Что такое водяное охлаждение компьютера. Водяное охлаждение для компьютера

Системы водяного охлаждения для различных компонентов ПК в последнее время на слуху. Почему водяное охлаждение для компьютера выглядит настолько привлекательным? По какой причине оно лучше обычного воздушного? Обо всем этом вы узнаете в продолжении статьи.

Что бы у вас не стояло - "водянка" или простой кулер, физически, вы просто перемещаете тепло из одного места в другое. Помимо этого без кулера и радиатора, конечно, не обойтись. Они используются в обеих видах охлаждения. В принципе, любая система охлаждения компьютера работает по одним и тем же принципам, принципам термодинамики.

По сути, в основном водяное охлаждение для компьютера используется разве что для придания сборке эстетичности. Не поймите неправильно, водяное охлаждение способно справляться с огромным тепловыделением, сохраняя при этом низкие температуры.

Если вы смотрите в сторону цены/качества - то лучше всего взять хороший башенный кулер для процессора и видеокарту с двумя-тремя вентиляторами. Этого будет вполне достаточно, чтобы никогда не достигать температурного предела. Да и на сегодняшний день, при том же разгоне вы скорее упретесь в "железные" ограничения, нежели в температурный лимит.

Водяное охлаждение для компьютера практически не издает заметного шума. Кулеров может быть много, но уровень шума зависит как раз от скорости вращения оных. Например, если вы поставите 5 120 мм вертушек на частоте 1200 оборотов, и сравните с двумя такими же, но с 3000 оборотами, именно второй вариант будет шумнее.

Эстетика

Как сказано выше, водяное охлаждение применяется больше для вида, чтобы выделиться среди других. С помощью водяного охлаждения сделать это можно по-разному. Заметьте, никто не сказал что системы с воздушным охлаждением не могут выглядеть эстетично. Системы водяного охлаждения популярны среди моддеров. Благодаря им мы увидели в продаже такие штуки, как прозрачные боковые крышки, светодиодные ленты, кабеля в разноцветных оплетках.

У вас есть 4 варианта оснастить "водянкой" ваш компьютер. Как вариант, можно купить готовый кулер. Так вы не будете морочить себе голову с установкой и получите то же водяное охлаждение, еще и на гарантии.

Второй вариант - использовать мягкие трубки, цветные или прозрачные. Это наиболее удобный способ для сборки ввиду гибкости трубок и простоты в использовании.

Третий, и пожалуй наиболее популярный метод - пользоваться готовыми негнущимися акриловыми трубками. Прямые линии, сгибы трубок под углом придадут вашей сборке необычности.

Есть еще медные трубки. Практически полностью идентичны акриловым, разве что их проще согнуть. Ну и дешевизна тоже берет свое. Медь красиво сочетается с никелированными панелями. Что бы вы не выбрали, выйдет получаете очень тихая система, способная справляться с огромным тепловыделением.

Компоненты водяного охлаждения

Если вы думали что сборка своего ПК была сложной, у меня для вас плохие новости. Для сборки системы водяного охлаждения вам понадобятся: корпус, трубки, радиатор(ы), процессорный блок, блок для видеокарты, панель на плату видеокарты, резервуар(ы), помп(ы), компрессионные фитинги, угловые фитинги, запорные клапаны, охлаждающая жидкость и вентиляторы. С тех пор как вы решили сделать водяное охлаждение самому - будьте готовы раскошелиться. Красота требует жертв.

Процессорный блок

Пожалуй, самый важный компонент системы водяного охлаждения для компьютера. Убедитесь в том, чтобы блок был совместим с вашим процессором. Хотя, иногда этим можо пренебречь, т.к по размеру чипы от Intel и AMD практически не отличаются. Популярный вариант - Corsair H110.

Блок для видеокарты

Тут тоже нужно убедится о совместимости вашей карты с блоком охлаждения. Есть производители, например EKWB, которая выпускает блоки охлаждения, разработанные специально для карт серий Windforce от Gigabyte, Strix от ASUS, Lightning от MSI.

Блок для оперативки

Охлаждать ли оперативную память или нет - ваш выбор. Обычно дорогие планки идут уже с красивыми радиаторами, и лично я не вижу смысла в водяном охлаждении оперативной памяти. И никто вас не накажет, если все что вы собираетесь охлаждать подобным образом - лишь процессор и карта.

Фитинги

Система водяного охлаждения для компьютера требует закрепления трубок фитингами. Это наиболее важная часть системы. В зависимости от того, какую трубки вы выбираете, вам понадобятся либо компрессионные фитинги, либо акриловые фитинги. Если не хотите заморачиваться, можно просто взять стандартные.

Однако, если вы сторонник эстетики и прямолинейности, можно докупить те же угловые фитинги, как правило на 45 или 90 градусов. Кроме того, стопорный клапан может пригодиться для обслуживания.

Помпы и резервуары

Технически, вам не нужно покупать резервуар, чтобы успешно работать с водяным охлаждением. Тем не менее, они выглядят довольно впечатляюще, и так намного легче заполнять систему с водяным охлаждением по сравнению с другими методами.

Однако вам всегда понадобится насос, чтобы гарантировать, что жидкость в вашей системе переливается, отводит тепло от ваших основных компонентов и выходит к радиаторам.

Радиаторы и постоянное давление

Система водяного охлаждения для компьютера требует хорошей организации внешнего охлаждения помимо самих водяных трубок и насосов.

На этом этапе нам нужно узнать, как отводить накопившееся тепло. Единственный вариант - использование радиаторов. Можно сделать это как вам нравится, используя отдельные узлы для ваших видеокарт и процессоров или комбинируя их в одну систему.

Радиаторы же по прежнему необходимы, дабы избавиться от всего этого тепла, а так же соответствующие вентиляторы, чтобы это все выдувать. После того, как вы решите, сколько радиаторов позволяет разместить ваш корпус и сколько вы собираетесь использовать, вам нужно ближе познакомиться с понятием FPI и толщиной радиаторов, которые вы будете использовать.

FPI означает ребро на дюйм. По сути, чем выше FPI, тем выше постоянное давление, которое вам понадобится для эффективного перемещения холодного воздуха через этот радиатор.

Например, если у вас есть радиатор с 38 FPI , вам вероятно, понадобятся вентиляторы с оптимизацией давления. Однако, если у вас более глубокие радиаторы с меньшим FPI, равным 16, вы не увидите никакой сопоставимой разницы между вентиляторами постоянного давления или вентиляторами, использующими потоки воздуха. В этих случаях лучше оснащать радиаторы классическими кулерами.

Сборка и проектирование вашей системы

На этом этапе стоит уделить внимание выбору железа для вашей сборки. Для начала присмотрим лучший корпус. На рынке существует множество корпусов готовых для установки водяного охлаждения, начиная с маленьких MiniITX, заканчивая огромными E-ATX.

