Антенна на 160 метров с вертикальной поляризацией

Простая и эффективная антенна для диапазона 160 м - мечта почти каждого радиолюбителя, тем более, завзятого «охотника за DX». Как без больших технических и материальных затрат начать работать в этом диапазоне? Ведь диапазон 160 м предъявляет повышенные требования как к навыкам работы радиолюбителя в эфире, так и к конструкции антенн. Если антенны для 10, 15 или 20-метрового диапазона имеют малые габариты, то изготовить антенну на диапазон 160 м совсем непросто.

Имеется сотня-другая счастливых радиолюбителей, которые сумели установить полноразмерные вертикалы этого диапазона. Можно, конечно, в качестве 160-метровой антенны использовать 10-15-метровую металлическую мачту с направленными антеннами на коротковолновые ВЧ диапазоны, которые будут играть роль емкостной нагрузки. И вновь возникает вопрос: «А многие ли радиолюбители в состоянии позволить себе такую роскошь?».

В итоге, после длительных раздумий и сопутствующих сомнений, «среднестатистический» радиолюбитель все равно приходит к необходимости использовать проволочную антенну-наиболее адекватную конструкцию, которую можно реализовать на практике. Как правило, это полноразмерный 1/4 или 1/2 волновый излучатель, запитанный 50-омным коаксиальным кабелем. Если такая антенна правильно установлена и настроена в резонанс, то в выбранной полосе частот диапазона отсутствует необходимость в антенном тюнере или другом согласующем устройстве.

Прежде чем перейти к рассмотрению конкретных конструкций антенн диапазона 160 м, целесообразно хотя бы коротко рассмотреть вопрос влияния высоты установки над землей на такие антенны. Если закрепить горизонтальный 160-метровый диполь на высоте 15м над землей, то он будет находиться на высоте менее 0,1 длины волны. Казалось бы, вполне достаточная высота. Однако, проведя аналогию с диполем диапазона 20 м, который при высоте подвеса 0,1 длины волны располагается всего в 2 м от земли (такое сравнение допустимо, т.к. обе антенны ведут себя почти одинаково), можно утверждать, что такая установка совершенно неэффективна. Обе антенны будут излучать радиоволны под большими углами к горизонту, почти в зенит, что делает их практически непригодными для дальних KB радиосвязей.

Низко установленный диполь хорош только для проведения ближних радиосвязей. Диполь 160-метрового диапазона, который излучает под небольшими углами к горизонту, должен располагаться на высоте более 40 м (0,25 длины волны) над землей. Однако возможности «среднестатистического радиолюбителя» чаще всего не позволяют использовать высоту более 20-30 м.

Оптимальный угол излучения антенны 160-метрового находится в пределах от 30 до 35°, хотя на более высокочастотных диапазонах он существенно ниже - 5-10°. Главным определяющим фактором для выбора оптимального угла излучения на определенных трассах является состояние ионосферы. Оно задает, в зависимости от направления на корреспондента, солнечного цикла, времени года и сответствующего времени суток, соответствующий оптимальный угол падения (входа) для радиоволны. Обусловленный этими факторами угол падения радиоволны подвергается постоянным изменениям, и этим объясняются факты кратковременного более лучшего приема DX-сигналов на низко висящую антенну по сравнению с антенной, имеющей низкий угол излучения. Такой феномен, однако, всегда проявляется только моментами и ничего не говорит о фактических соотношениях, т.е о том, что для проведения DX-радиосвязей антенна с низким углом излучения, конечно, предпочтительнее низковисящего диполя. Один из американских радиолюбителей когда-то очень верно подметил: «Оптимальный угол излучения сигнала определяется не радиоантенной, а ионосферой, расположенной существенно выше».

При рассмотрении конструкции любой антенны один из важных моментов - распределение тока в ней. Излучение электромагнитной энергии антенной происходит там, где течет ток. Причем чем ток сильнее, тем больше напряженность электромагнитного поля, а это значит, что чем выше располагаются токоведущие части антенны, тем лучше она, в конечном итоге, будет функционировать.

Если рассмотреть характеристику излучения горизонтального диполя, то можно видеть, что максимум излучения приходится на область, в которой антенна запитана. Внешние (концевые) части диполя электромагнитную энергию почти не излучают и требуются антенне, грубо говоря, для достижения резонанса. Этот факт можно использовать при конструировании 160-метровой антенны без заметных потерь своих позитивных излучающих свойств.

