Газоразрядная лампа высокого давления дрл. Газоразрядные лампы высокого давления. Трубчатые ртутные лампы

Газоразрядные лампы высокого давления

Лампы высокого давления, по сравнению с люминесцентными, имеют значительно меньшие габариты и большую единичную мощность. У ртутных ламп высокого давления при равной мощности с люминесцентными (например, 40, 80 Вт) длина почти в 10 раз меньше. Малые габариты и высокое давление в них обусловили температуру разрядной трубки - 700...750°С. Поэтому разрядную трубку ламп выполняют из кварцевого стекла или специальной керамики, имеющей высокую прозрачность в видимой области спектра. .

Одна из первых была разработана лампа высокого давления типа ДРТ. Обозначение лампы: Д - дуговая, Р - ртутная, Т - трубчатая; следующее затем число соответствует мощности лампы. Прежнее название лампы - ПРК (прямая ртутно-кварцевая). Лампа ДРТ предназначена для ультрафиолетового облучения молодняка животных, цыплят, яиц перед инкубацией, семян зерновых культур и т.д. Она применяется в комплекте облучательных установок различных типов.

Лампа ДРТ представляет собой прямую трубку из кварцевого стекла, по концам которой впаяны вольфрамовые электроды. В трубку введено небольшое

Рис.1.26. Схемы включения: а) - лампы ДРТ; б) - лампы ДРЛ; EL - лампа; L - дрос­сель, SB - кнопочный включатель; CI, C2, СЗ - конденсаторы; R - резистор

количество ртути и инертного газа - аргона. Для удобства крепления к арматуре лампа по краям снабжена хомутиками с держателями, которые соединены между собой металлической полоской, используемой для облегчения зажигания лампы. В электрическую сеть лампу ДРТ включают последовательно с дросселем L по резонансной схеме (рис.1.26a). В результате резонанса, образуемого при кратко временном включении конденсатора С2, напряжение на дросселе L и конденсаторе С2 возрастает примерно в 2 раза по сравнению с напряжением питания. Это обеспечивает в лампе дуговой разряд. Металлическая полоска, подключенная через конденсатор малой емкости С3, облегчает пробой лампы. Конденсатор C1 повышает коэффициент мощности схемы до 0,92...0,95.

Электрическая энергия, подводимая к лампе ДРТ, преобразуется в ней следующим образом: ультрафиолетовое излучение составляет 18%, инфракрасное излучение – 15%, видимый свет – 15%, потери равны 52%. Однако лампа ДРТ используется прежде всего как источник ультрафиолетового излучения. В таблице 1.9 приведены характеристики ламп ДРТ.

Таблица 1.9 - Дуговые ртутные лампы высокого давления ДРТ

Поток излучения ламп ДРТ зависит от температуры окружающего воздуха. При высокой температуре ухудшается прозрачность кварцевого стекла, что определяет снижение в особенности ультрафиолетового излучения и сроков годности лампы.

Дуговая ртутная лампа ДРЛ предназначена для наружного освещения, закрытых помещений и объектов, где не требуется высокого качества цветопередачи. Она может быть рекомендована для освещения животноводческих и других сельскохозяйственных помещений; со специальными облучателями она используется для облучения рассады в теплицах, так как имеет фотосинтезно активное излучение с длиной волны = 580...700 нм (оранжево-красная часть спектра излучения).

Баланс энергии у лампы ДРЛ: ультрафиолетовое излучение практически отсутствует, видимое излучение составляет 17%, инфракрасное излучение - 14%, тепловые потери – 69%. Цвет суммарного излучения близок к белому. Доля красного излучения составляет 6...15%. Процент содержания красного излучения указывается при маркировке ламп в скобках. Яркость ламп ДРЛ почти в 10 раз превышает яркость люминесцентных ламп низкого давления.

Конструкция лампы ДРЛ представлена на рис. 1.27. Кварцевая трубка (горелка) 3 размещена в колбе 1, внутренняя поверхность которой покрыта тонким слоем люминофора 2. Слой люминофора преобразует ультрафиолетовое излучение трубки в свет, пригодный для освещения. В кварцевую трубку впаяны два основных вольфрамовых электрода 4, покрытых активированным слоем и подсоединенных к цоколю 7, и два дополнительных (поджигающих) 5. В трубке находится небольшое количество ртути (40...60 мг). После откачки воздуха из внешней колбы 1 она заполняется аргоном под давлением 2,5...4,5 кПа.

Такая конструкция позволяет зажигать четырехэлектродную лампу от питающей сети 220 В без специального поджигающего устройства (рис.1.26б). Наличие дросселя и конденсатора в схеме позволяет уменьшить колебания светового потока и увеличить коэффициент мощности. При этом ПРА потребляет около 10% номинальной мощности лампы. При включении лампы в сеть последовательно с дросселем разряд первоначально возникает между смежными основным и дополнительным электродами. Вызванная этим ионизация разрядного промежутка приводит к возникновению разряда между основными электродами, после чего дополнительные электроды прекращают работать.