Как только вы нашли подходящий вам корпус, надо посмотреть, какие радиаторы возможно установить. Затем стоит продумать размещение трубок и сколько узлов охлаждения вы планируете поставить - 1 или 2. Как только вы все продумали, нужно узнать сколько нужно купить фиттингов и каким образом вы планируете запустить систему. Обычно на каждое охлаждаемое устройство нужно два фиттинга.

Для нас вопрос выбора корпуса был не сложен. Мы взяли Fractal Define S, специально разработанный для использования водяного охладения. Поставим два радиатора наверх и три спереди. Охлаждать будем две карточки от Nvidia и Intel Core i7-5820K.

В роли материнки будет ASUS X99 Sabertooth - на топовом чипсете Х99 и потрясающим дизайном. Плата покрыта черными и серыми защитными элементами. А чтобы добавить контраста - будем использовать белую жидкость.

Выбор нужного корпуса может оказаться непростой задачей, особенно для мода с водяным охлаждением. Как писалось выше, нужно смотреть в сторону готовых решений, предусматривающих возможность водяного охлаждения. Parvum, Phanteks, Corsair, Caselabs и Fractal как раз специализируются на выпуске корпусов для подобных модов, и позволяют превратить сборку ПК в искусство. Так же следует позаботиться о количестве радиаторов, о месте размещения резервуара, и как будут размещены трубки.

Фитинги и узлы

Начнем процесс сборки. Как и со сборкой обычного ПК, стоит собирать все сначала вне корпуса, чтобы увидеть как оно все работает, и уже только потом пихать все в корпус. Мы протестировали по отдельность каждую видеокарту, память и процессор со стоковым охлаждением, перед тем, как установить водяное охлаждение.

Далее идет сам процесс сборки, освобождение внутренностей корпуса от ненужных составляющих, например слотов для установки жестких дисков и т.д. Затем устанавливаем материнскую плату, оперативную память и видеокарты. Все плотно прикручиваем, чтобы ничего не выпало и не повредилось. Затем прикрутили радиаторы. Настало время установки резервуара и фитингов.

Укладка кабелей

В сборках подобного рода, укладка проводов должна быть безупречной. Не думаю что вам понравятся потрепанные провода, вылазящие изо всех щелей. Они не только будут мешать прокладке трубок, но и нормальной циркуляции воздуха. Блоки питания от Be Quiet!, Cooler Master, Corsair, EVGA и Seasonic укомплектованы уже отдельными кабелями с оплеткой. Как вариант, можно приобрести ее отдельно и "одеть" провода. Да, это сложно и займет много времени, но результат того стоит.

Ко всему прочему был приобретен отдельный контроллер кулеров от Phanteks. Благодаря ему, управлять пятью кулерами намного проще, к тому же скорость вращения будет зависеть от температуры процессора (которая в этой сборке будет достаточно низкая).

Сборка и наполнение СО

Пришло время начинать сборку системы охлаждения. Выровняйте отрезок трубки между двумя точками, которые вы хотите соединить, затем отрежьте немного больше чем вам кажется.

Лучше иметь немного про запас, так как трубку всегда можно обрезать. Затем открутите один из фитингов, насадите, покручивая, трубу на фитинг и наденьте другой конец обжимного фитинга на незакрепленный конец. Затем завинтите его, сжав трубопровод. Если вы изо всех сил пытаетесь вставить трубку, используйте пару плоскогубцев с иглами. Осторожно вставьте их в конец трубки и аккуратно растяните трубу, чтобы было легче работать.

Теперь вам предстоит снять муфту с другого фитинга, предварительно прикрепить его к новой трубке и сделать то же самое с другим концом.

Не столь важно, куда идет трубка, когда все работает в одном узле. Как только система загерметизирована и находится под давлением, температура воды будет одинакова, вне зависимости от того, к какому компоненту какая трубка идет. Все благодаря физике.

Подойдем к самому страшному этапу сборки - наполнению нашей системы. Сперва убедитесь что жидкость попадает из резервуара в помпы под силой тяжести. Затем прикрепите последний фитинг сверху резервуара. Используйте воронку, чтобы аккуратно налить наш хладагент в систему. В нашем случае мы просто взяли пустую вымытую бутылочку из-под соуса.

Прежде чем приступать, стоит убедиться что на материнскую плату не подается питание. Не лишним будет отключить питание и от процессора, видеокарт, и дисков. Сам блок тоже нужно обесточить.

Для удобства можно соединить две точки питания самом блоке питания канцелярской скрепкой, либо использовать специальный мостик. Тогда при заполнении резервуаров все сводится к банальному размыканию цепи питания. Помните, что этого не стоит делать, пока в резервуаре и насосе есть внутри жидкость.

Подведем итоги

Готовая сборка прекрасно выглядит. Как уже подметили, белая жидкость и черные блоки охлаждения отлично контрастируют с цветовой гаммой материнки. i7-5820k был разогнан до 4.4 ГГц, и температура оного вышла стандартная для подобного рода сборок - около 55 градусов Цельсия в нагрузке.

Видеокарты в режиме нагрузки выдавали около 60 градусов, а скорость кулеров для всей системы была выставлена на уровне 20%. Что касается производительности - выжать из видеокарт и процессора большее нам не удалось. В любом случае все работало на пределе их технологических возможностей. Все работало крайне тихо, даже под нагрузкой.

Тест на протекание прошел успешно. Несмотря на относительно небольшое время теста (около 45 минут), протечек не было никаких. Фитинги от EK действительно обеспечивают хороший уровень герметичности.

Главное - не повредить трубки во время сборки. В целом, перед тем, как запитать все комплектующие, стоит проводить тест как минимум в течении суток.

Если вы собираете компьютер, пользуясь критерием "цена/качество", не имеет смысла делать кастомное водяное охлаждение. Даже если брать не самые дорогие компоненты, это обойдется в сумму около 600 долларов США. система водяного охлаждения для компьютера предназначена для тех, кто хочет построить красивую и тихую рабочую станцию, способную выполнять любую задачу, которую только можно придумать.

Вывод

В этой статье было написано, какие компоненты понадобятся для сборки кастомной системы водяного охлаждения, а так же как собрать компьютер с водяным охлаждением. Думаю много кого не устраивает шум компьютера, особенно в ресурсоемких приложениях, например играх. Поэтому при наличии лишней пары сотен долларов можно взять готовый блок для процессора, и видеокарту с уже установленной водяной СО. Во всяком случае, даже если вы и не собираетесь приобретать "водянку", вы узнали как работает водяное охлаждение компьютера.

Продолжая тему повышения производительности игровых систем нельзя не сказать об эффективном охлаждении для нестандартных частот процессоров. Как правило в погоне за высокими частотами и максимальной производительностью многие пользователи уже давно используют компоненты в режимах далеких от штатных. Плюсы и минусы данного метода мы рассматривали в предыдущей рассылке .

Законы Физики.

Естественно, что с ростом тактовой частоты увеличивается температура на всех компонентах, - это законы физики. Слишком высокая температура может стать причиной термического повреждения кристалла процессора. Именно поэтому в современных компьютерах на аппаратном уровне реализован целый ряд защитных механизмов, направленных на то что бы уберечь процессор от повреждения в случае перегрева.