Вертикальный четвертьволновый излучатель, в принципе, является не чем иным, как «полудиполем», поэтому упомянутые свойства в полной мере относятся и к этой, очень полюбившейся многим радиолюбителям антенне. Здесь максимум излучения также располагается вблизи точки питания:

Резонансным диполем, который имеет достаточно низкий угол излучения, является антенна Inverted V :

Конструкция в форме перевернутой латинской буквы V нуждается только в одной опорной мачте. Оба проволочных излучателя располагаются под наклоном к земле и должны заканчиваться приблизительно в 3 м от нее, с тем чтобы исключить прикосновение к ним, т.к. при работающем передатчике на концах излучателей присутствует высокое ВЧ напряжение.

Угол между излучателями - не менее 60°, общая длина обоих излучателей для центральной частоты 1,85 МГц - 76,7 м, для центральной частоты 1,9 МГц - 74,68 м.

Как известно, высоко установленный горизонтальный диполь имеет входное сопротивление 72 Ом, но оно уменьшается тем сильнее, чем ближе к поверхности земли располагается антенна. Поэтому, согласно опытным данным, полное сопротивление антенны Inverted V составляет около 50 Ом, и такую антенну можно запитать 50-омным коаксиальным кабелем через 1:1 симметрирующее устройство (балун).

Во многих публикациях, посвященных антенне Inverted V, утверждается, что она успешно работает без симметрирующего устройства и может быть запитана 50-омным кабелем напрямую. Однако на практике такое упрощение часто приводит к появлению тока на внешней стороне оплетки кабеля, и он становится ненужной составной частью антенной системы. Антенна Inverted V является абсолютно симметричной, поэтому при ее питании коаксиальным кабелем настоятельно рекомендуется применять симметрирующее устройство.

Ранее уже указывалось, что максимум излучения антенны приходится на те места, в которых протекает большой ток. У одних антенн (например, у четвертьволнового вертикала) - это нижняя часть, т.е. непосредственно у точки питания. В верхней части антенны ток слабее, и поэтому эта часть антенны не играет большой роли в излучении. Если изготовить верхнюю часть антенны из проволоки и разместить ее горизонтально, то излучающие свойства антенны существенно не ухудшатся:

Такая антенна получила название Inverted L (в русскоязычной литературе широко применяется другое название - Г-образная антенна). Антенна Inverted L излучает преимущественно под низкими углами к горизонту. Для этой антенны справедливо правило: «Чем выше вертикальная часть антенны, тем лучшими являются ее DX-свойства». Поэтому следует всегда стремиться вертикальную часть антенны размещать как можно выше. Ориентировочная полная длина такой антенны составляет 39 м.

Если на местности имеются высокие деревья, то их можно использовать при установке антенны Inverted L. Кроме того, современные фибергласовые шесты - весьма подходящий опорный материал для такой антенны.

Для антенны Inverted L, как и для любого другого четвертьволнового излучателя, обязательно требуются противовесы длиной 38-41 м - в зависимости от частоты настройки антенны и условий размещения противовесов. Если они закопаны в землю, то чем больше противовесов, тем лучше. А вот число противовесов, изолированных от земли (а тем более, располагающихся над ней), может быть значительно меньше-двух-четырех проводов будет вполне достаточно.

Несколько улучшить работу системы противовесов может металлический прут (прутья), закопанный(ые) в землю на глубину 2-3 м.

Полное сопротивление этой антенной системы в идеальных условиях составляет 38 Ом. В действительности оно несколько выше, поэтому имеется возможность запитать антенну Inverted L 50-омным коаксиальным кабелем.

Если увеличить длину четвертьволнового вертикала или антенны Inverted L до 50 м, то тем самым увеличится ее активное сопротивление в точке питания (примерно до 50 Ом). Правда, это приведет к тому, что антенна перестанет быть резонансной, и реактивная составляющая полного входного импеданса будет иметь индуктивный характер. Для компенсации этой реактивности достаточно установить в точке питания конденсатор переменной емкости с максимальной емкостью около 500-600 пФ. Здесь вполне подойдет даже конденсатор от старых ламповых приемников, который может не иметь большой диэлектрической прочности, т.к. он служит для электрического укорочения антенны, чтобы получить резонанс системы в диапазоне 160 м. Подстройкой емкости конденсатора переменной емкости антенну настраивают в резонанс в выбранном участке диапазона.