Наличие во внешней колбе 1 аргона под давлением позволяет на долгий срок сохранить люминофорное покрытие в рабочем состоянии. Нагрев внешней колбы при работе лампы - 220... 280°С. Оптимальная температура внешней среды для работы ламп - 25...40°С. Период разгорания лампы ДРЛ длится 5...10 мин. Характеристики ламп ДРЛ приведены в табл. 1.10.

Осветительные металлогалогенные лампы общего назначения типа ДРИ (дуговые ртутные с излучающими добавками) имеют в зависимости от состава добавок различный спектр излучения, обеспечивающий высокое качество цветопередачи и более высокий, чем у ламп ДРЛ, световой КПД. Конструктивно лампы отличаются от ламп ДРЛ формой внешней колбы, не имеющей люминофорного покрытия, и отсутствием в разрядной трубке дополнительных поджигающих электродов.


Поэтому в сеть их включают по схеме, содержащей специальные импульсные зажигающие устройства - ИЗУ, генерирующие высоковольтные импульсы напряжением 2...6 кВ.

Чтобы улучшить спектральный состав видимого излучения, в трубку ламп добавляют соединения галогенной группы: иодиды натрия, скандий, бромиды редкоземельных металлов. Характеристики ламп ДРИ даны в табл. 1.11.

В табл. 1.11 приведены также характеристики ламп ДРИЗ для освещения сухих, пыльных и влажных помещений и ламп ДРИШ для освещения объектов при цветных телевизионных съемках и передачах (Ш – обозначение широкого спектра).



Ртутно-кварцевые лампы высокого давления ДРЛФ созданы для облучения растений на основе ламп ДРЛ. Особенностью этих ламп является специальный состав люминофора, который обеспечивает спектр излучения, в наибольшей степени способствующий прохождению физиологических процессов в растениях. Это излучение находится в диапазоне длин волн от 350 до 750 нм с преобладанием оранжево-красных и сине-фиолетовых лучей.

По своей конструкции и по электрическим параметрам лампы ДРЛФ аналогичны лампам ДРЛ, однако они имеют колбу из стекла, выдерживающего в нагретом состоянии брызги холодной воды. В электрическую сеть лампы включаются аналогично лампам ДРЛ.

Обозначения ламп: Д - дуговая, Р - ртутная, Л - люминесцентная, Ф - с повышенной фитоотдачей. Наибольшее распространение получили лампы ДРЛФ-400 и ДРЛФ-1000 мощностью 400 и 1000 Вт с фитопотоком соответственно 12800 и 90000 мфт.

Таблица 1.10 - Ртутные лампы высокого давления ДРЛ

Тип лампы Мощность лампы, Вт Напряжение на лампе, В Световой поток, лм Световая отдача, лм/Вт Срок службы, ч
ДРЛ-50(15) 33,7
ДРЛ-80(15)
ДРЛ-125(6) 41,9
ДРЛ-125(15) 44,8
ДРЛ-250(6)-4
ДРЛ-250(14)-4
ДРЛ-400(10)-3 57,5
ДРЛ-400(12)-4
ДРЛ-700(6)-3
ДРЛ-700(12)-3 58,5
ДРЛ-1000(6)-2
ДРЛ-1000(12)-3 58,5
ДРЛ-2000(12)-2

Дуговая ртутно-вольфрамовая лампа ДРВ-750 предназначена для дополнительного облучения растений в теплицах. Основным ее преимуществом, по сравнению с лампами ДРЛФ, является отсутствие ПРА, в результате чего снижается металлоемкость облучающей установки, уменьшается нагрузка на крышу теплицы, улучшается маневренность подвижных систем облучения. Лампа выполнена в виде колбы, в которой смонтирована ртутная горелка совместно с нитью накаливания. Сама колба изготовлена из термостойкого стекла и рассчитана на попадание брызг холодной воды.

Таблица 1.11 - Дуговые ртутные металлогалогенные лампы для наружного и внутреннего освещения ДРИ

Тип лампы Мощность лампы, Вт Напряжение на лампе, В Световой поток, лм Световая отдача, лм/Вт Срок службы, ч
ДРИ-125
ДРИ-175 68,5
ДРИ-250
ДРИ-1000-5
ДРИ-400-5
ДРИ-700
ДРИЗ-250-2 54,8
ДРИЗ-400-3
ДРИШ-2500-2
ДРИШ-4000-2

Имеет зеркальный или диффузный отражатель. Нить накаливания является балластным сопротивлением и одновременно источником излучения, усиливающим красную часть спектральной характеристики лампы.

В результате лампа ДРВ-750 является источником смешанного излучения с преобладанием оранжево-красных и сине-фиолетовых лучей.

Модернизацией лампы ДРВ является ртутно-вольфрамовая лампа ДРВЛ. В ней также в пространстве между разрядной трубкой и внешней колбой установлена вольфрамовая спираль, включенная последовательно с разрядной трубкой и выполняющая роль балластного сопротивления. В указанном балласте теряется примерно половина мощности лампы. Это снижает в 1,5...2 раза эффективный КПД ртутно-вольфрамовых ламп по сравнению с лампами ДРЛ и ДРТ.