Один из таких механизмов называется Троттлинг (от английского throttling): чем выше температура на кристалле процессора, тем больше машинных тактов он пропускает. Такты пропускаются, соответственно снижается эффективность и производительность – это и есть троттлинг процессора.

Таким образом мы плавно подошли к сути нашей проблемы, с одной стороны нам нужна максимальная производительность нашей игровой системы, с другой стороны необходимо обеспечить максимально эффективное охлаждение и не допустить повышения температуры до уровня, при котором включаются защитные механизмы.


Основательность воздушного охлаждения

Классическим решением данной задачи является использование воздушных систем охлаждения, естественно стандартные кулера идущие в комплекте с процессором не способны эффективно отводить излишки тепла. Именно поэтому многие геймеры, профессионалы в области графики и даже инженеры предпочитают штатным системам более дорогие и производительные кулера от таких вендоров как Zalman , Noctua , Skythe , Cooler Master .

Огромные радиаторы, толстые тепловые трубки, большие вентиляторы – это все конечно отлично, но есть нечто более эффективное . То, что сразу переводит в разряд «настоящих энтузиастов».



Системы Водяного Охлаждения

Системы жидкостного охлаждения (СЖО) или системы водяного охлаждения (СВО) – решение для тех, кто знает цену каждому дополнительному мегагерцу. Качественная СВО способна подарить тишину, несколько сотен дополнительных мегагерц и уважение друзей и коллег

Что же такое эта СВО? Само название говорит за себя. В системе СВО в качестве теплоносителя используется вода. То есть сначала тепло от нагревающих элементов передается напрямую в воду, в отличии от воздушного, где передача происходит сразу в воздух.



Как это работает:

От процессора или графического чипа тепло сначала передается через теплообменник воде. Далее нагретая вода двигается в радиатор, где тепло из водной среды отдается воздуху и отрабатывается во внешнюю среду. Качает же водный поток, как водится, специальный насос – помпа. Весьма стандартная система, которая используется во многих сферах, таких как двигатели внутреннего сгорания (куда уж без нашей любимой автомобильной аналогии). Большим преимуществом выбора СВО объясняется просто, Вода имеет куда более высокий уровень теплоемкости, что позволяет намного эффективнее охлаждать элементы и поддерживать низкий температурный режим.

Какой же сделать выбор?

Сейчас, когда разгон процессоров стал достаточно привычным делом, никто не откажется от повышенных частот для более быстрого выполнения задач, будь то профессиональная деятельность, или компьютерные игры с богатой и тяжелой графикой или высоконагруженными сценами с большим кол-вом персонажей и полигонов. Очевидно, что в таких условиях вопрос о надежной и максимально эффективной системе теплоотвода стоит очень остро. Чем мощнее процессор или графическая карта, тем эффективнее должна работать система охлаждения компьютера. А воздушные кулера, как правило, имеют очень неприятную особенность – вентиляторы при работе в экстремальных режимах, шумят очень сильно и это может вызвать негативные эмоции особенно у пользователей или геймеров в ночное время.


Необслуживаемые СВО

Для тех, кто только начинает свой путь в мире компьютеров существуют необслуживаемые системы водяного охлаждения. Многие именитые производители предлагают готовые и надежные необслуживаемые (замкнутые) системы охлаждения по относительно невысокой цене, например: Corsair Hydro Series (существует несколько вариантов с разными типами радиаторов), Cooler Master Seidon , NZXT Kraken , Silverstone Tundra , да что там говорить, даже компания Intel рекомендует к своим процессорам Intel Core i7 в исполнении LGA 2011 в качестве штатной СО – систему водяного охлаждения от компании Asetek.


А это точно эффективнее?

Эффективность замкнутых систем водяного охлаждения можно оценить на графике приведенном справа.

Из дополнительных преимуществ необслуживаемых систем водяного охлаждения можно назвать освобождение места в пространстве рядом с сокетом для установки центрального процессора, поскольку аналогичные по производительности воздушные кулеры весьма громоздки и часто мешают установке памяти с высокими "рубашками". Снижается нагрузка на подложку системной платы, что может быть критично в случаях, когда компьютер часто транспортируется или отправляется через Транспортные компании.



Кастомные системы:

Но это лишь старт. Безусловно удобное и компактное решение не всегда дает выжать максимум производительности и раскрыть потенциал процессора. Тогда на помощь приходят системы водяного охлаждения, которые собираются по компонентам – “кастомные ”, от англ. custom (custom-made) - изготовленные на заказ, системы водяного охлаждения .

Cложность “кастомной СВО ” может быть просто космической, и ограничивается только количеством денег у энтузиаста. Преимущества такого подхода перед готовыми СВО следующие: более мощная помпа, радиатор большего размера, возможность включить в контур СВО другие компоненты (чипсет, систему питания материнской платы, видеокарту и даже оперативную память). В дальнейшем при замене материнской платы или процессора, можно проапгрейдить систему охлаждения, а не менять ее целиком. Или заменить радиатор на более мощный и тем самым еще увеличить частоты до запредельных значений.

Водное охлаждение компьютера позволяет снизить температуру процессора и графической платы примерно на 10 градусов, что повышает их долговечность. Кроме того, за счет снижения нагрева система подвергается меньшей нагрузке. Это также позволяет разгрузить вентилятор, значительно снизив его обороты, и, таким образом, получить практически бесшумную систему.

Встроить водное охлаждение довольно просто. Мы расскажем как это сделать в нашем пошаговом руководстве. В статье описывается установка водного охлаждения на примере готового набора Innovatek Premium XXD и корпуса Tower Silverstone TJ06. Монтаж других систем производится аналогичным образом.

Установка водяного охлаждения

Для успешной установки системы охлаждения вам понадобятся инструменты. Мы остановили свой выбор на чрезвычайно удобном швейцарском ноже Victorinox Cyber Tool Nr. 34. В него кроме самого ножа входят клещи, ножницы, маленькая и средняя крестообразная отвертка, а также набор насадок. Кроме того, приготовьте гаечные ключи на 13 и 16. Они потребуются для затягивания соединений.

В цикле охлаждения радиатор обеспечивает стабилизацию температуры воды, как правило, на уровне порядка 40° C. Теплообменнику помогают один или два 12-сантиметровых вентилятора, которые вращаются довольно тихо, но при этом обеспечивают вывод тепла изнутри наружу. При установке вентилятора следите за тем, чтобы стрелка на раме вентилятора показывала в сторону радиатора, а также чтобы провода питания сходились к середине.

Пора прикрутить к радиатору угловые соединительные элементы для трубок. Для надежности затяните накидные гайки ключом на 16. Затягивайте крепко, однако не до упора. После этого радиатор монтируется к корпусу. Single-радиатор (то есть только с одним вентилятором) можно установить снизу за передней панелью, в том месте, где обеспечивается штатная подача воздуха. В некоторых типах корпусов для этого также может подойти пространство сзади процессора.

