Контроллер заряда аккумулятора от солнечной батареи: зачем нужен и как работает. Контроллеры для солнечных батарей

Переход на альтернативные источники энергии продолжается уже довольно много лет, охватывая разные сферы. Несмотря на привлекательность концепции получения бесплатной энергии, на практике ее реализовать непросто. Возникают и технические, и финансовые сложности. Тем не менее в случае небольших по объему проектов альтернативное энергоснабжение себя оправдывает. Например, контроллер для позволяет использовать бесплатное питание для электроприборов даже в домашних условиях. Данный компонент регулирует работу аккумулятора, позволяя оптимально расходовать генерируемый заряд.

Какие параметры контроллера нужно учитывать?

В первую очередь следует исходить из суммарной мощности и входного напряжения системы, под которую подбирается контроллер. То есть именно мощность батареи или комплекса элементов питания не должна превышать произведения напряжения системы на величину выходного тока управляющего устройства. Причем контроллер для подбирается из расчета напряжения в разряженном аккумуляторе. К тому же следует предусмотреть и 20-процентный запас для напряжения на случай повышенной солнечной активности.

Также контроллер рассчитывается в показателе соответствия входному напряжению. Эта величина строго регламентируется на те же случаи аномальной активности излучения. На рынке контроллер для солнечной батареи представлен в разных видах, каждый из которых предполагает свою специфику оценки описанных характеристик.

Особенности выбора контроллеров PWM

Выбор данного типа управляющего устройства отличается простым подходом - будущему пользователю нужно определиться только с оптимальными показателями тока короткого замыкания в используемом модуле. Также следует предусматривать некоторый запас. Например, если ток солнечного генератора мощностью 100 Вт стабильно функционирует при показателе в 6,7 А, то контроллер должен располагать номинальным значением тока порядка 7,5 А.

Иногда берется в расчет и ток разряда. Особенно его важно учитывать при эксплуатации контроллеров с функцией управления нагрузкой. В данном случае выбор контроллера для солнечной батареи делается с таким расчетом, чтобы ток разряда не превышал аналогичное номинальное значение в управляющем устройстве.

Особенности выбора контроллеров MPPT

Данный тип контроллеров подбирается по критерию мощности. Так, если максимальный ток устройства составляет 50 А и система оптимально функционирует с напряжением 48 В, то пиковая мощность контроллера составит около 2900 Вт с учетом добавки страхующего потенциала. И здесь важен еще один аспект. Дело в том, что напряжение солнечных генераторов может понижаться в случаях их разряда. Соответственно, и мощность может упасть на существенную долю процента. Но это не значит, что можно делать скидку и на показатели самого контроллера - его мощностный потенциал должен охватывать именно предельные значения.

Кроме того, в вопросе о том, как выбрать контроллер для солнечных батарей типа MPPT, следует учитывать и особенности излучаемой радиации. На поверхности земли интенсивность солнечного света добавляет еще 20% к мощности аккумуляторной инфраструктуры. Такие явления нельзя назвать правилом, но даже как случайность они должны предусматриваться в расчете мощности контроллера.

Как сделать котроллер самостоятельно?

Типовой вариант самодельного контроллера предполагает использование скромного набора элементов. Среди них будет транзистор, выдерживающий ток до 49 А, реле-регулятор от автомобиля, резистор на 120 кОм и диодный элемент. Далее реле подключается к аккумулятору, а затем провод по резистору проходит к затвору транзистора. В процессе работы реле-регулятора плюсовой сигнал должен отпирать затвор, и ток от модуля солнечного света будет проходить через лапки транзистора в аккумулятор.

Если делается универсальный контроллер для с расчетом на исключение самопроизвольного потребления накапливаемой энергии, то интеграция в систему диода будет обязательной. В ночное время он создаст для подсветку, исключая дополнительное потребление энергии модулем.

Можно ли обойтись без контроллера для солнечной батареи?

