Как сделать реболлинг в домашних условиях. Как проходит пайка корпусов BGA типа. Позиционирование и припаивание

Реболлинг От англ. reballing

(Лечение отвала BGA чипов)

Мы попытаемся просто и внятно объяснить что такое реболлинг и для чего он нужен:

В двух словах реболлинг это замена шариков припоя которые располагаются под электронными BGA-компонентами, это нужно в том случае когда происходит отвал в местах соприкосновения чипа и платы, в следствии чего компонент (чип) перестаёт работать! В большинстве случаев проблемы отвала происходят из-за использования низкокачественного припоя, и принятия дериктивы RoHS (Данная директива ограничивает использование потенциально опасных элементов в электротехническом и электронном оборудовании, в данном случае свинец) если раньше производители применяли припои с содержанием свинца, то после принятия директивы в 2006 году свинец стал под запретом, и компании были вынуждены использовать другие сплавы (с 2006 года количество брака выросло во много раз)

А теперь по порядку, мы попытаемся разъяснить весь техпроцесс!

Статика опасна для компонентов! перед началом всех работ нужно защититься от статического электричества, ниже приведён небольшой список средств для защиты от статики (ESD-Защита) :

  • Антистатический браслет и иные заземляющие устройства
  • Антиэлектростатические вещества (например аэрозоль Антистатик)
  • Всеразличные увлажнительные приборы или Ионизаторы

И так с защитой мы не много разобрались теперь переходим к самому процессу!

Демонтаж BGA Компонента

Демонтаж BGA компонентов намного сложнее, чем кажется на первый взгляд! Для качественного демонтажа необходимо наличие паяльной станции (желательно ИК) в состав который входит: термостол, верхний нагреватель на штативе и регулятор температуры желательно с возможностью работы по заданному термопрофилю! После прогрева платы, BGA компонент нужно быстро снять в момент оплавления выводов! Снимать можно механическим или вакуумным пинцетом. (Вакуумным безопаснее меньше шанс повредить плату во время снятия!)

Инструменты и материалы

  • Инфракрасная или воздушная паяльная станция (Станция Фен+Паяльник не подходит, обратите внимание на рисунок ниже чтобы понять о чём идёт речь)
  • фольга (Для защиты компонентов вокруг BGA чипа)
  • Механический или вакуумный пинцет
  • Рамочный держатель или Фторопластовые стойки

Шаг 1 - Установка платы

Установите плату в рамочный держатель или на фторопластовые стоики неисправным компонентом к вверху, и поместите на термостол паяльной станции.

Шаг 2 - Подготовка к пайке

Нанесите флюс вокруг BGA компонента, закройте фольгой компоненты вокруг чипа, установите термодатчик вблизи от BGA компонента для контроля работы по термопрофилю.

Шаг 3 - Пайка

Установите верхний нагреватель над неисправным компонентом задайте термопрофиль для пайки и ждите завершения.

Шаг 4 - Снятие BGA компонента

После того как процесс пайки завершиться быстро снимите Компонент при помощи вакуумного или механического пинцета.

Процесс снятия шариковых выводов (деболлинг)

После снятия BGA компонента с платы необходимо убрать оставшийся припой как с платы, так и с самого компонента!(собственно эта процедура и называется деболлинг) Существует много инструментов, которые позволяют снять остатки припоя с BGA компонента. Это могут быть как вакуумные инструменты с горячим воздухом, так и паяльники, так же существуют низкотемпературные установки пайки волной, которые более предпочтительны в данном случае, они не сильно нагревают компонент, из чего следует что шансов повредить компонент нагревом стремиться к нулю!
Поскольку паяльники с температурным контролем пайки не так редки, мы опишем процесс деболлинга с использованием паяльника с жалом.

Внимание: Процесс деболлинга содержит множество потенциально опасных для чипа механических и температурных стрессов, по этому следует быть аккуратней.

Инструменты и материалы

  • Паяльник
  • Изопропиловые салфетки
  • Оплётка (Плетёнка) (Медная лента для удаления припоя)
  • Антистатически й коврик (Излишней ESD защиты не бывает)

  • Микроскоп
  • Вытяжка для облегчения удаления дыма, образующихся в процессе выпаивания
  • Защитные очки

Подготовка

  • Разогрейте паяльник.
  • Убедитесь что вы защищены от статики.
  • Перепроверьте каждый чип на загрязнение, пропущенные контактные площадки, а также паяемость.
  • Оденьте защитные очки.

Примечание: Проведение сушки компонента, для удаления влажности рекомендуется делать до выполнения его деболлинга.

Шаг 1 - Нанесение флюса на BGA компонент:

Положите BGA компонент на антистатический коврик, стороной контактных площадок вверх. Нанесите равномерно Флюс пасту на BGA компонент. (Слишком малое количество флюса сделает процесс деболлинга затруднительным.)

Шаг 2 - Снятие шариков припоя:

Используя плетёнку и паяльник, чтобы снять шарики припоя с контактных площадок Чипа. Положите плетенку на чип поверх флюса, после чего прогревайте паяльником. Перед тем, как сместить плетенку по поверхности чипа, дождитесь чтобы паяльник ее прогрел и расплавил шарики припоя.