Дуговые ртутно-вольфрамовые эритемные лампы с диффузным отражателем типа ДРВЭД предназначены для комплексного воздействия излучением части спектра с длинами волн от 280 до 5000 нм. Внешняя колба этих ламп выполнена из специального увиолевого стекла, пропускающего ультрафиолетовое излучение. Срок службы ламп типа ДРВЭД определяется в основном сроком службы вольфрамовой спирали - 3000...5000 ч.

Дуговые ртутные люминесцентные лампы ДРФ-1000 и ДРФ-2000 с повышенной фитоотдачей предназначены для комплектования вегетационных осветительных установок, применяющихся для создания светового режима в климатических камерах и шкафах при селекции различных растений. Лампы имеют большой световой поток и высокую светоотдачу. По конструкции и характеристикам аналогичны лампам ДРЛ, но отличаются составом люминофора, имеют колбу из вольфрамового термостойкого стекла, выдерживающего брызги холодной воды. Из недостатков следует отметить большую массу ПРА и устройства компенсации коэффициента мощности.

В группе разрядных ламп высокого давления натриевые лампы типа ДНаТ (дуговые натриевые трубчатые) отличаются большим световым КПД и чуть более вытянутой по сравнению с лампой ДРЛ наружной колбой. Разрядная трубка правильной цилиндрической формы выполнена из полупрозрачной керамики (поликристаллического алюминия) или из прозрачного трубчатого монокристалла (лейкосапфира). Эти материалы устойчивы к длительному воздействию паров натрия при температуре до 1600°С. Общий коэффициент пропускания видимого излучения составляет 90...95%. Однако 70% излучения находится в зоне 560...610 нм желто-оранжевого цвета, что вызывает искажение цветопередачи. Поэтому: лампы ДНаТ в основном используют для наружного освещения. В электрическую сеть лампы ДНаТ включают по схеме, аналогичной схеме ламп ДРИ.

Характеристики натриевых ламп высокого давления ДНаТ приведены в табл. 1.12.

Дуговые ксеноновые трубчатые лампы (ДКсТ) в сельском хозяйстве используются сравнительно мало из-за сложности их эксплуатации. Лампы выполняют в одной кварцевой разрядной колбе (ДКсТ) и в двух колбах с водяным охлаждением (ДКсТВ).

В спектре ламп ДКсТ без водяного охлаждения имеется избыток ультрафиолетового излучения. Этот недостаток скорректирован в лампах типа ДКсТЛ, колбы которых выполнены из кварцевого стекла с легирующими (Л) присадками. В видимой области спектра излучение ксеноновых ламп приближается к солнечному. У ламп типа ДКсТВ доля видимого излучения составляет всего 10...12% их мощности. Указанные типы ламп выпускаются, как правило, большой единичной мощности - от 1000 до 12000 Вт со световой отдачей 24...40 лм/Вт. Срок службы составляет 500...1500 ч, что обусловлено значительной температурой поверхности разрядной трубки (750... 800°С).

Таблица 1.12 - Натриевые лампы высокого давления ДнаТ

Тип лампы Мощность лампы, Bт Напряжение на лампе, В Световой поток, лм Световая отдача, лм/Вт Срок службы
ДНаТ-70
ДНаТ-100
ДНаТ-150
ДНаТ-250-4 97,5
ДНаТ-250-7 97,5
ДНаТ-360
ДНаТ-400-4 102,5 117,5
ДНаТ-400-7 102,5

Особенностью большинства разрядных ламп высокого давления является режим разгорания, протекающий в течение 5...10 мин после зажигания лампы. У ртутных и натриевых ламп он более продолжительный, чем у ксеноновых. В процессе разгорания изменяются все параметры лампы. Например, ток в ртутных лампах превышает номинальное значение в 1,5...2 раза. По мере разогрева давление паров внутри лампы растет, что сопровождается снижением тока и увеличением потока излучения, с ростом давления повышается напряжение зажигания лампы. Поэтому повторное зажигание погасшей лампы возможно лишь после ее остывания, следовательно, после снижения напряжения зажигания. Колебания напряжения сети мало влияют на световую отдачу ламп, однако большие отклонения напряжения сказываются значительно. Лампы должны эксплуатироваться в том положении, которое определено заводом-изготовителем. При эксплуатации установок с разрядными лампами высокого давления следует принимать во внимание значительную пульсацию световых потоков и принимать меры к их снижению.

Контрольные вопросы

1. Что называется искусственным источником оптического излучения?

2. Какие основные виды источников оптического излучения вы знаете?

3. Что называется идеальным излучателем?

4. Назовите три класса тел накала.

5. Как происходит преобразование эл. энергии в оптические излучения?

6. Дайте определение закона Кирхгофа.

7. Дайте определение закона Стефана Больцмана.

8. Напишите закон Планка.

9. Дайте определение закону смещения Вина.

10. Назовите основные элементы конструкции лампы накаливания общего назначения?

11. Как устроена линейная галогенная лампа накаливания?

12. Назовите некоторые разновидности ламп накаливания.

13. Каковы основные характеристики ламп накаливания?

14. Как изменяются показатели ламп накаливания от подводимого напряжения?

15. Приведите простейшие схемы включения ламп накаливания.

16. Как классифицируются разрядные лампы?