Перед тем как дать ответ на этот вопрос, нужно вспомнить, какова вообще функция контроллера в составе солнечного модуля. С его помощью владелец может автономно управлять процессом заряда аккумуляторного блока за счет энергии света. Если контроллера не будет, то процесс наполнения энергией может происходить вплоть до момента выкипания электролита. То есть совсем без средства управления взаимодействием солнечной панели и аккумулятора обойтись нельзя. Другое дело, что контроллер для солнечной батареи может быть заменен вольтметром. При обнаружении пиковых значений заряда и напряжения пользователь самостоятельно может остановить процесс путем отключения блока АКБ. Такой подход, конечно, неудобен по сравнению с автоматическим контролем, но в случае редкого использования системы и он себя может оправдать.

Заключение

Изготовлением солнечных контроллеров и других комплектующих для подобного рода модулей сегодня занимаются многие компании. Этот сегмент уже не рассматривается обособленным и специфическим. На рынке такие компоненты можно приобрести за 10-15 тыс. рублей, причем хорошего качества. Конечно, самодельный контроллер для солнечной батареи с применением бюджетных резисторов и деталей автомобильной электротехники обойдется в разы дешевле, но он едва ли сможет гарантировать должный уровень надежности. А момент стабильности работы и безопасности особенно важен в эксплуатации солнечных панелей, не говоря об аккумуляторе. В случае успешного оснащения солнечного модуля качественным контроллером владелец сможет рассчитывать на автоматическое накопление электроэнергии без необходимости вмешательства в процесс генерации.

В системах электростанций, работающих на солнечных батареях, для подачи полученной энергии на используют всевозможные схемы подключения, которые выполнены на разных алгоритмах на основе технологии микропроцессорной электроники. На основе таких схем созданы устройства, которые называются контроллеры для солнечных батарей.

Принцип действия

Существует несколько методов передачи электроэнергии от солнечных элементов к аккумуляторной батареи:

  • Без применения приборов коммутации и регулировки, напрямую.
  • Через контроллеры для

Первый способ обуславливает прохождение электрического тока от источника на аккумуляторы для повышения их напряжения. Сначала напряжение повысится до предельного определенного значения, которое зависит от типа и разновидности конструкции аккумуляторной батареи и температуры внешней обстановки. Далее превысит этот уровень.

В начальный период зарядка аккумуляторов идет в норме. Далее начинаются процессы, характеризующиеся отрицательными моментами: зарядный ток продолжает поступать, вызывает увеличение напряжения выше допустимой величины, наступает перезаряд, и как следствие, повышается температура электролита. Это приводит его к закипанию и выбросу водяного пара со значительной интенсивностью из отдельных элементов батареи. Такой процесс может продолжаться до момента высыхания банок. Понятно, что ресурс батареи аккумуляторов от этого явления не возрастает.

Чтобы ограничить ток заряда, пользуются специальными устройствами – контроллерами заряда, или делают это вручную. Последним способом практически никто не пользуется, так как это доставляет неудобство следить за величиной напряжения по приборам, делать переключения руками, требуется назначать для этого специального работника, чтобы он обслуживал контроллеры для солнечных батарей.

Порядок действий контроллера во время заряда

Контроллеры для солнечных батарей изготавливают различных модификаций по принципам и сложности метода ограничения напряжения:

  • Простое отключение и включение. Контроллер переключает зарядное устройство к аккумулятору в зависимости от значения напряжения на клеммах.
  • Преобразования .
  • Контроль наибольшей мощности.
Первый принцип простой коммутации

Это самый простой вид работы, однако он менее надежный. Основным недостатком метода является то, что при увеличении напряжения на клеммах батареи аккумуляторов до максимального значения, окончательного заряда не наступает. Заряд доходит до 90% от номинала. Аккумуляторы постоянно находятся в состоянии недозаряда. Это пагубно влияет на их срок службы.

Широтно-импульсный принцип

Такие приборы производятся на основе микросхем. Они управляют силовым блоком для поддержания напряжения на входе в определенном интервале сигналами обратной связи.

Контроллеры с широтно-импульсным управлением имеют возможности:

  • Измерять температуру электролита в батарее выносного или встроенного типа.
  • Образовывать компенсацию температуры напряжением заряда.
  • Подстраиваться под свойства конкретного типа аккумуляторов с разными значениями по графику напряжения.

Чем больше функций встроено в контроллеры для солнечных батарей, тем их надежность и стоимость выше.