ВНИМАНИЕ:

Не надавливайте на чип жалом паяльника. Излишнее давление может повредить чип или поцарапать контактные площадки. Для достижения лучших результатов, прочистите BGA компонент с помощью чистого куска плетенки.

Шаг 3 - Очистка чипа

После Удаления припоя с поверхности чипа, Сразу же очистите чип с помощью салфетки, смоченной в изопропиловом спирте. Своевременная очистка чипа облегчит удаление остатков флюса.

Протирая поверхность чипа, удалите с него флюс. Постепенно сдвигайте чип при протирке на более чистые участки салфетки. При очистке всегда поддерживайте за противоположную сторону чипа.

Примечание:

1. Никогда не очищайте BGA чип загрязненным участком салфетки.

2. Всегда используйте новую салфетку для каждого нового чипа.

Проверяйте чистоту контактных площадок, поврежденные площадки и неудаленные шарики припоя.

Примечание:

Поскольку флюс имеет коррозийное действие, рекомендуется провести дополнительную очистку, в случае, если реболлинг чипа не будет сделан сразу.

Шаг 5 - Промывка

Нанесите деионизованную воду (Вода не имеющая электически заряженных частиц.(ионов)) на контактные площадки чипа и потрите их щеткой (можно использовать обычную зубную щётку). Это поможет смыть остатки флюса с чипа. После чего просушите чип сухим воздухом. Повторно проверьте поверхность (Шаг 4).

Если чип будет некоторое время лежать без нанесенных шариков, необходимо убедиться. Что его поверхность очень чистая. Погружение чипа в воду на любой промежуток времени НЕ РЕКОМЕНДУЕТСЯ.

Подготовка BGA компонента к монтажу

Инструменты и материалы

  • BGA трафарет
  • Держатель для трафарета
  • Флюс
  • Деионизованная вода
  • Поддон для очистки
  • Щетка для очистки
  • Пинцет
  • Кислотоупорная щетка
  • Печь оплавления или система пайки



  • Микроскоп
  • Напальчники

Подготовка

  • Перед тем, как вы начнете, убедитесь, что фиксатор для трафарета чист
  • Выставьте температурный профиль для оборудования, выполняющего оплавление припоя.

Шаг 1 - Вставка трафарета

Разместите трафарет в фиксаторе. Убедитесь, что трафарет плотно зафиксирован. Если трафарет согнут или помят в фиксаторе, процесс восстановления не получится. Помятие, как правило, является следствием загрязнения фиксатора или плохой его регулировки под трафарет.

Шаг 2 - Нанесите флюс на чип

Используйте шприц для нанесения небольшого количества флюса на чип.

Примечание: Перед тем как начать, убедитесь. что поверхность чипа чиста.

Шаг 3 - Распределение флюса по поверхности чипа

Используя кисточку равномерно распределите флюс по стороне контактных площадок BGA чипа. Постарайтесь покрыть каждую контактную площадку тонким слоем флюса.

Убедитесь, что все контактные площадки покрыты флюсом. Старайтесь нанести флюс тонко и равномерно, при толстом слое будет плохой контакт между шариками припоя и контактными площадками.

Шаг 4 - Вставка чипа

Поместите BGA компонент в трафоретный держатель, контактными площадками к вверху.

Шаг 5 - Наложение трафарета

Наложите сферху трафарет, напомним то что трафарет уже в фиксаторе (верхняя крышка трафаретного держателя), и зафиксируйте так чтобы трафарет прилегал к контактным площадкам.

Высыпте нужное количество шариков припоя на трафарет, наклонными движениями трафаретного держателя раскатывайте шарики, после того как шарики встанут на свои места в трафарете уберите излишки кисточкой.

Шаг 6 - Оплавление

Поместите трафарет в горячую конвекционную печь или станцию для реболлинга горячим воздухом или ИК, и запустите цикл оплавления.

В любом случае используемое оборудование должно быть настроено на разработанный для чипа BGA термопрофиль.

Шаг 7 - Охлаждение

Выньте фиксатор из печи или станции для реболлинга и поместите его в проводящий поддон. Оставьте чип охладиться примерно на пару минут, перед тем, как вынуть его из фиксатора.

Шаг 8 - Выемка BGA чипа

После того, как чип охладился, выньте его из фиксатора и поместите его в поддон для очистки, стороной шариковых выводов вверх.

Шаг 9 - Вымачивание

Нанесите деионизованную воду на трафарет BGA и подождите примерно секунд тридцать, прежде чем продолжить.

Шаг 10 - Снятие трафарета

Используя тонкий пинцет снимите трафарет с чипа. Лучше всего начинать с угла, постепенно снимая трафарет. Трафарет должен быть снят за один прием. Если он вдруг не снимается, добавьте еще деионизованной воды и подождите еще 15 - 30 секунд, перед тем, как продолжить.