Наш двойной dual-радиатор требует несколько больше места, поэтому мы его располагаем на боковой стенке. Самостоятельно делать необходимые гнезда и отверстия мы рекомендуем только опытным умельцам. Если вы себя к таковым не относите, лучше всего воспользоваться специально предусмотренным корпусом для конкретного типа охлаждения. Innovatek предлагает системы охлаждения в комплекте с корпусом - при желании даже в смонтированном состоянии. Для нашего проекта мы выбрали модель Silverstone TJ06 с подготовленной Innovatek боковой стенкой.

Рисунок A: Расположите боковую стенку перед собой на рабочем столе так, чтобы отверстия под вентиляторы были направлены на вас узкими частями. После этого положите радиатор на отверстия вентиляторами вверх. Угловые соединения шлангов должны быть направлены в ту сторону, которая позже будет соединена с передней панелью корпуса. Теперь поверните боковую стенку вместе с радиатором и соедините отверстия, сделанные на корпусе с резьбой на радиаторе.

Рисунок B: Для красоты положите на гнезда вентиляторов сверху две черные заглушки и прикрутите их восемью прилагающимися черными шурупами Torx.

Стандартный вентилятор питается от напряжения 12 В. При этом он достигает указанной в спецификации скорости вращения и, таким образом, максимальной громкости. В системе водного охлаждения часть тепла поглощает кулер радиатора, поэтому 12-
вольтное питание для пары наших вентиляторов, пожалуй, не понадобится. В большинстве случаев достаточно 5-7 В - это позволит сделать систему практически бесшумной. Для этого соедините разъемы питания обоих вентиляторов и подключите к прилагающемуся адаптеру, который позже будет подключен к блоку питания.

Теперь речь пойдет о графической плате, главном источнике шума у большинства компьютеров. Мы оснастим водным охлаждением модель ATI All-in-Wonder X800XL для PCI Express. Аналогичным образом система охлаждения устанавливается и на другие модели видеоадаптеров.

Прежде чем вы приступите к сборке, еще два замечания. Первое: с переоборудованием графической платы теряет силу гарантия, поэтому перед установкой проверьте работоспособность всех функций устройства. И второе: человек при хождении по ковру заряжается статическим электричеством и разряжается при соприкосновении с металлом (например, дверной ручкой).

Если вы разрядитесь о графическую плату, при определенном стечении обстоятельств она может приказать долго жить. Поскольку же у вас, как и у большинства непрофессиональных сборщиков, вряд ли имеется антистатический коврик, кладите видеоадаптер только на антистатическую упаковку и периодически разряжайтесь, касаясь батареи отопления.

Рисунок А: Для того чтобы отсоединить вентилятор от выбранной нами модели серии Х800, необходимо открутить шесть шурупов. Два маленьких шурупа, удерживающие натяжную пружину, оптимизируют давление блока охлаждения на графический процессор, в то время как четыре остальных несут на себе всю тяжесть кулера. Даже после того как будут удалены все шесть шурупов, кулер будет все еще достаточно крепко присоединен теплопроводящей пастой. Отсоедините кулер, плавно поворачивая его по и против часовой стрелки.

Рисунок B: После того как вы снимите старую систему охлаждения, удалите остатки теплопроводящей пасты с графического процессора и других микросхем. Если паста не стирается, можно использовать немного жидкости для снятия лака. Естественно, и водная система охлаждения нуждается в теплопроводной пасте, так что нужно нанести новую. Здесь основное правило таково: чем меньше, тем лучше! Маленькой капельки, распределенной тонким слоем по поверхности каждой детали, вполне достаточно.

На самом деле теплопроводная паста является достаточно посредственным проводником тепла. Она призвана заполнять микроскопические неровности поверхности, так как воздух проводит тепло еще хуже. Для нанесения пасты в качестве миниатюрного шпателя можно использовать старую визитную карточку.

Рисунок С: После нанесения пасты положите новый кулер на рабочую поверхность таким образом, чтобы соединительные трубки были сверху, и совместите отверстия на графической плате с резьбой на блоке охлаждения. Натяжная пружина заменяется квадратной пластмассовой пластиной. Для защиты окружающих контактов наклейте между печатной платой и пластиной, точнее говоря, непосредственно к 3D-процессору, пенопластовую прокладку.

Новый кулер удерживается на трех несущих шурупах. Сперва затяните их, причем, как и при замене автомобильного колеса, вначале затягивайте шурупы не до конца, и затем по очереди их подтягивайте. Это поможет избежать перекосов. После этого аналогичным образом затяните шурупы на пластмассовой пластине.

Наибольшее количество тепла чаще всего вырабатывает центральный процессор. Поэтому система охлаждения, защищая его от перегрева, работает достаточно шумно. Заменить воздушный кулер на водный достаточно просто. Сначала осторожно снимите с процессора воздушный кулер. Преодолевать сопротивление термопасты также необходимо мягкими вращательными движениями влево-вправо, иначе процессор может выскочить из сокета. После этого удалите всю старую термопасту.

Затем отвинтите имеющуюся рамку сокета и смонтируйте вместо нее подходящую для этого типа процессора рамку из набора водного охлаждения. Перед установкой кулера нанесите на процессор тонким слоем термопасту. В завершение зафиксируйте крепежные скобы с обеих сторон рамки сокета и перекиньте фиксатор.

Насос - очень важная деталь системы, поэтому его необходимо поставить на пьедестал - в прямом смысле этого слова. Для этого ввинтите в алюминиевую плату четыре резиновые ножки. Резина здесь используется для того, чтобы изолировать вибрации насоса. На эти ножки установите насос и зафиксируйте его четырьмя прилагающимися шайбами и гайками. Гайки затяните небольшими плоскогубцами.

Теперь необходимо оснастить насос и компенсационную емкость соединительными трубками. Затяните для надежности соединения ключом на 13. В завершение подсоедините компенсационную емкость с округлой стороны насоса. Насос приделывается изнутри к передней панели корпуса, прилагающейся клейкой лентой таким образом, чтобы компенсационная емкость «смотрела» наружу (см. рис. 11).

После завершения установки всех компонентов внутри корпуса необходимо соединить их шлангами. Для этого поставьте открытый корпус напротив себя и положите перед ним боковую стенку с радиатором. Шланг должен идти от компенсационной емкости к графической плате, оттуда к процессору, от процессора к радиатору, завершается же круг соединением радиатора и насоса.

Отмерьте необходимую длину устанавливаемого шланга и ровно отрежьте его. Открутите на соединении накидную гайку и подведите ее к концу надеваемого шланга. После того как шланг надет на соединение вплоть до резьбы, зафиксируйте его накидной гайкой. Затяните гайку ключом на 16. Теперь ваша система должна выглядеть так, как это показано на рисунке 11.

9. Подготовка насоса к заполнению водой

Как это показано на нашей картинке, подключите насос к разъему питания для жестких дисков. На данном этапе к блоку питания не должно быть подключено больше ничего. Сейчас мы готовим насос к заполнению водой. Другие компоненты нельзя подключать без воды в системе охлаждения, иначе им грозит мгновенный перегрев.