График действия солнечной батареи

Ограничение напряжения по точке наибольшей мощности

Эти устройства тоже могут работать по широтно-импульсному способу. Их точность высока, так как идет учет максимального значения мощности, отдаваемой солнечной батареей. Значение мощности вычисляется и сохраняется.

Для гелиобатарей с напряжением 12 вольт максимальная мощность находится на 17,5 вольтах. Простой контроллер выключит заряд аккумулятора уже при 14 В, а контроллер со специальной технологией позволяет применять запас солнечных батарей до 17,5 вольт.

Чем сильнее разрядилась батарея, тем больше потери энергии от солнечных элементов, контроллеры для солнечных батарей снижают эти потери. В результате, контроллеры, применяя преобразования широтно-импульсного вида, на всех зарядных циклах повышают отдачу энергии солнечной батареей. Процент экономии может достигать до 30%, в зависимости от различных факторов. Выходной ток аккумулятора при этом будет выше входного.

Свойства

При осуществлении выбора типа контроллера нужно обращать внимание не только на принципы работы, но и на условия, предназначенные для его работы. Такими показателями устройств являются:

  • Величина напряжения входа.
  • Значение общей мощности солнечных элементов.
  • Вид нагрузки.
Напряжение

На схему контроллера может идти напряжение от нескольких батарей, которые соединены по-разному. Для правильного функционирования устройства нужно, чтобы общая величина напряжения вместе с холостым ходом не была больше предела, указанного изготовителем в инструкции.

Назовем некоторые факторы, благодаря которым необходимо делать 20% запас напряжения:

  • Нужно учесть фактор рекламного завышения данных контроллера.
  • Процессы, происходящие в фотоэлементах, нестабильны, при чрезмерных солнечных вспышках света энергия, которая создает напряжение холостой работы батареи, может быть превышена.
Мощность солнечной батареи

Эта величина важна в работе контроллера, так как устройство должно иметь достаточную мощность, чтобы передавать ее аккумуляторным батареям, если мощности не будет хватать, то схема прибора выйдет из строя.

Для вычисления мощности значение выходного тока из контроллера умножают на напряжение, которое выработано, не забывая про 20% резерв.

Вид нагрузки

Контроллер должен использоваться по своему назначению. Не нужно применять его как обычный источник напряжения, подключать к нему разные устройства бытового назначения. Может быть, некоторые из них будут нормально работать, и не выведут контроллер из строя.

Другой вопрос, сколько времени это будет продолжаться. Устройство работает на принципе преобразований широтно-импульсного типа, применяет технологии микропроцессорного производства. Эти технологии учитывают нагрузку, заложенную в свойствах аккумуляторной батареи, а не разного рода потребителях, имеющих своеобразные свойства поведения при изменении нагрузки.

Как сделать контроллер своими руками

Чтобы изготовить такое устройство, достаточно иметь некоторые знания электротехники и электроники. Самодельное устройство будет уступать промышленному образцу по наличию функций и эффективности, но для простых сетей с небольшой мощностью, такой самодельный контроллер вполне подойдет.

Самодельный контроллер должен иметь следующие параметры:

  • 1,2 P ≤ I × U. В данном выражении применяются обозначения общей мощности источников (Р), тока выхода контроллера (I), напряжения при разряженном аккумуляторе (U).
  • Наибольшее напряжение входа контроллера должно соответствовать общему напряжению аккумуляторов на холостом ходу без нагрузки.

    Простая схема модуля самодельного контроллера:

Контроллеры для солнечных батарей, собранные самостоятельно, имеют свойства:

  • Напряжение заряда – 13,8 вольт, меняется от номинального тока.
  • Отключающее напряжение – 11 вольт, может настраиваться.
  • Включающее напряжение – 12,5 вольта.
  • Снижение напряжения на ключах – 20 милливольт при токе 0,5 А.

Контроллеры для солнечных батарей входят в состав любых гелиосистем, а также систем на солнечных батареях и ветряных генераторах. Они дают возможность создания нормального режима зарядки батарей аккумуляторов, увеличивают эффективность и снижают износ, могут собираться собственными силами.

Разбор схемы контроллера для гибридного питания

Для примера будем рассматривать источник аварийного освещения или охранной сигнализации, работающей в круглосуточном режиме.