Шаг 11 - Очистка от фрагментов грязи

Возможно, после снятия трафарета останутся небольшие фрагменты частиц или грязи. Уберите их с помощью иголки или пинцета.

ВНИМАНИЕ:

Кончик пинцета острый, поэтому может поцарапать паяльную маску на чипе, если вы не будете осторожны.

Шаг 12 - Очистка

Сразу после того, как вы сняли трафарет с чипа, очистите его с помощью деионизованной воды. Нанесите небольшое количество деионизованной воды и потрите чип щеточкой.

ВНИМАНИЕ:

Поддерживайте чип, пока чистите его щеткой во избежание механического повреждения.

Шаг 13 - Промывка чипа BGA

Промойте чип деионизованной водой. Это поможет удалить маленькие частицы флюса и грязи, оставшиеся после предыдущих этапов очистки.

Дайте чипу высохнуть на воздухе. Не протирайте его салфетками или тряпочками.

Шаг 14 - Проверка качества нанесения

Используйте микроскоп для проверки чипа на загрязнение, пропущенные шарики или остатки флюса. При необходимости повторной чистки, повторите шаги 11 - 13.

Очистка фиксатора

В течение процесса реболлинга BGA, фиксатор становится все более липким и загрязненным. Необходимо очистить остатки флюса с фиксатора для того, чтобы трафарет сидел в нем правильно. Ниже описанный процесс подходит как для гибких, так и для жестких фиксаторов. Для лучшей очистки неплохо применять ванну с ультра звуковой очисткой

Инструменты и материалы

  • Поддон для очистки
  • Щеточка
  • Стакан
  • Деионизованная вода
  • Маленькая чашка или баночка

Шаг 1 - Вымачивание

Вымочите фиксатор для трафаретов BGA в теплой деионизованной воде примерно 15 минут.

Шаг 2 - Чистка с деионизованной водой

Выньте фиксатор из воды и потрите его щеткой.

Шаг 3 - Промывка фиксатора

Промойте фиксатор деионизованной водой. Дайте ему высохнуть на воздухе.

Монтаж BGA компонента

После того как мы сделали реболлинг очистили и проверили чип необходимо убедиться в том что контактные площадки на плате очищены от остатков припоя и грязи.

И только после проверки начать монтаж компонента для этого нужно нанести на контактные площадки тонкий слой флюса устоновить чип для дальнейшей пайки (Расположение чипа должно точно совподать с контактными площадками!) Отпустить верхний нагреватель и запустить заданный термопрофиль.

Пример Реболлинга на термовоздушной паяльной станции FINEPLACER core (цена на данную паяльную станцию начинается от 40.000 Евро)

В данной статье разговор пойдет на основе двух видео-роликов: первый - это диагностика ноутбука HP Pavillion DV6700 , второй - рассмотрение вопроса прогрева, пропайки и реболлинга чипов . В видео о диагностике ноутбука НР я прогревал видеочип и это дало свои результаты, ноутбук запустился. Но это было сделано только в диагностических целях . Ноутбук запустился, но это еще далеко не ремонт – это просто один из методов быстрой диагностики, которые применимы к печально известным чипам от nVidia - их прогревают, чтобы понять в чипе проблема иил нет. Чип нужно менять, без вариантов. Часто педалируется мнение, что раз чип работает, то можно его просто отреболить и все. Это не так, хватило этого прогрева на пару дней и все по новой.

Давайте сначала выясним что именно выходит из строя, а уже потом о методах ремонта. Все это в большей степени касается чипов от nVidia, выпущенных до 2009 года , но не стоит полностью отбрасывать чипы выпущенные и после 2009 года, а также чипы других производителей. Примрно в 2004 году появилась проблема – массово начали дохнуть видеокарты от nVidia, было много соображений почему это происходит, но в 2008 году компания nVidia сама признала свою вину, объяснив что-то о технологических недоработках и плохих материалах применямых при производстве чипов. Видеокарты умирали с разными симптомами: артефакты, зависания, не запускались, нестабильность изображения и т.п. Смерть видеокарты приближала плохая система охлаждения, еще скорее она наступала при разгоне.

Но до того как nVidia признала свою вину в появлении проблем с чипами, ремонтниками ноутбуков и видеокарт было выдвинуто предположение о нарушении контакта (отслоении пайки) между чипом и текстолитом материнской платы или видеокарты, т.к. при пропайке или реболлинге чипы временно восстанавливали свою работоспособность.
Однако дальнейшее рассмотрение проблемы выявило другое нарушение контакта – расслоение ВНУТРИ чипа . В связи с использованием некачественных материалов в производстве микросхем, влага, попавшая внутрь, вызывала окисление контактных площадок шариков припоя и нарушение контакта под кристаллом. Обратимся к схеме: чип, то есть его подложка припаяна BGA шарами к печатной плате и кристалл припаян к подложке тоже BGA шарами, но это микропайка, очень мелкая. Вот тут между кристаллом и подложкой возникает расслоение, появляется оксидная пленка, контакт теряется. Это и объясняет эффект от реболлинга/прогрева/пропайки данных чипов. Мелкие шарики припоя расширяются, разрывают оксидную пленку и на время появляется их нестабильный контакт с площадкой. Но площадка уже окислена и после нескольких разогревов-охлаждений дефект проявится снова.