Еще одной популярной антенной диапазона 160 м является Sloper «слопер». Название «слопер» (от англ. slope - наклон) характеризует как форму установки антенны (под наклоном к земле), так и вид ее излучения (под наклоном к горизонту). На низкочастотных KB диапазонах слопер представляет, собой эффективную, относительно малогабаритную DX-антенну, которая успешно используется многими радиолюбителями. Токоведущая часть системы находится высоко и удалена от мешающих объектов на земле, а поляризация излучения - преимущественно вертикальная.

Следует различать четвертьволновый:

и полуволновый слопер:

Для установки любой из этих антенн достаточно одной мачты. При этом нижний конец антенны, по требованиям техники безопасности, должен заканчиваться на высоте 2-3 м над землей.

В направлении натянутого провода слопер имеет небольшое усиление (по некоторым данным оно составляет 2-3 дБ), в то время как с тыльной стороны наблюдается ослабление сигнала. Следовательно, рекомендуется устанавливать слопер в предпочтительном направлении.

Четвертьволновый слопер (рис.выше) имеет длину около 40 м (38,51 м для частоты 1,85 МГц, 37,5 м - для 1,9 МГц). Заземленная мачта играет роль противовеса. Такая антенна запитывается 50-омным коаксиальным кабелем. Внутренний проводник кабеля соединяется с проволочным излучателем, а оплетка кабеля - с мачтой.

Согласно опытным данным, настройка четвертьволнового слопера не так уж и проста. Нередко, чтобы настроить систему на требуемую частоту и добиться полного входного сопротивления около 50 Ом, требуются основательные затраты времени и сил. Дело в том, что резонанс антенны зависит от размеров мачты, проводимости почвы, длины излучателя, угла его наклона к земле и т.д. Исходя из этого, угол наклона излучателя и его высота над землей являются решающими факторами при формировании полного входного сопротивления антенны.

Многие четвертьволновые слоперы начинают работать сразу после установки, так что не стоит бояться браться за изготовление этой антенны. Следует помнить, что она изготавливается для долговременной эксплуатации, и, однажды ее настроив, потом можно наслаждаться ее работой.

Полуволновой слопер (рис. выше) фактически является классическим полуволновым диполем, установленном под наклоном к земле. Такая антенна выгодно отличается от четвертьволного слопера стабильно предсказуемыми параметрами, поэтому кропотливая настройка, как это имеет место с четвертьволновым слопером, не требуется.

Общая длина полуволного слопера составляет около 77 м для частоты 1,85 МГц (75 м - для частоты 1,9 МГц).

В полуволновом слопере осознанно отказываются от применения симметрирующего устройства, т.к. оно, скорее всего, нивелировало бы позитивные свойства этой антенны. Дело в том, что при несимметричном питании диаграмма направленности диполя слегка «косит», характеристика излучения искажается в направлении «горячего» плеча, которое соединено с внутренним проводником коаксиального кабеля. Этот эффект можно использовать для дополнительного «прижима» излучения к земле.

Еще одним преимуществом полуволнового слопера является то, что его можно оптимально «подогнать» к имеющимся местным условиям. Для этого «холодный» конец антенны пускают через направляющий ролик и натягивают вертикально вниз (обычно на расстоянии 1-2 м от здания или мачты):

Ролик закрепляют на самой высокой точке. Тем самым, можно менять длину антенны и оптимально «вписать» ее в местные условия.

При установке описанных антенн следует иметь в виду, что очень редко антенна резонирует на расчетной частоте, поэтому, как правило, антенна нуждается в точной настройке. В этой связи полезно знать, что длину четвертьволного излучателя следует изменить на 208 см, чтобы достичь сдвига резонанса на 100 кГц. В полуволновом диполе для этого потребуется изменить длину на 416 см, а в антенне Delta Loop - на 832 см.

Диапазон 160 метров, выделенный начинающим коротковолновикам для освоения азов любительской радиосвязи, имеет одно крупное преимущество перед другими диапазонами и один крупный недостаток. Преимущество состоит в том, что изготовить и отладить приемно-пере-дающую аппаратуру на этот диапазон проще, чем на другие диапазоны. Это очень важно для начинающего коротковолновика. Но изготовив передатчик или трансивер, он тут же сталкивается с основным недостатком этого диапазона - сложностями в изготовлении антенн. Справедливости ради надо сказать, что с этой проблемой сталкиваются все коротковолновики (независимо от категории их радиостанций и опыта работы в эфире), решившие поработать на диапазоне 160 метров.

Дело в том, что передающая антенна обеспечивает высокий коэффициент полезного действия, если ее размеры сопоставимы с рабочей длиной волны. Скажем прямо, возможность подвесить нормальный полуволновой диполь на этот диапазон имеют очень немногие радиолюбители. Во-первых, для этого необходим свободный пролет между домами не менее 80 м. Во-вторых, для питания этой антенны потребуется коаксиальный кабель примерно такой же длины. И так далее...