Применение энергии солнечной батареи позволяет сократить расход электрической энергии от питающей центральной сети, а также защитить электроустройства от возможности веерного отключения питания.

В темное время, когда нет солнечного света, система переключается на сетевое питание 220 вольт. Запасным источником стала аккумуляторная батарея на 12 вольт. Эта система функционирует в любую погоду.

Схема простейшего контроллера

Фоторезистор осуществляет управление транзисторами Т1 и Т2.

Днем, когда есть солнечный свет, транзисторы закрываются. Напряжение 12 вольт подается на батарею аккумуляторов от панели через диод D2. Он не дает разряжаться аккумулятору через панель. При достаточном освещении панель выдает ток мощностью 15 ватт, 1 ампер.

Когда аккумуляторы получат полный заряд до 11,6 вольта, то стабилитрон открывается и включается красный светодиод (LED Red). При снижении напряжения на контактах аккумулятора до 11 вольт, красный светодиод отключается. Это обозначает, что батарея аккумуляторов требует зарядки. Резисторы R1 и R3 осуществляют ограничение тока светодиода и стабилитрона.

Ночью, или в темное время, когда нет света солнца, сопротивление фотоэлемента снижается, подключаются транзисторы Т1 и Т2. Аккумуляторная батарея получает заряд от блока питания. Ток заряда от линии питания 220 вольт через трансформатор, выпрямитель, резистор и транзисторы поступает на аккумуляторную батарею. Емкость С2 сглаживает пульсации напряжения сети.

Предел светового потока, при котором включается фотодатчик, настраивают переменным резистором.

Важным критерием выбора контроллера является стоимость контроллера. При возникновении вопроса, какой контроллер купить, дороже или дешевле, в случаях небольших солнечных электростанций возникает решение, купить контроллер проще и дешевле, а на разницу в цене купить еще одну две солнечные батареи.

Если вы хотите установить простую , то стоит выбрать недорогой, но качественный ШИМ контроллер, с запасом по мощности в 20-30%.

Если же вы очень критично относитесь к , вам важно все параметры станции, высокая эффективность, контроль параметров, возможности удаленного управления, а также переключение между электростанцией и электросетью, или автоматическое включение генератора, то стоит приобрести продвинутый, современный, MPPT контроллер, с множеством функций, встроенных защит, возможностью управления внешними устройствами и перераспределением нагрузок.

Выбор производителя

Не маловажным аспектом является выбор производителя контроллеров. При выборе производителя контроллеров следует учитывать следующие факторы:

1) Специализации производителя. Что выпускает данное предприятие. Специализируется ли оно на производстве компонентов автономных электростанций, или контроллер является дополнительно выпускаемым среди прочей разнообразной несерьезной электроники. Бывает еще, что профильное по электрическим и электронным приборам предприятие решило выпускать дополнительно контроллер заряда солнечных батарей, и хотя они имеют серьезный подход, хорошую компонентную базу, но часто их устройства могут быть непродуманными, иметь мало функций. Это связано с тем, что для выпуска контроллера не открывался специальный отдел, который бы занимался проработкой изделия, испытаниями, доработкой, сопровождением и поддержкой контроллера в эксплуатации. Скорее всего, предприятие приобрело патент на изготовление контроллера у сторонней фирмы для загрузки незадействованных мощностей. Причем данный контроллер будет устаревшим, прошлого поколения вряд ли кто будет продавать патент на совершенно новое технологичное перспективное устройство.

2) Страна производства. Если для вас важно, контроллеры можно выбрать по стране производства. Основное разделение идет на:

    Европейские. Наиболее качественные продуманные и дорогие.

    Американские. Аналогично европейским.

    Российские. Рынок наших контроллеров только развивается. Но уже есть достаточно продуманные контроллеры, способные составить конкуренцию европейским контроллерам. Одним из плюсов является возможность гарантийного ремонта или замены в небольшие сроки.

    Китайские. Такие контроллеры можно разделить на две категории:

1) От брендовых производителей, специализирующихся на выпуске именно компонентах солнечных электростанций.

2 ) Прочие китайские производители неизвестных марок. Такие контроллеры отличает невысокая цена, некачественное исполнение, отсутствие каких-либо инструкций, гарантий и поддержки производителя.