Давайте теперь разберемся с этими ремонтами.

1. Прогрев
Прогрев чипа феном это не ремонт, как я уже было сказано, это диагностическая мера. Дело в том, что таким прогревом мы временно восстанавливаем исчезнувший контакт не между всем чипом и платой, а между кристаллом и его подложкой. Прогревом мы проверяем что именно случилось. Если прогрев кристалла помог и аппарат запустился, то значит имеет место быть технологический косяк производителя – чип по каким-то причинам отслаивается от подложки, если не помог – то скорее всего просто чип вышел из строя. В любом случае – замена чипа, потому что в первом случае – мы не умеем реболлить кристаллы (хотя может быть кто-то и умеет), а во втором – мы не умеем чинить кристаллы. Кстати стоит заметить, что если прогрев не помог, это еще может означать, что не в исходном чипе проблема, а где-то в другом месте.

2. Пропайка – помогает при отвале чипа от платы. Но настоящий отвал чипа от платы бывает очень редко, хотя и бывает. В основном в результате механических воздействий: ударов платы, искривлений, деформаций, например неправильная установка массивной системы охлаждения или перекос при установке платы, а также может быть результатом некачественной пайки бессвинцовым припоем, в невыдежанном температурном режиме и т.д. При пропайке плату с чипом нагревают до плавления шаров припоя, шатают на шарах, чип не снимают, дают остыть и все.
Сейчас многие могут возмутиться и скажут, что чипы таки отпаиваются. Это исключено - чип физически не может отпаяться: он припаивается к плате пи помощи бессвинцового припоя, данный припой обладает температурой плавления 200-230"C. Рабочая температура чипов в ноутбуках, на видеокартах и материнских платах не может быть выше 200"С, 105"С это максимум. При 100 градусах отпаяться чип физически не может. Тут только механическое повреждение пайки, так как бессвинцовый припой хрупкий, и пропайка это лотерея 1 к 100, там могут быть и оторванные пятаки, которые вот так просто не восстановишь, но это уже другая история.

3. Реболл – используется для замены бессвинцовых шаров на свинцовосодержащие при пересадке живого чипа с платы-донора на ремонтируемую, взамен нерабочего чипа. Это вполне допустимая операция. Но просто реболл, когда чип отпаивают, меняют шары и садят обратно ремонтом назвать нельзя, хотя по цене это выгодно. Если вам просто предлагают отреболлить чип без замены, утверждая, что это решает проблему - это обман и выкачка денег.

4. Замена чипа. Я думаю и так понятно, что данный метод и есть полноценный ремонт. И, если новый чип качественный, то видеокарта или ноутбук будут еще долго служить верой и правдой. Но клиента часто пугает цена за ремонт, бывает что ремонт может встать очень дорого, но что поделать – тут или сомнительная экономия или продолжительность работы ноутбука. Но и это всегда дешевле чем новый ноутбук.
Если уж вы решили проигнорировать все призывы не пропаивать и не погревать чипы утверждая, что это ремонт, дело ваше, но делайте это менее агрессивно. Если уж охота прогреть чип – то делайте это без флюса, феном на небольшой температуре 150-200 градусов, минуту максимум и то много. Этого для диагностического прогрева достаточно. Если же охота пропаять чип, то в качестве флюса используйте или флсы типа RMA или что-то предназначенное для БГА, например ТЕ-410, бесканифольный, безотмывочный, после себя оставляет белый налет, который легко убирается спиртиком. Но все это массаж деревянной ноги… это не ремонт, а заблуждение или обман.

Подведем итог: пропайка, прогрев, реболлинг дают эффект на срок от 1 часа или 2-3х включений до полугода (это я задрал, реально где-то 1-3 месяца). Это или диагностика или лохотрон. Хотя есть еще один вариант – прогрев в целью быстро продать ноутбук и пусть новый владелец мучается с проблемой которая вылезет очень скоро. А доказать в этом случае ничего не выйдет, поэтому я очень не рекомендую покупать ноутбуки с рук. Это та еще лотерея.

Ну и пару слов о рынке чипов: сейчас рынок перенасыщен перемаркированными и отреболенными чипами, которые окажутся либо вообще нерабочей туфтой либо в них уже есть деградация кристалла и проработает такой чип недолго. Отличить новый оригинальный чип от хорошо отреболенной б/у-шки иногда достаточно. Поэтому нужно искать проверенных и честных поставщиков. Первым, что может броситься в глаза – это слишком низкая цена, иногда заманчивая дешевка может, и скорее всего окажется, нерабочей подделкой.
Второй проблемой на рынке ремонта рассматриваемых поломок является нечестность некоторых сервисных центров, которые берут с клиента деньги за замену чипа, а сами в лучшем случае делают реболл, а в худшем просто прогревают.