Так как блоки питания не работают без подключения к материнской плате, необходимо использовать прилагающуюся перемычку. Черный провод служит для «обмана» питания материнской платы. Таким образом, после включения тумблера насос начнет работать. Если у вас под рукой не нашлось перемычки, закоротите зеленый и находящийся рядом черный провода блока питания (пины 17 и 18).

Наполните компенсационную емкость жидкостью до нижнего края резьбы и подождите, пока насос выкачает воду. Продолжайте процедуру наполнения до тех пор, пока в системе не прекратится бурление.

Проверьте герметичность соединений. Если на каком-либо из них образуется капелька, скорее всего, это значит, что плохо затянута накидная гайка. Если система наполнена достаточным количеством воды, но продолжается бурление, поможет следующая хитрость: возьмите двумя руками боковую стенку корпуса с радиатором и покачайте ее так, как будто это сковородка, по которой вы хотите распределить горячее масло. Если после 15 минут работы все соединения остались сухими и не возникло никаких посторонних звуков, закройте компенсационную емкость.

Теперь можно снять перемычку с блока питания и начать подключение компонентов компьютера. Некоторой сноровки потребует установка боковой стенки с радиатором. Зазоры здесь очень малы, и даже слегка неверно установленное шланговое соединение может помешать. В этом случае необходимо просто повернуть соединение в нужном направлении. Также при закрытии корпуса уделите особое внимание шлангам, чтобы ни один из них не был перегнут или сдавлен.

Если вы купили мощный новый компьютер, то он будет потреблять достаточно много электроэнергии, а также громко шуметь, что является весьма неприятным и очень существенным недостатком. Достаточно громоздкие системные блоки (для циркуляции воздуха), с большими кулерами, в этом случае не самый лучший вариант, поэтому сегодня мы расскажем вам об альтернативном варианте – водяном охлаждении для компьютера (а конкретно о его видах, особенностях и, конечно же, преимуществах).

Зачем необходимо водяное охлаждение?!
Как мы уже сказали, обычные компьютерные вентиляторы создают много шума, а кроме того, даже, несмотря на их большую мощность, они не способны рационально отводить из системного блока выделяемое компонентами компьютера тепло, что само по себе повышает риск выхода из строя, какого-либо элемента от перегрева.

В этих условиях производители обратили своё внимание на системы жидкостного охлаждения компьютерных деталей. Проверка множества таких систем в целом показывает, что жидкостная система охлаждения компьютера имеет право на существование в силу целого ряда показателей, выгодно отличающих её от воздушной системы.

Преимущества и принципы работы водяного охлаждения

Водяному охлаждению не требуется большого объёма системного блока для того, чтобы обеспечивать лучшую циркуляцию воздуха в самом системном блоке. Кроме всего прочего, она гораздо меньше шумит, что, кстати, также является немаловажным фактором для людей, которые по тем или иным причинам проводят много времени за компьютером. Любая же воздушная система, пусть даже самая качественная, при всех своих преимуществах, во время своей работы непрерывно создаёт поток воздуха, который гуляет по всему системному блоку, в любом случае увеличивает шум в помещении, а для многих пользователей важен низкий уровень шума, так как постоянный гул очень надоедает и раздражает. Программное обеспечение самостоятельно регулирует давление потока жидкости в системе, в зависимости от интенсивности тепловыделения процессора и других компонентов компьютера. То есть система может автоматически увеличивать или уменьшать эффективность теплоотвода, что обеспечивает непрерывный и точный контроль температурного режима, как любого отдельного элемента (будь то процессор, видеокарта или винчестер), так и во всём пространстве системного блока. Таким образом, применение жидкостного охлаждения ликвидирует также и тот недостаток любой воздушной системы, когда детали компьютера охлаждаются преимущественно воздухом из системного блока, который непрерывно нагревается этими же деталями и не успевает своевременно выводиться за пределы блока. С жидкостью такие проблемы исключены. Такая система способна справляться со своими задачами гораздо эффективнее любого воздушного охлаждения.

Также, помимо высокого уровня шума, воздушное охлаждение компьютера приводит к большому скоплению пыли: как на самих вентиляторах кулеров, так и на остальных комплектующих. В свою очередь это очень негативно сказывается как на воздухе в помещении (когда из системного блока выходит поток воздуха с пылью), так и на быстродействии всех комплектующих, на которых оседает вся пыль.

Виды водяного охлаждения по месту охлаждения


  • Наибольшую важность в любой подобной системе представляет радиатор процессора . По сравнению с традиционными кулерами, процессорный радиатор с двумя подведёнными к нему трубками (одна на вход жидкости, другая на выход) выглядит очень компактно. Это особенно радует, потому что эффективность охлаждения такого радиатора явно превосходит любой кулер.

  • Графические чипы видеокарт охлаждаются так же, как и процессоры (параллельно с ними), только радиаторы для них поменьше.

  • Не меньшую эффективность имеет жидкостное охлаждение винчестера . Для этого разработаны очень тонкие водяные радиаторы, которые крепятся к верхней плоскости жёсткого диска и благодаря максимально большой площади контакта обеспечивают хороший теплоотвод, что невозможно при обычном воздушном обдуве.

Надёжность всей водяной системы больше всего зависит от помпы (качающего насоса): прекращение циркуляции жидкости моментально вызовет падение эффективности охлаждения практически до нуля.

Системы жидкостного охлаждения делятся на два типа: те, что с помпой, и те, что без неё – безпомповые системы..

1-ый тип: системы жидкостного охлаждения с помпой
Существуют два типа помп: имеющие собственный герметичный корпус, и просто погружаемые в резервуар с охлаждающей жидкостью. Те, что имеют свой герметичный корпус, безусловно, дороже, но и значительно надёжнее, чем погружаемые в жидкость. Вся жидкость, используемая в системе, охлаждается в радиаторе-теплообменнике, к которому крепится низкооборотный кулер, создающий поток воздуха, который и охлаждает текущую в изогнутых трубках радиатора жидкость. Кулер никогда не развивает большой скорости вращения и потому шум от всей системы намного меньше, чем от мощных кулеров, используемых в воздушном охлаждении.

2-ой тип: безпомповые системы
Как понятно из названия – никакого механического нагнетателя (т.е. помпы) в них нет. Циркуляция жидкости осуществляется с использованием принципа испарителя, который создаёт направленное давление, движущее охлаждающее вещество. Жидкость (с низкой температурой кипения) непрерывно превращается в пар, когда нагревается до определённой температуры, а пар – в жидкость, когда попадает в радиатор теплообменника-конденсатора. Только тепло выделяемое охлаждаемым элементом заставляет двигаться жидкость. К достоинствам этих систем относятся: компактность, простота и невысокая стоимость, поскольку отсутствует помпа; минимум движущихся механических частей – обеспечивает низкий уровень шума и низкую вероятность механических поломок. Теперь о недостатках данного типа водяного охлаждения компьютера. Эффективность и мощность таких систем - значительно ниже, чем у помповых; используется газовая фаза вещества, а это значит, что нужна высокая герметичность конструкции, потому как любая утечка приведёт к тому, что система сразу же потеряет давление и, как следствие, станет неработоспособной. Причём заметить и исправить это будет очень нелегко.