Для чего нужны и какие бывают контроллеры заряда солнечной батареи?

Среди современных гелиосистем большую популярность приобрели те, что работают автономно и не подключаются к электрической сети. То есть, они функционируют в замкнутом режиме. Например, в рамках энергоснабжения одного дома. В состав подобных систем входят солнечные панели (и/или ветряной генератор), контроллер заряда, инвертор, реле, аккумулятор, провода. Контроллер в этой схеме является ключевым элементом. В этой статье мы поговорим о том, для чего нужен контроллер солнечных батарей, какие бывают разновидности и как выбрать такое устройство.

Как уже было сказано, контроллер заряда является ключевым элементом гелиосистемы. Это электронное устройство, работающее на базе чипа, который контролирует работу системы и управляет зарядом аккумулятора. Контроллеры для солнечных батарей не допускают полной разрядки аккумулятора и его излишнего заряда. Когда заряд аккумуляторной батареи находится на максимальном уровне, то величина тока от фотоэлементов уменьшается. В результате подаётся ток, необходимый для компенсации саморазряда. Если аккумулятор чрезмерно разряжен, то контроллер отключит от него нагрузку.

Итак, можно обобщить функции, которые выполняет контроллер солнечных батарей:

  • многостадийный заряд аккумулятора;
  • отключение зарядки или нагрузки при максимальном заряде или разряде, соответственно;
  • включение нагрузки, когда заряд батареи восстановлен;
  • автоматическое включение тока с фотоэлементов для зарядки аккумулятора.
Можно сделать вывод, что подобное устройство продлевает срок службы аккумуляторов и их поломку.

Параметры выбора

На что же следует обратить внимание при выборе контроллера для солнечных батарей? Основные характеристики изложены ниже:

  • Входное напряжение. Максимальное напряжение, указанное в техническом паспорте, должно быть на 20 процентов выше напряжения «холостого хода» батареи фотоэлементов. Это требование появилось из-за того, что производители часто ставят завышенные параметры контроллеров в спецификациях. Кроме того, при высокой солнечной активности напряжение может быть выше, чем указано в документации;
  • Номинальный ток. Для контроллера типа PWM номинал по току должен на 10 процентов превышать ток короткого замыкания батареи. Контроллер типа MPPT нужно подбирать по мощности. Его мощность должен быть равна или выше напряжения гелиосистемы умноженного на тока регулятора на выходе. Напряжение системы берётся для разряженных аккумуляторов. В период высокой солнечной активностью к полученной мощности следует прибавить 20 процентов про запас.


Не нужно экономить на этом запасе. Ведь экономия может плачевно сказаться в период высокой солнечной инсоляции. Система может выйти из строя и убытки будут гораздо больше.

Виды контроллеров

Контроллеры On/Off

Эти модели являются самыми простыми из всего класса контроллеров заряда для солнечных батарей.

Модели типа On/Off предназначены для того, чтобы отключать заряд аккумулятора, когда достигается верхний предел напряжения. Обычно это 14,4 вольта. В результате предотвращается перегрев и излишний заряд.

С помощью контроллеров On/Off не получится обеспечить полную зарядку аккумуляторной батареи. Ведь здесь отключение происходит в том момент, когда достигнут максимальный ток. А процесс зарядки до полной ёмкости ещё необходимо поддерживать несколько часов. Уровень заряда в момент отключения находится где-то 70 процентов от номинальной ёмкости. Естественно, что это негативно отражается на состоянии аккумулятора и снижает срок его эксплуатации.

Контроллеры PWM

В поисках решения неполной зарядки аккумулятора в системе с устройствами On/Off были разработаны блоки управления, основанные на принципе широтно-импульсной модуляции (сокращённо ШИМ) заряжающего тока. Смысл работы такого контроллера заключается в том, что он понижает заряжающий ток, когда достигается предельное значение напряжения. При таком подходе заряд аккумулятора доходит практически до 100 процентов. Эффективность процесса увеличивается до 30 процентов.



Есть модели PWM, которые умеют в зависимости от температуры ОС регулировать ток. Это хорошо сказывается на состоянии аккумулятора, уменьшается нагрев, лучше принимается заряд. Процесс становится регулируемым в автоматическом режиме.