В данном виде я дигностирую при помощи прогрева неисправность ноутбука HP Pavillion DV6700 - нет изображения. Прогрев феном течении минуты при 150 градусах дал ответ - проблема в видеочипе nVidia G86-730-A2, причиной стало недостаточное охлаждение, так как тот, кто обслуживал этот ноутбук до меня, положил между радиатором и кристаллом чипа кусочек мятой фольки о шоколадки, что и привело к перегреву и деградации паки под кристаллом.

Очень часто мы сталкиваемся с проблемой при замене или прогреве микросхемы с контактами, размещенными под ее корпусом. Такой способ размещения контактов называется BGA . Например, нужно прогреть или заменить чип видеокарты, северного моста и т. д. Такие детали обычным паяльником выпаять невозможно. Рассмотрим проверенные способы пайки чипов BGA:

1. Пайка при помощи фирменной инфракрасной станции .

Достоинства :

Надежна в эксплуатации, так как сделана фирмой;

Практична при работе;

После прогрева текстолит не деформируется;

Применяется специальный инфракрасный спектр (2–7 мкм), позволяющий расплавлять припой без существенной термической деформации чипа;

С помощью программного обеспечения можно четко определять время расплавления припоя под микросхемой;

Двухсторонний прогрев радиодетали.

Недостатки :

Высокая стоимость станции;

Дорогая в обслуживании;

Занимает достаточно много места;

Иногда проблемно найти комплектующие детали.

2. Пайка при помощи обычного прожектора с галогеновой лампой.

Достоинства :

Низкая цена;

Легко найти комплектующие элементы;

Можно как отпаять, так и припаять чип с выводами BGA.

Недостатки :

После 2–4 нагревов происходит деформация текстолита толщиной 1,5 мм (платы стационарных компьютеров), а после 1 прогрева деформируется текстолит 1–0,75 мм (платы ноутбука);

Сильно нагреваются детали, расположенные по всей площади излучения;

Прогрев припоя чипа происходит снизу.

3. Пайка при помощи самодельно станции с лампой инфракрасного излучения (используемая для обогрева домашних птиц).

Достоинства :

Дешевый вариант качественного инструмента для пайки микросхем;

Прогрев детали происходит сверху;

Применяется почти такой же инфракрасный диапазон излучения, что и у фирменной станции (3,5–5 мкм);

Несущественно подвергает текстолит деформации;

Ресурс лампы 6500 часов;

Можно использовать для прогрева чипа.

Недостатки :

От частых включений и перепадов напряжения вольфрамовая нить лампы быстро выходит из строя (этот недостаток можно устранить, если в цепь подсоединить диммер);

Перед прогреванием чипа нужно обязательно защищать фольгой рядом размещенные радиодетали от перегрева.

4. Пайка при помощи фена.

Достоинства :

Сравнительно дешевый способ пайки.

Недостатки :

Из-за применения высокой температуры горячего воздуха (350–400 °C) плавятся пластмассовые части радиодеталей, происходит деформация текстолита, возможна поломка радиодеталей;

Неравномерное припаивание чипа по всей поверхности из-за неравномерного нагрева;

Выдувает флюс из-под микросхемы.

5. Прогрев чипа при помощи утюга.

Когда нет возможности прогреть микросхему одним из вышеописанных способов можно использовать утюг. Для этого необходимо очистить чип от термопасты и положить на верхнюю часть чипа раскаленную поверхность утюга. Выдержать в течении 1–3 мин. После этого убрать утюг и дать возможность чипу остыть до 35–20 °C.


Алгоритм отпаивания и припаивания чипов BGA.

Если чип оборудован радиатором тогда перед его демонтажем или прогревом необходимо очистить с охлаждаемой поверхности термопасту, зафиксировать или установить в специальные крепления плату с чипом. Поместить плату над или под температурным излучателем. Установить, если есть в наличии, как можно ближе к месту пайки термопару .

Затем если используется способ верхнего прогрева, защитить близлежащие детали, которые будут подвергаться тепловому излучению фольгой. Чип по периметру обработать жидким флюсом . Включить излучатель тепла и при температуре 90–130 °C убрать компаунд, фиксирующий чип.

Если для пайки применяется прожектор, тогда место пайки лучше накрыть листом бумаги для быстрого достижения нижеописанных температур.

В современной радиоэлектронной аппаратуре,такой, как мобильные телефоны, компьютеры и пр. , широко применяются радиоэлементы в корпусе типа BGA (в дальнейшем BGA-элемент). Данный тип корпуса позволяет значительно экономить место на печатной плате за счет размещения выводов на нижней поверхности элемента и выполнения этих выводов в виде плоских контактов, с нанесенным припоем в виде полусферы. В корпусе такого типа выполняют полупроводниковые микросхемы, элементы ВЧ тракта (фильтры, селекторы, коммутаторы). Пайка такого элемента осуществляется нагревом непосредственно корпуса элемента и зачастую подогрева печатной платы, при помощи горячего воздуха и инфракрасного излучения.