17. Как происходит преобразование эл. энергии в видимое излучение в разрядных лампах?

18. Назначение балластного устройства?

19. Как происходит стабилизация дугового разряда?

20. Как влияет вид балластного устройства на работу гозоразрядных ламп?

21. Дайте общие сведения о газоразрядных лампах низкого и высокого давления.

22. Устройство и обозначения наиболее распространенных люминисцентных ламп.

23. Как определяется коэффициент пульсации светового потока?

24. Нарисуйте стартерную схему включения люминисцентной лампы.

25. Дайте понятия о бесстартерных схемах включения люминисцентных ламп.

26. Расскажите о назначении газоразрядных ламп высокого давления типа ДРТ, ДРЛ, ДРВ, ДНаТ.

Нарисуйте схему включения лампы ДРТ, ДРЛ, и т.д.

К дуговым лампам сверхвысокого давления (ЛСВД) относят лампы, работающие при давлении от 10 × 10 5 Па и выше. При высоких давлениях газа или пара металла при сильном сближении электродов сокращаются прикатодные и прианодные области разряда. Разряд концентрируется в узкой веретенообразной области между электродами, причем его яркость, особенно вблизи катода, достигает очень больших значений.

Такой дуговой разряд представляет собой незаменимый источник света для приборов проекторного и прожекторного типов, а также ряда специальных областей применения.

Использование в лампах паров ртути или инертного газа придает им ряд особенностей. Получение паров ртути при соответствующем давлении, как это видно из сделанного рассмотрения высокого давления, в статье " ", достигается за счет дозировки ртути в колбе лампы. Разряд зажигается как ртутный низкого давления при температуре окружающей среды. Затем по мере разгорания и нагревания лампы давление возрастает. Рабочее давление определяется установившейся температурой колбы, при которой подводимая к лампе электрическая мощность становится равной мощности, рассеиваемой в окружающем пространстве излучением и теплоотдачей. Таким образом, первой особенностью ртутных ламп сверхвысокого давления является то, что они довольно легко зажигаются, но имеют сравнительно длительный период разгорания. При их погасании повторное зажигание может быть осуществлено, как правило, лишь после полного остывания. При наполнении ламп инертными газами разряд после зажигания практически мгновенно входит в установившийся режим. Зажигание разряда в газе при высоком давлении представляет определенные трудности и требует применения специальных зажигающих устройств. Однако после погасания лампа может быть зажжена вновь практически мгновенно.

Второй особенностью, отличающей ртутный разряд сверхвысокого давления с короткой дугой от соответствующих газовых, является его электрический режим. Вследствие большой разницы между градиентами потенциала в ртути и инертных газах при одинаковом давлении напряжение горения таких ламп существенно выше, чем с газовым наполнением, благодаря чему при равных мощностях ток последних значительно больше.

Третьим существенным различием является спектр излучения, который у ламп с газовым наполнением соответствует по спектральному составу дневному свету.

Отмеченные особенности привели к тому, что дуговые лампы часто используют для киносъемок и кинопроекции, в имитаторах солнечного излучения и других случаях, когда требуется правильная цветопередача.

Устройство ламп

Шаровая форма колбы ламп выбрана из условия обеспечения большой механической прочности при высоких давлениях и малых расстояниях между электродами (рисунок 1 и 2). Шаровая колба из кварцевого стекла имеет две диаметрально расположенные длинные цилиндрические ножки, в которых запаяны вводы, соединенные с электродами. Большая длина ножки необходима для удаления вывода от горячей колбы и предохранения его от окисления. В ртутных лампах некоторых типов имеется дополнительный электрод поджига в виде впаянной в колбу вольфрамовой проволоки.

Рисунок 1. Общий вид ртутно-кварцевых ламп сверхвысокого давления с короткой дугой различной мощности, Вт:
а - 50; б - 100; в - 250; г - 500; д - 1000

Рисунок 2. Общий вид ксеноновых шаровых ламп:
а - лампа постоянного тока мощностью 100 - 200 кВт; б - лампа переменного тока мощностью 1 кВт; в - лампа переменного тока мощностью 2 кВт; г - лампа постоянного тока мощностью 1 кВт

Конструкции электродов различны в зависимости от рода тока, который питает лампу. При работе на переменном токе, для которого предназначены ртутные лампы, оба электрода имеют одинаковую конструкцию (рисунок 3). Они отличаются от электродов трубчатых ламп той же мощности большей массивностью, обусловленной необходимостью снижения их температуры.

Рисунок 3. Электроды ртутных ламп переменного тока с короткой дугой:
а - для ламп мощностью до 1 кВт; б - для ламп мощностью до 10 кВт; в - сплошной электрод для мощных ламп; 1 - керн из торнированного вольфрама; 2 - покрывающая спираль из вольфрамовой проволоки; 3 - оксидная паста; 4 - газопоглотитель; 5 - основание из спеченного вольфрамового порошка с добавкой оксида тория; 6 - деталь из кованного вольфрама

При работе ламп на постоянном токе важное значение приобретает положение горения лампы, которое должно быть только вертикальным - анодом вверх для газовых ламп и предпочтительно анодом вниз - для ртутных ламп. Расположение анода внизу уменьшает устойчивость дуги, что важно, связано с противопотоком электронов, направленных вниз, и горячих газов, поднимающихся вверх. Верхнее положение анода вынуждает увеличивать его размеры, так как помимо его нагрева за счет большей мощности, рассеиваемой у анода, он дополнительно нагревается потоком горячих газов. У ртутных ламп анод располагают внизу в целях обеспечения более равномерного нагрева и соответственно сокращения времени разгорания.