ШИМ контроллеры заряда для солнечных батарей специалисты рекомендуют применять в тех регионах, где наблюдается высокая активность солнечных лучей. Их часто можно встретить в гелиосистемах маленькой мощности (менее двух киловатт). Как правило, в них работают аккумуляторные батареи небольшой ёмкости.

Регуляторы типа MPPT

Контроллеры заряда МРРТ сегодня являются самыми совершенными устройствами для регулирования процесса заряда аккумуляторной батареи в гелиосистемах. Эти модели увеличивают эффективность генерации электричества на одних и тех же солнечных батареях. Принцип работы устройств MPPT основан на определении точки максимального значения мощности.

MPPT в постоянном режиме следит за током и напряжением в системе. На основании этих данных микропроцессор подсчитывает оптимальное отношение параметров для того, чтобы достигнуть максимальной выработки по мощности. При регулировке напряжения и учитывается даже этап процесса зарядки. MPPT контроллеры солнечных батарей даже позволяют снимать большое напряжение с модулей, затем преобразовывая его в оптимальное. Под оптимальным понимается то, которое обеспечивает полную зарядку АКБ.

Если оценивать работу MPPT по сравнению с PWM, то эффективность функционирования гелиосистемы возрастёт от 20 до 35 процентов. К плюсам также стоит отнести возможность работы при затенении солнечной панели до 40 процентов. Благодаря возможности поддержания высокого значения напряжения на выходе контроллера можно использовать проводку небольшого сечения. А также можно поставить солнечные панели и блок на большее расстояние, чем в случае с PWM.

Гибридные контроллеры заряда

В некоторых странах, например, США, Германии, Швеции, Дании значительную часть электроэнергии вырабатывают ветрогенераторы. В некоторых маленьких странах альтернативная энергетика занимает большую долю в энергосетях этих государств. В составе ветряных систем также работают устройства для управления процессом заряда. Если же электростанция представляет собой комбинированный вариант из ветрогенератора и солнечных батарей, то применяют гибридные контроллеры.

Эти устройства могут быть построены схеме МРРТ или PWM. Основное отличие заключается в том, что в них используются другие вольтамперные характеристики. В процессе работы ветряные генераторы дают очень неравномерную выработку электроэнергии. В результате на аккумуляторные батареи поступает неравномерная нагрузка, и они работают в стрессовом режиме. Задача гибридного контроллера заключается в сбросе избыточной энергии. Для этого, как правило, используются специальные тэны.

  • Благодаря тому, что человек научился преобразовывать солнечное излучение в электроэнергию, мы имеем возможность обеспечивать наши дома электричеством с помощью солнца без вреда для окружающей среды. Частный дом с множеством различных приборов и систем, которые потребляют электричество, требует сооружения целой солнечной электростанции. Она комплектуется с помощью таких приборов, как контроллер, и, конечно же, солнечные панели. Знакомимся с подробной информацией о том, для чего в этой системе нужен контроллер, с принципом его действия, а также с видами этого прибора, и узнаем, как выбрать контроллер заряда аккумуляторов для солнечной батареи.

    Предназначение и принцип работы

    Контроллер − это электронный прибор, который, как следует из названия, контролирует уровни заряда и разряда аккумуляторов для солнечных батарей. Для лучшего представления о сущности этого устройства рассмотрим особенности работы тепловых панелей.

    Солнечный свет попадает на поверхность батареи, где начинается процесс его преобразования в электрический ток при помощи фотоэлементов. От ток постоянного значения поступает в аккумулятор. Инвертор меняет постоянный ток на переменный перед распределением последнего между потребителями электричества. Контроллер заряда солнечной батареи предотвращает полный разряд и перезаряд аккумуляторов.

    Следить за уровнем заряда очень важно по нескольким причинам.

    Во-первых, должны соблюдаться максимальные и минимальные значения заряда, которые бывают разными и зависят от типа аккумулятора . Это существенно продлит срок эксплуатации аккумуляторной батареи (АКБ), а в отдельных случаях позволит избежать ее поломки. Перезарядка некоторых видов АКБ может привести к выделению вредных веществ или даже ко взрыву устройства.