Оборудование для пайки BGA

Пайка BGA-элементов имеет определенные сложности и зачастую для нее применяется весьма сложное и дорогостоящее оборудования. Данная статья описывает пайку с применением минимума средств. Минимум, который необходим для пайки: фен, пинцет, микроскоп, флюс безотмывочный, жидкость для удаления флюса, вата х/б, шило монтажное (лучше стоматологический зубной зонд) для коррекции элемента на плате, фольга с клеевым слоем для теплозащиты.

Процесс пайки BGA

Случай, когда требуется заменить BGA элемент, является более общим, а потому его и рассмотрим. Первое, что нужно сделать- это оценить, не будут ли повреждены близко расположенные элементы потоком горячего воздуха. Микросхемы, залитые компаундом, элементы, имеющие пластиковые детали (микропереключатели, SIM-ридеры) необходимо закрыть фольгой для сведения к минимуму теплового воздействия. Если есть близкорасположенные микробатарейки, микроаккумуляторы, их лучше всего демонтировать, а затем поставить на место при помощи паяльника. Приняв необходимые меры предосторожности, располагаем плату на столе так, чтобы демонтируемый BGA- элемент легко было поднять пинцетом, когда припой расплавится. Имеется в виду, что для захвата пинцетом должно быть необходимое пространство и пинцет при захвате должен располагаться в руке удобно и естественно, иначе очень высока вероятность сдвинуть соседние элементы, так как припой, закрепляющий их, будет тоже расплавлен. Лучше всего плату надежно закрепить в горизонтальном положении и повернуть ее в горизонтальной плоскости под удобным углом. Затем начинаем греть элемент феном, который держим в левой руке, периодически пытаясь приподнять элемент пинцетом (примерно через каждые 30 секунд). Время нагрева сильно зависит от условий в помещении: температуры воздуха, наличия сквозняков, открытых форточек и т.д. Если элемент приподнялся с одного края, то насильно отдирать его нельзя, а нужно отпустить и еще погреть 15-30 секунд. Прикосновение холодным пинцетом сильно остужает элемент, это тоже нужно иметь в виду. Неплохо во время нагрева держать пинцет рядом со снимаемым элементом, для подогрева пинцета. После снятия элемента дальнейшие операции лучше проводить с еще горячей платой. (Если при прогреве элемент подпрыгнул, в буквальном смысле, то это свидетельствует о расслоении печатной платы в результате заводского дефекта. Такая плата ремонту не подлежит!!!) Когда микросхема снята, необходимо удалить лишний припой с платы. Для этого наносим пастообразный флюс и собираем припой паяльником, периодически удаляя припой с жала. Необходимо учитывать, что большие «горки» припоя затруднят позиционирование нового элемента. А если пятаки(контакты на плате) будут не облужены, то получившийся контакт может быть не надежен. Следует обратить внимание на целостность пятаков. Если отвалились пустые пятаки, то ничего страшного, если отвалился пятак, имеющий контакт, то можно попробовать облудить металлизацию в отверстии и сформировать капельку припоя на месте пятака. Затем удаляем грязь и остатки флюса с платы. Глядя в микроскоп, необходимо проконтролировать результат и исправить недостатки. Недостатки могут быть следующего характера: плохо облуженные пятаки, на пятаках слишком много припоя, замыкания между пятаками, повреждения паяльной маски, поврежденные пятаки, отслоившиеся проводники. Если дефект устранить не удается, то изделие неремонтопригодно. Затем наносим пастообразный флюс. Флюс необходимо наносить на всю поверхность под элементом, даже если контакты расположены только по периметру. Иначе воздух из пустоты в середине при нагреве расширится и значительно сместит элемент. Важно количество флюса. Его должно быть достаточно для смачивания нижней поверхности элемента, но если элемент будет плавать в «луже», то его будет трудно позиционировать. Я предпочитаю флюс, нанесенный на плату, прогреть феном до жидкого состояния, перед помещением BGA-элемента на плату. Так как при пайке он все равно нагреется и элемент может значительно сместиться.

Извлекаем элемент из контейнера и ставим на плату, соблюдая ориентацию «ключа». Точное позиционирование выполняем под микроскопом по маркерам при помощи монтажного шила. При позиционировании следует учитывать шаг между контактами. Не обязательно добиваться идеального расположения, достаточно небольшого соприкосновения между «шарами» припоя на BGA-микросхеме и пятаками на плате. Оценивать точность позиционирования необходимо с учетом шага контактов и их размера.

На Рис.1 приведен пример правильного позиционирования микросхемы на плате, на Рис.3 и Рис.4 приведены примеры неправильного позиционирования элемента на плате. На Рис.3 «шары» припоя одновременно соприкасаются с двумя пятаками, при этом при расплавлении припоя микросхема может встать неправильно, или могут возникнуть замыкания. На Рис.4 шары совсем не соприкасаются с пятаками, при этом сколько бы мы ни грели элемент, его пайка не произойдет. Обычно имеется взаимосвязь между линейными размерами маркера и шагом выводов на элементе. Если имеются сложности с позиционированием, то иногда имеет смысл прогреть примерно установленный элемент феном, для выпаривания флюса. После выпаривания флюс будет вязким и элемент можно установить более точно.