Благодаря малому расстоянию между электродами ртутные шаровые лампы могут работать на переменном токе от сети напряжением 127 или 220 В. Рабочее давление паров ртути составляет в лампах мощностью 50 - 500 Вт соответственно (80 - 30) × 10 5 , а в лампах мощностью 1 - 3 кВт - (20 - 10) × 10 5 Па.

Лампы сверхвысокого давления с шаровой колбой чаще всего наполняют ксеноном из-за удобства его дозировки. Расстояние между электродами составляет у большинства ламп 3 - 6 мм. Давление ксенона в холодной лампе (1 - 5)× 10 5 Па для ламп мощностью от 50 Вт до 10 кВт. Такие давления делают лампы сверхвысокого давления взрывоопасными даже в нерабочем состоянии и требуют применения для их хранения специальных кожухов. Из-за сильной конвекции лампы могут работать только в вертикальном положении независимо от рода тока.

Излучение ламп

Высокие яркости ртутных шаровых ламп с короткой дугой получаются вследствие увеличения тока и стабилизации разряда у электродов, препятствующих расширению канала разряда. В зависимости от температуры рабочей части электродов и их конструкции можно получить различное распределение яркости. Когда температура электродов недостаточна для обеспечения тока дуги за счет термоэлектронной эмиссии, дуга стягивается у электродов в яркие светящиеся точки малых размеров и приобретает веретенообразную форму. Яркость вблизи электродов достигает 1000 Мкд/м² и более. Малые размеры этих областей приводят к тому, что их роль в общем потоке излучения ламп незначительна.

При стягивании разряда у электродов яркость растет с ростом давления и тока (мощности) и с уменьшением расстояния между электродами.

Если температура рабочей части электродов обеспечивает получение тока дуги за счет термоэлектронной эмиссии, то разряд как бы расползается по поверхности электродов. В этом случае яркость более равномерно распределяется вдоль разряда и по-прежнему возрастает с ростом тока и давления. Радиус канала разряда зависит от формы и конструкции рабочей части электродов и почти не зависит от расстояния между ними.

Световая отдача ламп возрастает с ростом их удельной мощности. При веретенообразной форме разряда световая отдача имеет максимум при определенном расстоянии между электродами.

Излучение ртутных шаровых ламп типа ДРШ имеет линейчатый спектр с сильно выраженным непрерывным фоном. Линии сильно расширены. Излучений с длинами волн короче 280 - 290 нм нет вообще, а благодаря фону доля красного излучения составляет 4 - 7 %.

Рисунок 4. Распределение яркости вдоль (1 ) и поперек (2 ) оси разряда ксеноновых ламп

Шнур разряда шаровых ксеноновых ламп постоянного тока при их работе в вертикальном положении анодом вверх имеет форму конуса, опирающегося своим острием на кончик катода и расширяющегося кверху. Около катода образуется маленькое катодное пятно очень высокой яркости. Распределение яркости в шнуре разряда остается одинаковым при изменении плотности тока разряда в весьма широких пределах, что дает возможность построить единые кривые распределения яркости вдоль и поперек разряда (рисунок 4). Яркость прямо пропорциональна мощности, приходящейся на единицу длины дугового разряда. Отношение светового потока и силы света в заданном направлении к длине дуги пропорционально отношению мощности к этой же длине.

Спектр излучения шаровых ксеноновых ламп сверхвысокого давления мало отличается от спектра излучения .

Мощные ксеноновые лампы имеют возрастающую вольт-амперную характеристику. Наклон характеристики растет с увеличением расстояния между электродами и давления. Анодно-катодное падение потенциала у ксеноновых ламп с короткой дугой составляет 9 - 10 В, причем на долю катода приходится 7 - 8 В.

Современные шаровые лампы сверхвысокого давления выпускают в различных конструктивных исполнениях, в том числе с разборными электродами и водяным охлаждением. Разработана конструкция специальной металлической разборной лампы-светильника типа ДКсРМ55000 и ряд других источников, применяемых в специальных установках.

Ртутные лампы высокого давления всё ещё выпускаются отечественной промышленностью из-за их низкой себестоимости, хорошей цветопередачи и экономичности. Для них существует много различных видов дрл светильников. Аббревиатура ДРЛ расшифровывается как «дуговая ртутная лампа высокого давления». Этот источник света относится к оборудованию 1 класса опасности ввиду содержания в его составе ртути. Фонари уличные на столбах в большинстве случаев укомплектовываются этими лампами.