Возможное решение проблемы антенны диапазона 160 метров - использование проволочной антенны длиной около 40 м, питание которой осуществляется с одного из концов. Такую антенну можно рассматривать как своеобразный аналог хорошо известного четвертьволнового штыря (GP - Ground Plane).

Антенное полотно имеет вертикальный или наклонный отрезок и горизонтальный отрезок (рис. 1, а, б). Соотношение между этими двумя частями антенного полотна произвольное. В частности, полотно может вообще не иметь перегибов и идти, например, от окна комнаты, где находится радиостанция, прямо на высокое дерево или край крыши соседнего дома. Суммарная длина отрезков А и Б для варианта антенны по рис. 1,а - 38 м, а по рис. 1,б - 43 м.

Первый вариант антенны (рис. 1,а) при длине отрезка А=10 м имеет входное сопротивление около 10 Ом. Для ее согласования с 50-омным питающим кабелем используется LC-контур. Конденсатором С добиваются резонанса антенны на рабочей частоте, а подбором положения отвода на катушке L - оптимального согласования питающего фидера с антенной. Контрол ировать резонансную частоту антенны лучше всего с помощью гетеродинного индикатора резонанса, связанного с катушкой L. Согласование фидера с антенной контролируют с помощью измерителя КСВ.

Второй вариант антенны (рис. 1,б) имеет более высокое значение активной составляющей входного сопротивления (при длине А= 10 м около 50 Ом), но у него есть и реактивная составляющая. Ее компенсируют переменным конденсатором С. Резонансную частоту этой антенны устанавливают подбором длины полотна.

При выборе варианта антенны следует учитывать два фактора. Второй вариант исполнения этой антенны имеет более высокое входное сопротивление, и, следовательно, она из-за меньшего влияния потерь в "земле" будет более эффективна. Но она и более трудоемка в настройке, так как может потребоваться подбор оптимальной длины полотнаантенны. Впрочем, эту операцию проводят всего один раз.

Для эффективной работы любого из этих двух вариантов антенны необходимо иметь хорошую "землю". В большинстве случаев у радиолюбителя нет возможности установить полноразмерный противовес длиной около 40 м (это было бы идеальным решением). Однако установить противовес длиной в несколько метров возможность есть всегда. Его можно протянуть, например, вдоль стены здания от окна к балкону или между окнами. Для того чтобы такой короткий противовес работал на диапазоне 160 метров, между ним и корпусом передатчика (трансивера) надо включить катушку индуктивности (рис.1,в). Ее индуктивность (она, естественно, зависит от длины противовеса) рассчитывают по программе, написанной для GW-BASIC

20 INPUT "D="; D

30 INPUT "F="; F

40 X=LOG(2000*A/D)-1

50 Y=(F"A/73.1)^2-T

70 L=-1490/F^2"(X"Y/Z)

При запуске программа запрашивает длину противовеса А (метры), диаметр провода противовеса D (миллиметры) и рабочую частоту F (мегагерцы). Результат расчета - значение индуктивности катушки L (микрогенри). Контрольные цифры для проверки правильности введения программы: если А=5 м, D=2 мм, а F=1,8 МГц, то 1=207.5963 мкГн. На практике надо найти такой вариант подвески противовеса, чтобы его длина была как можно большей.

Из-за близости стен к полотну противовеса реальное значение индуктивности катушки скорее всего будет отличаться от расчетного. Вот почему катушку лучше сразу выполнить с отводами и экспериментально подобрать точку подключения к ней противовеса. Можно эту процедуру упростить, включив последовательно с катушкой переменный конденсатор емкостью около 200 пФ. Этим конденсатором противовес настраивают на рабочую частоту. Оптимальную настройку противовеса определяют по минимуму тока в подключенном к корпусу радиостанции вспомогательном противовесе длиной несколько метров. Вблизи от корпуса в него включают простейший высокочастотный миллиамперметр (рис. 1,г).

Первичная обмотка трансформатора Т1 высокочастотного миллиамперметра - провод противовеса, пропущенный внутри кольцевого магнитопровода. Вторичная обмотка трансформатора содержит десять витков провода диаметром 0,3 мм. Магнитопровод может иметь внешний диаметр 5-15 мм и начальную магнитную проницаемость от 20 до 1000. Диод VD1 - любой высокочастотный.