Собственно пайка.

Для пайки необходимо отрегулировать расход воздуха под конкретную форсунку. Элемент не должно сдувать. Если элемент сдувает, то подачу воздуха нужно уменьшить. Температура на индикаторе паяльной станции зачастую не соответствует температуре воздуха, выходящего из форсунки. Нормально, если индикатор будет показывать 500-550 гр.С. Предварительно прогревают элемент, для этого нужно держать фен на расстоянии 2-3 см; через 30-60 секунд приближают фен на расстояние 5-10 мм от поверхности элемента для расплавления припоя. Плавными движениями прогревают поверхность элемента и пространство непосредственно рядом с ним. Примерно через 60-180 сек. элемент заметно осядет и выровняется по маркерам (оседание видно, если смотреть сбоку), что свидетельствует о расплавлении припоя. После оседания элемент следует погреть 10-15 секунд. Большая микросхема может оседать частями, сначала с одной стороны. В этом случае нужно продолжать греть всю поверхность, обращая особое внимание на непропаянную часть. После этого нужно дать остыть плате в течении 15-60 секунд, жидкостью для снятия флюса, снять избытки флюса и просушить плату. Качество пайки можно контролировать по следующим признакам: расположение элемента относительно маркеров; лучше сравнивать с такой же платой или запомнить расположение элемента, маркеры не всегда расположены идеально ровно и может возникать впечатление, что элемент не совсем правильно встал на место, глядя на элемент сбоку, можно оценить, на всех ли контактах образовалось качественное соединение; если рядом с BGA-элементом расположен крупногабаритный элемент, то с одной из сторон пайка может быть затруднена вследствии неудачного распределения воздушных потоков, и элемент с одной из сторон не пропаяется. Глядя при помощи микроскопа на форму капель припоя, можно оценить качество пайки. Обратите внимание. Если при прогреве элемент подпрыгнул, то это свидетельствует о расслоении печатной платы в результате заводского дефекта. Такое изделие ремонту не подлежит. Ничего страшного, если элемент с небольшим количеством выводов встал криво, не на место. Как правило, возможно его аккуратно поднять и припаять правильно без стандартной накатки шаров. При определенном навыке возможно снять и вновь поставить BGA-элемент и с очень большим количеством выводов и очень мелким шагом выводов, без накатки шаров. Некоторые жидкости для снятия флюса могут вызывать сбои при работе телефона. Поэтому плату после промывки необходимо хорошо просушивать в течении 3-4 часов. Примерный паяльный профиль для паяльной станции типа Martin: 240 гр.--80 сек. 320 гр. --110 сек. Повторная пайка снятого BGA-элемента возможна, но она в данной статье не рассматривается, так как применяется весьма редко. Паяльная маска- это изолирующий состав, которым покрывается печатная плата для предотвращения повреждений проводникв и коротких замыканий между проводниками. Маркеры – это метки на печатной плате, показывающие, как правильно должен стоять элемент; зачастую элемент может быть в корпусах разного размера и на одном посадочном месте, в этом случае на плате будет много маркеров. Если видны вспучивания платы под микроскопом, то это свидетельствует о заводском дефекте; такая плата ремонту не подлежит. Как правило, удается оценить подачу воздуха феном, направляя поток на руку, с расстояния 20-30 см, на время 0,5-1 секунду. Данный прием небезопасен и требует определенного опыта.

Пайка микросхем сегодня – незаменимая процедура, в которой постоянно нуждается современная радиоэлектроника. Радиоэлектронная аппаратура вроде мобильных устройств, телефонов и тому подобного, требует применения радиоэлементов (микросхем) в корпусе типа bga.

Этот корпус дает возможность экономить значительное место на печатной плате путем размещения выводов на нижней поверхности элемента, а также выполнения данных выводов в облике плоских контактов, с покрытием припоя в виде полусферы.

В корпусе подобного рода выполняются полупроводниковые микросхемы. Пайка данного элемента осуществляется посредством нагрева корпуса элемента, и, как правило, подогрева печатной платы, разъемов, с помощью горячего воздуха, а также инфракрасного излучения.

Пайка bga-элементов может сопровождаться некоторыми сложностями, а поэтому в большинстве случаев для осуществления данной процедуры применяется в основном дорогостоящее оборудование.

Однако в пайке bga-микросхем, разъемов, может применяться минимальный простой набор инструментов и материалов. Таким образом, можно использовать следующее оборудование: фен, микроскоп, пинцет, флюс, вата, жидкость для удаления флюса, монтажное шило, предназначенное для коррекции элемента на плате, фольга для тепловой защиты.

Безусловно, данный набор вспомогательных предметов для пайки может отличаться в зависимости от выбора пайщика, дополняться другим инструментами и материалами, к примеру, паяльной станцией.

Пайка дома

В условиях стремительного развития технического прогресса постоянно наблюдается потребность в усовершенствовании сферы радиоэлектроники и смежных областей. Так, в последнее время наблюдается тенденция к увеличению плотности монтажа, вследствие чего появились на свет корпуса типа bga для микросхем.