Основные элементы конструкции

Цоколь - это часть лампы, через которую на неё подаётся питающее напряжение. На цоколе есть два вывода с электродов, один из которых припаян к резьбовой части, а второй - к нижней торцевой точке. Через контакты патрона электроэнергия из сети передаётся на лампу. Цоколь - контактирующая деталь. Лампы ДРЛ 400 с цоколями Е40 без проблем устанавливаются в любой светильник, оборудованный соответствующими патронами.

Горелка представляет собой герметичную трубку, внутри которой на противоположных концах находится по 2 электрода. Два из них - основные, два - поджигающие. Внутрь горелки закачивается инертный газ и помещается капля ртути в строго дозированном количестве. Материал горелки химически стоек и тугоплавок.

Внешняя оболочка выполнена в из стекла с укреплённой внутри неё горелкой. Объём заполняется азотом. Для преобразования излучения кварцевой горелки используется люминофорное покрытие внутренней поверхности колбы. Кроме того, внутри этой колбы устанавливаются два ограничительных резистора для поджигающих электродов.

Горелки первых ДРЛ были оснащены двумя электродами. Чтобы зажечь лампу, нужно было иметь в схеме включения источник импульсов высокого напряжения, который имел срок службы меньше, чем у лампы. В дальнейшем выпуск таких ламп был прекращён и начато производство их в четырёхэлектродном исполнении, не требующем наличия сторонних импульсных устройств.

Четырёхэлектродная лампа ДРЛ состоит из колбы, резьбового цоколя и смонтированной на ножке лампы кварцевой горелки, наполненной аргоном с добавлением ртути. С каждой стороны горелки имеются по 2 электрода: основной и расположенный рядом с ним поджигающий. Для ограничения тока на электродах в лампе предусмотрены токоограничительные сопротивления, которые находятся во внешней колбе.

Большое применение в осветительных сетях находят ДРЛ 400.

Принцип работы

После подключения лампы к питающей сети на обоих концах горелки создаются условия для возникновения тлеющего разряда между основным и поджигающим электродами. Запуск этого процесса происходит вследствие небольшого расстояния между ними. Чтобы пробить этот промежуток, требуется напряжение более низкой величины, чем для пробоя промежутка между главными электродами. Ток на данном участке ограничивается сопротивлениями, установленными в цепь дополнительных электродов перед разрядной трубкой.

После достижения достаточной степени ионизации в горелке в основном промежутке зажигается тлеющий разряд, переходящий затем в дуговой.

В выключенной лампе ртуть в горелке представлена в жидком или распылённом виде. После зажигания разряда между основными и поджигающими электродами температура в горелке повышается, и ртуть постепенно испаряется, улучшая этим качество разряда в основном разрядном промежутке. После перехода всей ртути в парообразное состояние лампа начинает работать в номинальном режиме со стандартной световой отдачей.

Разгорание длится около десяти минут. После выключения лампы ДРЛ повторное включение возможно только после её остывания и перехода ртути в первоначальный вид.

Наиболее широко используются светильники с ДРЛ 250, поскольку лампы с такими параметрами необходимы как для освещения внутри зданий, так и для снаружи.

К наружным видам этих приборов предъявляются повышенные требования по воздействию климатических факторов.

Фонари уличные на столбах относятся к светильникам наружного применения.

Светильники для ламп ДРЛ имеют достаточно широкий ассортимент.

Модели, предназначенные для внутреннего применения, устойчивы к воздействию повышенной влажности и пыли.

За счёт герметичности корпуса уличные светильники ДРЛ выдерживают воздействие дождя, снега. Они успешно противостоят сильным порывам ветра.

В светильниках с лампами ДРЛ используются термостойкие провода и надёжного качества разъёмы.

Где применяются светильники

Предназначены для освещения предприятий промышленного и сельскохозяйственного профилей; территорий вне зданий; для всех объектов, в которых есть острая необходимость в использовании экономичных осветительных систем. Используются для освещения улиц, строек. На заводах в цехах и складах, а также на других объектах, где не нужна хорошая цветопередача.

Хранение и утилизация

В связи с тем что в состав ламп ДРЛ входит ртуть, категорически запрещено хранение этих изделий с разбитыми и треснутыми колбами в помещениях, которые не были подготовлены для этого. На предприятиях под эти цели должна выделяться отдельная изолированная зона с закрывающимися герметически ёмкостями. Время хранения таких отходов выделяется до момента вывоза из зоны для дальнейшего уничтожения.


Вначале отметим, что все ртутные источники подразделяют на три группы – это лампы низкого (РЛНД), высокого (РЛВД) и сверхвысокого давления (РЛСВД). Первую группу представляет самый распространенный в бытовой и профессиональной сфере тип – люминесцентные лампы. Среди них:

1. . Выполнены в U-образной форме, кольцевидной и прямолинейной (в виде обычной разрядной трубки). Оснащены штырьковым цоколем и обладают различными типоразмерами, а также широким диапазоном мощности (от 15 Вт до 80 Вт). Экономично расходуют электроэнергию, используется повсеместно – от квартир, офисов и учебных заведений, до магазинов и производственных помещений.