Стоит ли устанавливать водяное охлаждение на компьютер?

Достоинствами данного типа жидкостного охлаждения являются: высокая эффективность, небольшие размеры радиаторов компьютерных чипов, возможность параллельного охлаждения сразу нескольких устройств и невысокий уровень шума – во всяком случае, ниже, чем шум от мощного кулера любой воздушной системы. Собственно, всем этим и объясняется, что производители ноутбуков стали использовать жидкостное охлаждение одними из первых. Единственным их недостатком, пожалуй, является только сложность установки в системные блоки, которые изначально проектировались для воздушных систем. Это, разумеется, не делает установку подобной системы в ваш компьютер невозможной, просто она будет сопряжена с определёнными трудностями.

Вполне вероятно, что через некоторое время в компьютерной технике произойдёт переход от систем воздушного охлаждения к жидкостным системам, потому что кроме сложностей в установке подобных конструкций на сегодняшние корпуса системных блоков, каких-либо других принципиальных недостатков у них нет, а их преимущества перед воздушным охлаждением весьма и весьма значительны. С появлением на рынке подходящих корпусов для системных блоков популярность этих систем, скорее всего, будет неуклонно расти.

Таким образом, эксперты сайт ничего не имеют против данных систем охлаждения, а наоборот советуют именно им отдать предпочтение, если того требуют обстоятельства. Только при выборе той или иной системы не нужно экономить, дабы не попасть впросак. Дешёвые водяные системы охлаждения имеют низкое качество охлаждения и достаточно высокий уровень шума, именно поэтому, приняв решение установить водяное охлаждение, рассчитывайте на достаточно высокую сумму растрат.

Системы водяного охлаждения уже много лет используются как высокоэффективное средство отвода тепла от нагревающихся компонентов компьютера.

Качество охлаждения напрямую влияет на стабильность работы Вашего компьютера. При избыточном тепле компьютер начинает зависать и возможен выход из строя перегревшихся компонентов. Высокие температуры вредны для элементной базы (конденсаторы, микросхемы и пр.), а перегрев жесткого диска может привести к потере данных.

С ростом производительности компьютеров приходится использовать более эффективные системы для охлаждения. Традиционной считается воздушная система охлаждения, но воздух обладает низкой теплопроводностью и при большом потоке воздуха создаётся сильный шум. Мощные кулера издают довольно сильный рёв, хотя при этом могут обеспечить приемлемую эффективность.

В таких условиях все более популярными становятся водяные системы охлаждения. Превосходство водяного охлаждения над воздушным объясняется показателями теплоемкости (4,183 кДж·кг -1 ·K -1 для воды и 1,005 кДж·кг -1 ·K -1 для воздуха) и теплопроводности (0,6 Вт/(м·K) для воды и 0,024-0,031Вт/(м·K) для воздуха). Поэтому, при прочих равных условиях, системы водяного охлаждения всегда будут эффективнее воздушных.

В интернете можно найти много материалов по готовым системам водяного охлаждения от ведущих производителей и примеры самодельных систем охлаждения (последние, как правило, более эффективны).

Система водяного охлаждения (СВО) – система охлаждения, в которой для переноса тепла используется вода в качестве теплоносителя. В отличие от воздушного охлаждения, в котором тепло передается напрямую воздуху, в системе водяного охлаждения тепло сначала передается воде.

Принцип работы СВО

Охлаждение компьютера необходимо для отвода тепла от нагретого компонента (чипсета, процессора, …) и его рассеивания. Обычный воздушный кулер снабжен монолитным радиатором, который выполняет обе данные функции.

В СВО каждая часть выполняет свою функцию. Водоблок осуществляет теплосъем, а другая часть рассеивает тепловую энергию. Примерную схему соединения компонентов СВО можно посмотреть на схеме ниже.

Водоблоки могут включаться в контур параллельно и последовательно. Первый вариант предпочтительнее при наличии одинаковых теплосъемников. Можно эти варианты скомбинировать и получить параллельно-последовательное подключение, но наиболее правильным будет соединение водоблоков один за другим.

Отвод тепла происходит по такой схеме: жидкость из резервуара подводится к помпе, а затем перекачивается дальше к узлам, которые охлаждают компоненты ПК.

Причиной такого подключения является незначительный прогрев воды после прохождения первого водоблока и эффективный отвод тепла от чипсета, GPU, CPU. Прогретая жидкость попадает в радиатор и там охлаждается. Затем она снова попадает в резервуар, и начинается новый цикл.

По конструктивным особенностям СВО можно разделить на два типа:

  1. Охлаждающая жидкость циркулирует за счет помпы в виде отдельного механического узла.
  2. Безпомповые системы, в которых используются специальные хладагенты, проходящие через жидкую и газообразную фазы.

Система охлаждения с помпой

Принцип ее действия эффективность и прост. Жидкость (обычно дистиллированная вода) проходит через радиаторы охлаждаемых устройств.

Все компоненты конструкции соединяются между собой гибкими трубками (диаметр 6-12 мм). Жидкость, проходя через радиатор процессора и других устройств, забирает их тепло, а затем по трубкам попадает в радиатор теплообменника, где охлаждается сама. Система замкнутая, и жидкость в ней постоянно циркулирует.

Пример такого соединения можно показать на примере продукции фирмы CoolingFlow. В ней помпа совмещается с буферным резервуаром для жидкости. Стрелки показывают движение холодной и горячей жидкости.

Безпомповое жидкостное охлаждение

Есть системы жидкостного охлаждения, не использующие помпу. В них используется принцип испарителя и создается направленное давление, вызывающее движение охлаждающего вещества. В качестве хладагентов применяются жидкости с низкой точкой кипения. Физику происходящего процесса можно рассмотреть на схеме ниже.

Изначально радиатор и магистрали полностью заполнены жидкостью. Когда температура радиатора процессора становится выше определенного значения, то жидкость превращается в пар. Процесс превращения жидкости в пар поглощает тепловую энергию и повышает эффективность охлаждения. Горячим паром создается давление. Пар, через специальный односторонний клапан, может выходить только в одну сторону – в радиатор теплообменника-конденсатора. Там пар вытесняет холодную жидкость в направлении радиатора процессора, и, остывая, превращается снова в жидкость. Так жидкость-пар циркулирует в замкнутой системе трубопровода, пока температура радиатора высокая. Такая система получается очень компактной.

Возможен другой вариант такой системы охлаждения. Например, для видеокарты.

В радиатор графического чипа встраивается жидкостный испаритель. Теплообменник располагается рядом с боковой стенкой видеокарты. Конструкция изготовлена из медного сплава. Теплообменник охлаждается высокооборотным (7200 об./мин.) вентилятором центробежного типа.

Компоненты СВО

В системах водяного охлаждения используется определенный набор компонентов, обязательных и необязательных.

Обязательные компоненты СВО:

  • радиатор,
  • фитинги,
  • ватерблок,
  • помпа,
  • шланги,
  • вода.