Таким образом, размещение выводов под корпусом микросхемы дало возможность разместить достаточное количество выводов в незначительном объеме. Многие современные мобильные устройства или просто электронные устройства испытывают острую потребность в данных корпусах. Если у вас имеется компьютер, вам может понадобится соединение разъемов bga и мн. др.

Вместе с тем, пайка и ремонт подобных микросхем становятся более сложными процедурами, поскольку обработка микросхем, компьютерных разъемов, с каждым днем становится требовательной к большей аккуратности пайщика, а также знаниям технологического процесса. Но все-таки пайка может выполняться в домашних условиях и для этого понадобится определенный набор инструментов.

Для работы понадобятся:

  • Паяльная станция, в набор которой есть термофен;
  • Паяльная паста;
  • Трафарет для нанесения на микросхему паяльной пасты;
  • Шпатель для нанесения паяльной пасты;
  • Флюс;
  • Пинцет;
  • Оплетка для снятия припоя;
  • Изолента.

Порядок выполняемой работы:

  1. Организуйте рабочее место, положив набор инструментов в удобном для вас положении. Перед тем, как начать работу с микросхемой, сделайте риски на плате по краю корпуса микросхемы.
  2. Температура горячего воздуха, который выдувает фен, должна колебаться в диапазоне 320-350 гр. С. Температура выбирается в зависимости от размера чипа. Желательно, чтобы фен выдувал воздух с минимальной скоростью, поскольку в противном случае с большой вероятностью горячий воздух может попросту сдуть рядом находящиеся мелкие детали. Фен необходимо держать перпендикулярно по отношению к плате. Термофен должен греть на протяжении одной минуты, а воздух направляться не по центру, а больше по краям, охватывая весь периметр. В таком случае существует высокая вероятность перегреть кристалл. Стоит отметить особую чувствительность памяти к температурному перегреву.
  3. Далее микросхема поддевается за край, после чего поднимается над платой. Наиболее важно в этот момент – не прилагать особых, чрезмерных усилий: если припой расплавился не полностью, существует вероятность отрыва от дорожки.
  4. По окончании отпайки микросхема и плата могут поддаваться работе. Если на данном этапе нанести флюс, после чего прогреть поверхность, вы увидите, как припой образует неровные шарики.
  5. Нанести спиртоканифоль (во время пайки на плату использовать спиртоканифоль нежелательно по причине низкого удельного сопротивления), после чего греем.
  6. Аналогичная процедура проделывается с микросхемой
  7. Следующим этапом нужно очистить платы, а также микросхемы от старого припоя. Стоит отметить, что достаточно хорошие результаты показывает в данном деле пайка паяльником. Но в конкретном случае применяем термофен. Крайне нежелательно повредить паяльную маску, так как потом тиноль будет растекаться по дорожкам.
  8. Далее следует накатка новых шаров. Таки образом, вполне возможно применение новых готовых шаров (достаточно трудоемкая процедура). Используем «трафаретную» технологию, позволяющую получить шары быстрее и качественнее. Стоит отметить, что при этом желательно воспользоваться качественной паяльной пастой, так как от паяльной пасты многое зависит в процессе пайки. Понять, что вы пользуетесь качественной паяльной пастой можно путем нагрева небольшого количества материала паяльной смеси: качественная паста образует гладкий шарик, в то время как некачественный продукт распадается на многочисленные мелкие шарики. Интересно знать, что некачественной паяльной пасте не помогает даже температура нагрева 400 гр. С.
  9. Затем микросхема закрепляется в трафарете, после чего приступаем к нанесению паяльной пасты, намазывая ее на палец, либо с помощью шпателя.
  10. Придерживаем трафарет с пинцетом и расплавляем пасту, при этом температур, которую выдувает фен, должна составлять максимально 300 гр. С. Термофен следует держать перпендикулярно и только перпендикулярно (не забывайте, т. к это важно). Трафарет следует придерживать пинцетом до полного затвердевания припоя.
  11. После того как припой остыл, можно приступать к снятию крепежной изоленты, после чего в дело вступает фен, температура нагрева которого составляет 150 гр. С. Таким образом, аккуратно нагреваем трафарет до плавления флюса.
  12. Отделяем микросхему от трафарета и можем наблюдать, как вышли ровные и аккуратные шарики. Так, микросхема полностью готова к установке на плату.
  13. В том случае, если риски на плате, о которых говорилось в самом начале, не выполнены, позиционирование делится следующим образом: микросхема переворачивается выводами вверх, после чего прикладывается краешком к пятакам; засекаем, в каком месте должны быть края схемы; микросхема устанавливается по рискам на плату, при этом постараться шарами поймать пятаки по максимальной высоте; прогреваем микросхему до расплавления припоя. Флюс должен наноситься в небольшом количестве. Температура воздуха, которую выдувает термофен, должна составлять на данном этапе 320-30 гр. С.

Пайка подобным образом может производиться в домашних условиях. Все что требуется – поочередность и правильность действий.




Top