеть этот список, следует воспользоваться командой whos.

М-функции

М-функции являются M-файлами, которые допускают наличие входных и выходных аргументов. Они работают с переменными в пределах собственной рабочей области, отличной от рабочей области системы MATLAB.

Пример

Функция average - это достаточно простой M-файл, который вычисляет среднее значение элементов вектора:
function y = average (x)
% AVERAGE Среднее значение элементов вектора.
% AVERAGE(X), где X - вектор. Вычисляет среднее значение элементов вектора.
% Если входной аргумент не является вектором, генерируется ошибка.
= size(x);
if (~((m == 1) | (n == 1)) | (m == 1 & n == 1))
error("Входной массив должен быть вектором’)
end
y =sum(x)/length(x); % Собственно вычисление

Попробуйте ввести эти команды в M-файл, именуемый average.m. Функция average допускает единственный входной и единственный выходной аргументы. Для того чтобы вызвать функцию average, надо ввести следующие операторы:

z = 1:99;
average(z)
ans = 50

Структура М-функции. M-функция состоит из:

  • строки определения функции;
  • первой строки комментария;
  • собственно комментария;
  • тела функции;
  • строчных комментариев;

Строка определения функции. Строка определения функции сообщает системе MATLAB, что файл является М-функцией, а также определяет список входных аргументов.

Пример
Строка определения функции average имеет вид:
function y = average(x)
Здесь:

  1. function - ключевое слово, определяющее М-функцию;
  2. y - выходной аргумент;
  3. average - имя функции;
  4. x - входной аргумент.

Каждая функция в системе MATLAB содержит строку определения функции, подобную приведенной.

Если функция имеет более одного выходного аргумента, список выходных аргументов помещается в квадратные скобки. Входные аргументы, если они присутствуют, помещаются в круглые скобки. Для отделения аргументов во входном и выходном списках применяются запятые.

Пример

function = sphere(theta, phi, rho)

Имена входных переменных могут, но не обязаны совпадать с именами, указанными в строке определения функции.

Первая строка комментария . Для функции average первая строка комментария выглядит так:

% AVERAGE Среднее значение элементов вектора

Это - первая строка текста, которая появляется, когда пользователь набирает команду help <имя_функции>. Кроме того, первая строка комментария выводится на экран по команде поиска lookfor. Поскольку эта строка содержит важную информацию об M-файле, она должна быть тщательно составлена.

Комментарий . Для M-файлов можно создать online-подсказку, вводя текст в одной или более строках комментария.

Пример

Сформируем несколько строк комментария

% Функция average(x) вычисляет среднее значение элементов вектора x.
% Если входной аргумент не является вектором, выдается ошибка.

Тогда при вводе команды подсказки help <имя_функции>, система MATLAB отображает строки комментария, которые размещаются между строкой определения функции и первой пустой строкой, либо началом программы. Команда help <имя_функции> игнорирует комментарии, размещенные вне этой области.

Пример

help sin
SIN Sine.
SIN(X) is the sine of the elements of X
SIN(X) вычисляет функцию синуса элементов массива X.

MATLAB выводит на экран строки файла Contents.m по команде help <имя_каталога>.

Если каталог не содержит файла Contents.m, то по команде help <имя_каталога> распечатывается первая строка комментария для каждого M-файла данного каталога.

Тело функции . Тело функции содержит код языка MATLAB, который выполняет вычисления и присваивает значения выходным аргументам. Операторы в теле функции могут состоять из вызовов функций, программных конструкций для управления потоком команд, интерактивного ввода/вывода, вычислений, присваиваний, комментариев и пустых строк.

Пример

Тело функции average включает ряд простейших операторов программирования:

Как уже говорилось ранее, комментарии отмечаются знаком (%). Строка комментария может быть размещена в любом месте M-файла, в том числе и в конце строки.

Пример

% Найти сумму всех элементов вектора x
y = sum(x) % Использована функция sum
.

Кроме строк комментариев в текст М-файла можно включать пустые строки. Однако надо помнить, что пустая строка может служить указателем окончания подсказки.

Имена М-функций . В системе MATLAB на имена М-функций налагаются те же ограничения, что и на имена переменных - их длина не должна превышать 31 символа. Более точно, имя может быть и длиннее, но система MATLAB принимает во внимание только первые 31 символ. Имена М-функций должны начинаться с буквы; остальные символы могут быть любой комбинацией букв, цифр и подчеркиваний.

Имя файла, содержащего М-функцию, составляется из имени функции и расширения “.m”.

Пример

average.m
Если имя файла и имя функции в строке определения функции разные, то используется имя файла, а внутреннее имя игнорируется. Хотя имя функции, определенное в строке определения функции, может и не совпадать с именем файла, настоятельно рекомендуется использовать одинаковые имена.

Двойственность функций и команд . Команды системы MATLAB - это операторы вида:
load
help

Многие команды могут быть модифицированы добавлением операндов:
load August17.dat
help magic
type rank

Альтернативный метод задания модификаторов - определить их в качестве строковых аргументов функции:

load("August17.dat")
help("magic")
type("rank")

В этом заключается двойственность понятий команды и функции в системе MATLAB. Любая команда вида

command argument

может быть записана в форме функции

command("argument").

Преимущество функционального описания проявляется, когда строка аргументов формируется по частям. Следующий пример показывает, как может быть обработана последовательность файлов August1.dat, August2.dat, и т.д. Здесь используется функция int2str, которая переводит целое число в строку символов, что помогает сформировать последовательность имён файлов.

for d = 1:31
s = ["August" int2str(d) ".dat"]
load(s) %Загрузить файл с именем August"d".dat
% Операторы обработки файла
end




Top