Необязательными компонентами СВО являются: термодатчики, резервуар, сливные краны, контролеры помпы и вентиляторов, второстепенные ватерблоки, индикаторы и измерители (расхода, температуры, давления), водные смеси, фильтры, бэкплейты.

  • Рассмотрим обязательные компоненты.

Ватерблок (англ. waterblock) – теплообменник, передающий тепло от нагревшегося элемента (процессора, видео чипа и др.) воде. Он состоит из медного основания и металлической крышки с набором креплений.

Основные типы ватерблоков: процессорные, для видеокарт, на системный чип (северный мост). Ватерблоки для видеокарт могут быть двух типов: закрывающие только графический чип («gpu only») и закрывающие все нагревающиеся элементы – фулкавер (англ. fullcover).

Ватерблок Swiftech MCW60-R(gpu-only):

Ватерблок EK Waterblocks EK-FC-5970(Фулкавер):

Для увеличения площади теплопередачи применяется микроканальную и микроигольчатая структура. Ватерблоки делают без сложной внутренней структуры если производительность не столь критична.

Чипсетный ватерблок XSPC X2O Delta Chipset:

Радиатор. В СВО радиатором называют водно-воздушный теплообменник, передающий воздуху тепло от воды в ватерблоке. Есть два подтипа радиаторов СВО: пассивные (безвентиляторные), активные (продуваемые вентилятором).

Безвентиляторные можно встретить довольно редко (например, в СВО Zalman Reserator) потому, что данный тип радиаторов обладает более низкой эффективностью. Такие радиаторы занимают много места и их сложно поместить даже в модифицированном корпусе.

Пассивный радиатор Alphacool Cape Cora HF 642:

Активные радиаторы более распространенны в системах водяного охлаждения из-за лучшей эффективности. Если использовать тихие или бесшумные вентиляторы, то можно добиться тихой или бесшумной работы СВО. Эти радиаторы могут быть самого разного размера, но в основном их делают кратными к размеру 120 мм или 140мм вентилятора.

Радиатор Feser X-Changer Triple 120mm Xtreme

Радиатор СВО за компьютерным корпусом:

Помпа – электрический насос, отвечает за циркуляцию воды в контуре СВО. Помпы могут работать от 220 вольт или от 12 вольт. Когда в продаже было мало специализированных компонентов для СВО, то использовали аквариумные помпы, работающие от 220 вольт. Это создавало некоторые трудности, из-за необходимости включать помпу синхронно с компьютером. Для этого применяли реле, включающее помпу автоматически при старте компьютера. Сейчас есть специализированные помпы, обладающие компактными размерами и хорошей производительностью, работающие от 12 вольт.

Компактная помпа Laing DDC-1T

У современных ватерблоков довольно высокий коэффициент гидросопротивления, поэтому желательно применять специализированные помпы, так как аквариумные не позволят современной СВО работать на полную производительность.

Шланги или трубки также являются обязательными компонентами любой СВО, по ним вода течет от одного компонента к другому. В основном применяют шланги из ПВХ, иногда из силикона. Размер шланга не сильно влияет на производительность в целом, важно не брать слишком тонкие (менее 8 мм.) шланги.

Флуоресцентный шланг Feser Tube:

Фитингами называют специальные соединительные элементы для подключения шлангов к компонентам СВО (помпе, радиатору, ватерблокам). Фитинги нужно вкручивать в отверстие с резьбой находящееся на компоненте СВО. Вкручивать их нужно не очень сильно (гаечных ключей не понадобится). Герметичность достиается уплотнительным кольцом из резины. Подавляющее большинство компонентов продаются без фитингов в комплекте. Это делается затем, чтобы пользователь мог сам подобрать фитинги, под нужный шланг. Самый распространенный тип фитингов – компрессионный (с накидной гайкой) и ёлочка (используются штуцеры). Фитинги бывают прямыми и угловыми. Фитинги еще различаются по типу резьбы. В компьютерных СВО чаще встречается резьба стандарта G1/4″, реже G1/8″ или G3/8″.

Водяное охлаждение компьютера:

Фитинги типа ёлочка от Bitspower:

Компрессионные фитинги Bitspower:

Вода тоже относится к обязательным компонентом СВО. Лучше всего заправлять дистиллированную воду (очищенную от примесей методом дистилляции). Используется и деионизированная вода, но существенных отличий от дистиллированной у нее нет, только производится другим способом. Можно применять специальные смеси или воду с различными присадками. Но использовать воду из-под крана или бутилированную для питья не рекомендуется.

Необязательные компонентами являются компоненты, без которых СВО стабильно может работать, и не влияют на производительность. Они делают эксплуатацию СВО более удобной.

Резервуар (расширительный бачек) считается необязательным компонентом СВО, хотя и присутствует в большинстве систем водяного охлаждения. Системы с резервуаром более удобны в заправке. Объем воды резервуара не принципиален, он не влияет на производительность СВО. Формы резервуаров встречаются самые разные и выбирают их по критериям удобства установки.

Трубчатый резервуар Magicool:

Cливной кран используется для удобного слива воды из контура СВО. Он перекрыт в обычном состоянии, и открывается, когда необходимо слить воду из системы.

Сливной кран Koolance:

Датчики, индикаторы и измерители. Выпускается довольно много различных измерителей, контролеров, датчиков для СВО. Среди них встречаются электронные датчики температуры воды, давления и потока воды, контролеры, согласующие работу вентиляторов с температурой, индикаторы движения воды и так далее. Датчики давления и расхода воды нужны лишь в системах, предназначенных для тестирования компонентов СВО, так как эта информация для обычного пользователя просто несущественна.

Электронный датчик потока от AquaCompute:

Фильтр. Некоторые системы водяного охлаждения комплектуются фильтром, включенным в контур. Он предназначен для отфильтровывания разнообразных мелких частиц попавших в систему (пыль, остатки пайки, осадок).

Присадки к воде и различные смеси. Дополнительно к воде можно использовать различные присадки. Некоторые из них предназначены для защиты от коррозии, другие для предотвращения развития бактерий в системе или подкрашивания воды. Выпускают также готовые смеси, содержащие воду, антикоррозионные присадки и краситель. Бывают готовые смеси, повышающие производительность СВО, но повышение производительности от них возможно лишь незначительное. Можно встретить жидкости для СВО, которые сделаны не на основе воды, а использующие специальную диэлектрическую жидкость. Такая жидкость не проводит электрический ток и при утечке на компоненты ПК не вызовет короткого замыкания. Дистиллированная вода тоже не проводит ток, но, если пролившись, попадет на запыленные участки ПК, может стать электропроводной. Необходимости в диэлектрической жидкости нет, потому, что хорошо протестированная СВО не протекает и обладает достаточной надежностью. Важно также соблюдать инструкцию к присадкам. Не нужно лить их сверх меры, это может привести к плачевным последствиям.