    Во-вторых, многочисленные модели аккумуляторов работают с разными показателями напряжения. Контроллер солнечных батарей устанавливает необходимый уровень, с которым может работать конкретный прибор.

    Помимо этого, аккумулятор отключает подачу тока от солнечной батареи к предельно заряженному накопителю, а максимально разряженное устройство отключает от потребителей электричества.

    В общем, это устройство выполняет широкий спектр функций:

    1. Обеспечение многоступенчатого заряда аккумулятора.
    2. Отключение и подключение приборов в автоматическом режиме от источников энергии или от потребителей в зависимости от уровня заряда.

    Таким образом, контроллер заряда отслеживает условия работы аккумуляторов, страхуя их от простоя, перезарядки и излишней нагрузки. Эти функции продлевают время эксплуатации приборов.

    Виды приборов

    Контроллеры для солнечных батарей представлены в нескольких видах:

    • Устройства On/Off.
    • PWM контроллеры.
    • MPPT контроллеры.
    • Устройства гибридного типа.
    • Самодельные контроллеры.

    Познакомимся с каждым из этих видов. На сегодняшний день самыми популярными считаются PWM контроллер и контроллер MPPT.

    Устройства On/Off

    Такие контроллеры заряда аккумуляторов являются самыми простыми из всех моделей, которые представлены на современном рынке. Их функциональность весьма ограничена. Устройства этого типа отключают процесс зарядки аккумулятора при достижении максимального значения напряжения. Таким образом, предотвращается перегрев и перезарядка АКБ.

    Важно подчеркнуть, что контроллер такого типа не сможет обеспечить 100% уровень заряда АКБ . Этот нюанс объясняется тем, что отключение происходит по достижении максимального значения тока. На момент обесточивания уровень заряда может находиться в пределах от 70 до 90%. Чтобы загрузить аккумуляторную батарею полностью, потребуется еще несколько часов. Неполная зарядка неблагоприятно сказывается на функционировании прибора и уменьшает срок его эксплуатации.

    Контроллеры типа PWM

    Контроллер уровня заряда PWM (Pulse-Width Modulation) по-другому называется ШИМ. ШИМ контроллер − устройство, принцип действия которого основан на широтно-импульсной модуляции тока. Прибор разработан с целью устранения проблемы неполной зарядки. 100% уровень достигается благодаря тому, что механизм при обнаружении максимального значения тока, понижает его продлевая таким образом зарядку аккумулятора.

    Описанное устройство предотвращает перегрев аккумуляторной батареи, способствует повышению принятия заряда. В общем, хорошо сказывается на ее состоянии. Прибор этого типа считается весьма эффективным, но MPPT контроллер, если сравнивать его принцип действия с PWM, является более предпочтительным вариантом по ряду функциональных возможностей.

    MPPT контроллеры

    МРРТ контроллер (Maximum Power Point Tracking) − устройство, которое отслеживает максимальный предел мощности заряда. С помощью сложного алгоритма устройство этого типа следит за показаниями тока и напряжения системы энергоснабжения, определяя оптимальное соотношение параметров для обеспечения максимальной продуктивности всей солнечной электростанции.

    Без преувеличения можно утверждать, что именно MPPT контроллер является наиболее усовершенствованной и эффективной моделью по сравнению с другими. Для сравнения: MPPT контроллер повышает продуктивность системы энергообеспечения до 35% относительно PWM .

    На сегодняшний день MPPT контроллер считается более подходящим для систем, в которых солнечные панели занимают значительные площади. Но высокая стоимость приборов данного типа вводит определенные ограничения при его использовании. Поэтому PWM модель является доступной для эксплуатации в системах энергоснабжения частных домов.

    Устройства гибридного типа

    Используются в случае энергоснабжения с помощью комбинирования источников энергии, например, ветра и солнца. В основу разработки гибридного прибора положен п ринцип работы МРРТ и PWM контроллеров . Единственное, чем он отличается от других моделей, − это вольтамперные параметры.

    Главная цель моделей гибридного типа состоит в своеобразном выравнивании нагрузки на аккумуляторы. Эта проблема возникает в результате работы ветрогенераторов, которые производят ток непостоянной величины. При этом аккумуляторы работают в усиленном режиме, который значительно уменьшает срок эксплуатации.