2. . Оснащены штырьковым и винтовым типом цоколей. Последние предназначены для прямой замены классической лампы с нитью накаливания, отличаются экономичностью энергопотребления. Выполнены в спиралевидной форме, в виде квадрата, сложенной вдвое и четверо трубки, а также повторяют внешнее исполнение предшественника: «груша», «шар», «свеча» и «свеча на ветру». Мощность варьируется от 5 Вт до 30 Вт, что соответствует 25 Вт и 100 Вт обычной лампочки «Ильича».

Ртутные лампы низкого давления применяют в основном для освещения жилых помещений и общественных зданий, монтируют в уличные системы (свет придомовой территории, подъездов). Экономично расходуя электроэнергию, они создают яркие потоки света различной цветовой температуры – от желтых нот, напоминающих освещение лампочкой накаливания, до дневного и холодного света.

Напротив, ртутные источники высокого давления нашли применение исключительно в уличном и промышленном освещении. Их используют в местах, где экономичность намного важнее цветопередачи: лампочки создают хорошую освещенность, но без четкой передачи цветов и контуров. Ввиду такой «размытости» применять лампы в помещении с постоянным нахождением людей не рекомендуют, поскольку это может спровоцировать проблемы со зрением. Идеальные помещения для РЛВД – это промышленные цеха, коридоры и т.д.

Ртутные лампы высокого и сверхвысокого давления:

1. Дуговая ртутная лампа или ДРЛ . Принцип работы и внешнее исполнение лампочек очень похоже на ртутно-вольфрамовые лампы, с которыми их часто путают на практике, поэтому расскажем о ключевой разнице между ними. ДРЛ функционирует только с ПРА, который выступает ограничителем тока. Лампочки ДРВ спокойно обходятся без пускорегулирующего аппарата, поскольку в конструкции нет индуктивного балласта, а роль ограничителя выполняет сама вольфрамовая проволока.

Такая особенность на 30% снижает интенсивность ртутно-вольфрамовых источников, позволяя дуговым ртутным занять первое место в создании уличного освещения (цветность лампочек улучшает люминофор, которым с внутренней стороны покрыта колба). С помощью ДРЛ освещают магистрали, улицы, парки и площади, автостоянки и заправки, склады и объекты промышленности.

2. Дуговая ртутная лампа с излучающими добавками или ДРИ . Конструкция лампочки повторяет предыдущий вариант, но составные вещества для наполнения горелки отличаются. Тип лампочек относится к металлогалогенным, поэтому наряду с ртутью в горелку помещают галогениды металлов (натрий, индий и прочие элементы в строгих пропорциях). Наличие галогенидов позволяет увеличить светоотдачу источников (в среднем 70-90 Лм/Вт и выше), а также улучшить цветопередачу.

Усовершенствованные варианты ДРИ производят с керамической горелкой, как наиболее термоустойчивый и практичный вариант: в отличие от стекла, внутренняя колба из керамики в несколько раз меньше затемняется, поскольку очень стойко переносит реакцию химических веществ. Приборы оснащают софитным цоколем (Rx7S и прочие), а также классическим Е27 и Е40, которые идеально подходят для замены обычной лампы накаливания.

Дуговые источники с добавками используют в общих системах уличного освещения и в качестве цветной архитектурной подсветки (цветность свечения зависит от наполнителей горелки). А отдельные виды ДРИ с индексом цветопередачи 12 Ra, который образует зеленоватое свечение, используют рыболовецкие суда для привлечения планктона.

3. Дуговая ртутная лампа с зеркальным напылением или ДРИЗ , представляющая металлогалогенный источник света. Состав горелки повторяет формулу ДРИ, но колба лампочки содержит отражающее покрытие с внутренней стороны. Наличие зеркального слоя позволяет создать направленный поток света, а специальный дополнительный цоколь, которым оснащают лампочку, дает возможность регулировать направление излучения.

4. Ртутно-кварцевые шаровые источники или ДРШ . Это лампочки сверхвысокого давления, образующие мощный поток света. Горелка выполнена в форме шара и размещена во внешней колбе с цилиндрическими «ножками». Необычная конструкция обеспечивает прочность прибора в условиях высокого давления, частично отводит тепло от горелки и защищает детали от окисления.

Концентрация электрических разрядов в таких лампах приходится на узкий промежуток между электродами, поэтому яркость света очень высока. Особенности работы сделали шаровую лампу востребованным источником света в проекторах и прожекторах, нередко ее используют в киносъемках, создании кинопроекций и прочей деятельности, где крайне важно правильно передать цветность предметов и окружающего пространства.

5. Дуговая ртутная трубчатая лампа или ДРТ , выполненная в колбе из кварцевого стекла цилиндрической формы. Горелка наполнена инертным газом (аргон) и металлической ртутью, конструктивно повторяя формат ДРЛ. Требуют подключения ПРА для обеспечения полноценного запуска лампочки. Обладают очень широким диапазоном мощностей (от 100 Вт до 12000 Вт) и предназначены для специального применения: дезинфекция воздуха и поверхностей, обеззараживание продуктов питания и воды, сушка лаков, красок и прочие виды деятельности.