Зеленый флуоресцентный краситель:

Бэкплейтом называют специальную крепежную пластину, которая нужна, чтобы разгрузить текстолит материнской платы либо видеокарты от создаваемого креплениями ватерблока усилия, и уменьшить изгиб текстолита, снижая риск поломки. Бэкплейт не является обязательным компонентом, но очень часто встречается в СВО.

Фирменный бэкплейт от Watercool:

Второстепенные ватерблоки. Иногда, ставят дополнительные ватерблоки на слабо греющиеся компоненты. К таким компонентам относятся: оперативная память, силовые транзисторы цепей питания, жесткие диски и южный мост. Необязательность таких компонентов для системы водяного охлаждения заключается в том, что, они не несут улучшения разгона и никакой дополнительной стабильности системы или других заметных результатов не дают. Это связано с малым тепловыделением таких элементов, и с неэффективностью применения ватерблоков для них. Положительной стороной установки таких ватерблоком можно назвать только внешний вид, а минусом является повышение гидросопротивления в контуре и соответственно увеличение стоимости всей системы.

Ватерблок для силовых транзисторов на материнской плате от EK Waterblocks

Кроме обязательных и необязательных компонентов СВО существует еще категория гибридных компонентов. В продаже встречаются компоненты, которые представляют собой два или более компонента СВО в одном устройстве. Среди таких устройств известны: гибриды помпы с процессорным ватерблоком, радиаторы для СВО совмещенные с встроенной помпой и резервуаром. Такие компоненты заметно уменьшают занимаемее ими место и более удобны в установке. Но такие компоненты мало пригодны к апгрейду.

Выбор системы СВО

Различают три основных типа СВО: внешние, внутренние и встроенные. Они различаются расположением по отношению к корпусу компьютера их основных компонентов (радиатор/теплообменник, резервуар, насос).

Внешние системы водяного охлаждения, выполняют в виде отдельного модуля («ящика») , который при помощи шлангов подключен к ватерблокам, которые установлены на комплектующих в самом корпусе ПК. В корпус внешней системы водяного охлаждения практически всегда выносится радиатор с вентиляторами, резервуар, помпа, и, иногда, для помпы с датчиками блок питания. Среди внешних систем хорошо известны системы водяного охлаждения Zalman семейства Reserator. Такие системы устанавливаются в виде отдельного модуля, и их удобство заключается в том, что пользователю не нужно дорабатывать и переделывать корпус своего компьютера. Их неудобство состоит только в габаритах и сложнее становится перемещать компьютер даже на небольшие расстояния, например, в другую комнату.

Внешняя пассивная СВО Zalman Reserator:

Встроенная охлаждающая система вмонтирована в корпус и продаётся в комплекте с ним. Такой вариант является самым простым в обращении, потому, что вся СВО уже смонтирована в корпусе, и снаружи нет громоздких конструкций. К недостаткам такой системы можно отнести высокую стоимость и то, что старый корпус ПК будет бесполезным.

Внутренние системы водяного охлаждения расположены полностью внутри корпуса ПК. Иногда, некоторые компоненты внутренней СВО (в основном радиатор), устанавливают на внешней поверхности корпуса. Достоинством внутренних СВО является удобство переноски. Нет необходимости слива жидкости при транспортировке. Также при установке внутренних СВО не страдает внешний вид корпуса, и при моддинге СВО может отлично украсить корпус вашего компьютера.

Проект Overclocked Orange:

Недостатками внутренних систем водяного охлаждения являются сложность их установки и необходимость модификации корпуса во многих случаях. Также внутренняя СВО прибавляет вашему корпусу несколько килограмм веса.

Планирование и установка СВО

Водяное охлаждение, в отличие от воздушного, требует некоторого планирования перед установкой. Ведь жидкостное охлаждение налагает некоторые ограничения, которые необходимо принять во внимание.

Во время установки нужно всегда помнить об удобстве. Необходимо оставлять свободное место, чтобы дальнейшая работа с СВО и комплектующими не вызывала трудностей. Нужно, чтобы трубки с водой свободно проходили внутрь корпуса и между компонентами.

Кроме того течение жидкости не должно ничем ограничиватся. При прохождении через каждый водоблок охлаждающая жидкость нагревается. Чтобы снизить эту проблему, продумывается схема с параллельными путями охлаждающей жидкости. При таком подходе поток воды менее нагружен, и в водоблок каждого компонента поступает вода, которая не нагрета другими компонентами.

Хорошо известен набор Koolance EXOS-2. Он предназначен для работы с соединительными трубками сечения 3/8″.

При планировании расположения своей СВО рекомендуется сначала начертить простую схему. Начертив план на бумаге, приступают к реальной сборке и установке. Необходимо разложить на столе все детали системы и приблизительно промерять нужную длину трубок. Желательно оставлять запас и не обрезать слишком коротко.

Когда подготовительные работы проделаны, можно начинать установку водоблоков. На задней стороне материнской платы за процессором устанавливается металлическая скоба крепления головки охлаждения Koolance для процессора. Эта скоба крепления комплектуется пластмассовой прокладкой, для предотвращения замыкания с материнской платой.

Затем снимается радиатор, прикреплённый к северному мосту материнской платы. В примере используется материнская плата Biostar 965PT, у которой охлаждение чипсета происходит с помощью пассивного радиатора.

Когда радиатор чипсета снят, нужно установить элементы крепления водоблока для чипсета. После установки этих элементов материнскую плату ставят снова в корпус ПК. Не забывайте удалять с процессора и чипсета старую термопасту перед нанесением тонким слоем новой.

После этого осторожно устанавливаются водоблоки на процессор. Не прижимайте их с силой. Применяя силу вы можете повредить комплектующие.

Потом проводятся работы с видеокартой. Необходимо удалить имеющийся на ней радиатор и заменить его водоблоком. Когда водоблоки установлены, можно подсоединить трубки и вставить видеокарту в слот PCI Express.

Когда все водоблоки установлены, следует подсоединить все оставшиеся трубки. Последней подключается трубка, ведущая к внешнему блоку СВО. Проверьте правильность направления движения воды: охлаждённая жидкость должна сначала поступать в водоблок процессора.

После выполнения всех этих работ вода заливается в резервуар. Наполнять резервуар нужно только до уровня, который указан в инструкции. Внимательно смотрите за всеми креплениями и при малейших признаках протечки, немедленно устраните проблему.

Если все правильно собрано и не возникло протечек, нужно прокачать охлаждающую жидкость для удаления пузырьков воздуха. Для системы Koolance EXOS-2 нужно замкнуть контакты на блоке питания ATX, и подать питание водяному насосу, не подавая питание на материнскую плату.

Пусть система немного поработает в таком режиме, а вы осторожно наклоняйте компьютер то в одну, то в другую стороны, чтобы избавится от пузырьков воздуха. После выхода всех пузырьков добавьте охлаждающей жидкости, если потребуется. Если пузырьков воздуха больше не видно, то можно запускать систему полностью. Теперь вы можете протестировать эффективность установленной СВО. Хотя водяное охлаждение для пк еще является редкостью для обычных пользователей, его преимущества неоспоримы.




Top