    Самодельные приборы

    В некоторых случаях, при наличии соответствующего опыта и навыков, собирают контроллер аккумуляторов для солнечной панели самостоятельно. Но, скорее всего, такой прибор будет значительно уступать в плане функциональности и эффективности. Устройства подобного типа подходят только для очень маленькой системы энергообеспечения, которая работает с низкой мощностью.

    Для изготовления контроллера заряда аккумуляторов вам понадобится его схема. Погрешность работы самодельного контроллера должна позволять фиксировать перепады измеряемых величин с точностью до одной десятой.

    Способы подключения устройств

    Контроллер для солнечных батарей может быть как встроенным в инвертор или блок питания, так и существовать самостоятельным прибором.

    При выборе метода подключения всех компонентов системы следует учитывать соотношение значений. Например, напряжение от солнечных батарей не должно превышать максимальный показатель, с которым может работать контроллер. Перед подключением прибора в схему для него следует выбрать сухое место, придерживаясь при этом правил противопожарной безопасности. Ниже приводится описание способов подключения самых распространенных типов контроллеров: PWM и MPPT.

    PWM

    При подключении PWM контроллеров требуется соблюдать четко определенную последовательность:

    1. Провода аккумуляторной батареи соединить на клеммах контроллера заряда солнечных батарей.
    2. Включить защитный предохранитель возле провода с положительной полярностью.
    3. Подсоединить выходы солнечных батарей к контактам контроллера.
    4. Подключение лампы необходимого напряжения 12 вольт (стандартное обычное значение) к выводам нагрузки контроллера.

    При этих действиях важно подключать приборы со строжайшим соблюдением маркировок клемм и полярности. Нарушение последовательности подключения приборов может привести к их поломке. Инвертор нельзя подключать к клеммам контроллера. Он должен присоединяться к клеммам аккумуляторной батареи.

    MPPT

    МРРТ контроллер, являясь устройством более мощным, технологически подключается немного по-другому. Хотя общие требования, касающиеся физической установки, соблюдаются в соответствии с вышеописанной схемой.

    Кабели, с помощью которых МРРТ контроллер соединяется с другими приборами, оснащены медными обжимными наконечниками. Клеммы отрицательной полярности, соединяемые с контроллером, следует оборудовать переходниками с выключателями и предохранителями. Это позволит вам предотвратить потерю энергии, а также обеспечит безопасное использование системы. Важно проверить соответствие значения напряжения на солнечных батареях и эти же показатели у устройства.

    Перед подключением приборов в систему необходимо перевести выключатели клемм в отключенное состояние и вынуть предохранители. Процесс происходит в несколько этапов:

    1. Соединить клеммы контроллера и аккумуляторной батареи.
    2. Соединить солнечные батареи с контроллером.
    3. Подключить заземление.
    4. Установить на контроллере датчик температуры.

    Все это должно делаться в соответствии с маркировками клемм и соблюдением полярностей. После того как установка завершена, переводим выключатель в состояние «включено» и вставляем предохранители. Если установка выполнена правильно, на экране должны высветиться показатели заряда аккумулятора.

    Критерии выбора контроллера

    Контроллер процесса зарядки аккумуляторов для солнечных панелей является очень важным элементом системы энергоснабжения. Разнообразный ассортимент моделей может немного озадачить при выборе устройства.

    Подобрать подходящую модель проще, если при покупке взять во внимание следующие критерии:

    1. Показатель входного напряжения. Данное значение выбранного прибора должно быть выше примерно на 20% показателей напряжения батарей, которые генерируют преобразователи солнечного света в ток.
    2. Значение общей мощности батарей. Оно не должно быть выше показателя тока на выходе.

    Современные модели имеют ряд дополнительных функций, предназначенных для повышения безопасности при использовании регуляторов процесса зарядки. Устройства управления процессами зарядки-разрядки могут иметь защиту от воздействия погодных условий, излишней нагрузки, коротких замыканий, перегрева, а также от неправильного подключения (это касается несоблюдения полярности). Поэтому выбирать прибор следует не только в зависимости от описанных критериев, но и с учетом функций защиты, которые лучшим образом обеспечат безопасную эксплуатацию устройства.



    
    Top