Подвиды трубчатых ламп:

Кварцевые . Выполнены в форме обычной люминесцентной трубки, но отличаются отсутствием люминофора. Для изготовления колбы используют , способное пропускать ультрафиолет. Такие приборы предназначены для обеззараживания поверхностей, помещений и предметов. Присутствие людей или животных во время кварцевания необходимо исключить, поскольку в воздухе концентрируется озон, а его большие концентрации наносят вред здоровью.

Существуют специальные ультрафиолетовые лампы, известные под названием «эритемные» . Их колба так же состоит из кварцевого стекла, но здесь, в отличие от обычной кварцевой лампы, стенки изнутри покрывают люминофором определенного состава, который пропускает ультрафиолет в строго заданном диапазоне. Как правило, это ближние и средние волны, которые . Прием такой «солнечной ванны» ограничивается считанными минутами, а в большом количестве способен нанести вред организму.

Бактерицидные . Для изготовления колбы используют специальное увиолевое стекло, которое тщательно отфильтровывает озон в процессе работы, не допуская его попадания в воздух. Лампы предназначены для обработки помещений, поверхностей или воды, обладают , но работают в щадящем для живых организмов режиме. Безозоновые лампы для кварцевания используют в квартирах, детских учреждениях, на производстве продуктов питания и в любых других сферах, где необходимо уничтожить бактериальный фон без вреда для здоровья.

Cтраница 1


Спектр излучения ртутной лампы имеет максимум при длине волны 365 нм.  


Спектр излучения ртутных ламп имеет линейчатую структуру, и при экспозиции светочувствительных слоев, содержащих диазосоединеняя, активно действует свет с длинами волн 3650, 4050 и 4358 А. В промежутках между этими линиями излучение лампы (фон непрерывного излучения) незначительно и только у источников высокого и сверхвысокого давления величина фона достигает 0 1 - 0 25 интенсивности излучения главных линий. Из сказанного следует, что даже при небольшом смещении области поглощения диазотипного материала относительно положения главных линий спектра ртути возможно понижение чувствительности материала. Тэрнер 77 ] наблюдал, в частности, значительные расхождения между найденной экспериментально и вычисленной величинами энергии выхода при облучении диазосоединения монохроматическим светом с длиной волны 3650 А и нашел, что относительная чувствительность при 3130 А составляет только 25 % от чувствительности при 3650 А.  

Спектр излучения ртутных ламп среднего давления имеет много линий высокой интенсивности, но интенсивность линии 253 7 нм резко уменьшается.  

В спектрах излучения ртутных ламп наряду с линиями при повышении давления все более интенсивным становится сплошной спектр, так называемый фон. При очень высоком давлении (несколько десятков атмосфер) спектры становятся сплошными с отдельными максимумами в тех местах, в которых при низких давлениях находились линии.  

Результаты этих опытов и других наблюдений позволяют, с некоторым приближением к истине, заключить, что гексахлоран гасит ту часть спектра излучения ртутной лампы, которая способствует образованию - у-изомера.  


Спектр излучения ртутных ламп имеет линейчатую структуру, и при экспозиции светочувствительных слоев содержащих диазосоединения, активно действует свет с длинами волн 3650, 4050 и 4358 А. В промежутках между этими линиями излучение лампы (фон непрерывного излучения) незначительно и только у источников высокого и сверхвысокого давления величина фона достигает 0 1 - 0 25 интенсивности излучения главных линий. Из сказанного следует, что даже при небольшом смещении области поглощения диазотипного материала относительно положения главных линий спектра ртути возможно понижение чувствительности материала. Тэрнер наблюдал, в частности, значительные расхождения между найденной экспериментально и вычисленной величинами энергии выхода при облучении диазосоединения монохроматическим светом с длиной волны 3650 А и нашел, что относительная чувствительность при 3130 А составляет только 25 % от чувствительности при 3650 А.  

Часто в приборах барабан длин волн, связанный с механизмом поворота призмы или решетки, отградуирован в относительных единицах. В качестве стандартного спектра в видимой и ультрафиолетовой области используют спектр излучения ртутной лампы, который состоит из небольшого числа интенсивных линий. Подобную калибровку по стандартному веществу следует периодически повторять, поскольку в процессе работы установленное соответствие нарушается.  

С этой целью вместо солнечного света образец освещают лампами, интенсивность свечения которых можно сравнивать с прямым солнечным светом. Обычно светильниками служат угольная дуга или ксеноновые лампы высокого давления; иногда используют ртутные лампы. В спектре излучения ртутных ламп преобладают ультрафиолетовые лучи, являющиеся наиболее активно действующим компонентом дневного света в процессе выцветания; поэтому применение этих ламп способствует добавочному ускорению испытаний. Экстраполяция результатов корреляции для неизвестных материалов может привести к ошибкам.  

Перед началом измерений установку градуируют по длинам волн. Для этого входную часть спектрографа - ЙСП-51 освещают источником света, обладающим линейчатым спектром с широко расставленными линиями, длины волн которых хорошо известны. Далее осуществляют запись и расшифровку спектра излучения ртутной лампы и устанавливают зависимость между длинами волн ее отдельных линий (пиков на бланке самописца) и делениями барабана, связанного с моторчиком, вращающим призменную часть спектрографа. По этим данным строят дисперсионную кривую установки.  




Top