Отладив таким образом антенну и противовес, надо попробовать подключить к корпусу передатчика арматуру дома (если он железобетонный), систему отопления и водоснабжения. Это может увеличить эффективность антенны.

Литература

  1. Антенны на диапазон 160м.-Радиоежегодник. - М.: ДОСААФ, 1983, с. 66-73.
  2. Простая антенна с искусственной "землей". - KB журнал, 1997, № 2, с. 16,17.
  3. Простая антенна с искусственной "землей". - KB журнал, 1997, № 3. с. 37.
  4. XUSE ОМ! - KB журнал, 1997, №4. с. 47.
  5. Коротковолновые антенны. - Радиоежегодник. - М.: ДОСААФ. 1985, с. 165-177.
  6. Степанов Б. Антенна "укороченный диполь". - Радио. 1987, № 5, с. 19,20.

В одной из своих книг в конце 80-х годов ХХ века, W6SAI, Bill Orr предложил простую антенну - 1 элементный квадрат, который устанавливался вертикально на одной мачте.Антенна по W6SAI была изготовлена с добавлением ВЧ дросселя. Квадрат выполнен на диапазон 20 метров (рис.1) и установлен вертикально на одной мачте.В продолжение последнего колена 10 метрового армейского телескопа вставлен сантиметров пятьдесят кусок стекстотекстолита, по форме ничем не отличающегося от верхнего колена телескопа, с отверстием наверху, что и является верхним изолятором. Получился квадрат у которого угол вверху, угол внизу и два угла на растяжках по бокам.С точки зрения эффективности это наиболее выгодный вариант расположения антенны, которая находится низко над землей. Точка запитки получилась около 2 метров от подстилающей поверхности. Узел подключения кабеля представляет из себя кусок толстого стеклотекстолита 100х100 мм, который прикреплен к мачте и служит изолятором.Периметр квадрата равен 1 длине волны и расчитывается по формуле: Lм=306,3\F мГц. Для частоты 14,178 мГц. (Lм=306,3\14,178) периметр будет равен 21,6 м, т.е. сторона квадрата = 5,4 м. Запитка с нижнего угла кабелем 75 ом длиной 3,49 метра, т.е. 0,25 длины волны.Этот отрезок кабеля является четвертьволновым трансформатором, трансформируя Rвх. антенны порядка 120 Ом, в зависимости от окружающих антенну предметов, в сопротивление близкое к 50 Ом. (46,87 Ом). Большая часть отрезка кабеля 75 Ом расположена строго вертикально, вдоль мачты. Далее, через ВЧ разъем идет основная линия передачи кабель 50 Ом длиной равной целому числу полуволн. В моем случае это отрезок 27,93 м, который является полуволновым повторителем.Такой способ запитки хорошо подходит для 50 омной техники, что сегодня в большинстве случаев соответствует R вых. ШПУ трансиверов и номинальному выходному сопротивлению усилителей мощности (трансиверов) с П-контуром на выходе.При расчете длины кабеля следует помнить о коэффициенте укорочения 0,66-0,68, в зависимости от типа пластиковой изоляции кабеля. Этим же 50 омным кабелем, рядом с упомянутым ВЧ разъемом мотается ВЧ дроссель. Его данные: 8-10 витков на оправке 150мм. Намотка виток к витку. Для антенн на НЧ диапазоны - 10 витков на оправке 250 мм. ВЧ дроссель устраняет кривизну диаграммы направленности антенны и является Запорным Дросселем для ВЧ токов движущихся по оплетке кабеля в направлении передатчика.Полоса пропускания антенны порядка 350-400 кГц. при КСВ близком к единице. За пределами полосы пропускания КСВ сильно растет. Поляризация антенны горизонтальная. Растяжки выполнены из провода диаметром 1,8 мм. разбитого изоляторами не реже чем через каждые 1-2 метра.Если изменить точку запитки квадрата, запитав его сбоку, в результате получим вертикальную поляризацию, более предпочтительную для DX. Кабель использовать тот же, что и при горизонтальной поляризации, т.е. к рамке идет четвертьволновый отрезок кабеля 75 Ом, (центральная жила кабеля подсоединяется к верхней половине квадрата, а оплетка к нижней), а затем кратно полуволне кабель 50 Ом.Резонансная частота рамки при смене точки запитки уйдет вверх примерно на 200 кГц. (на 14,4 мГц.), поэтому рамку придется несколько удлинить. Удлинительный провод, шлейф примерно 0,6-0,8 метра можно включить в нижний угол рамки (в бывшую точку запитки антенны). Для этого надо использовать отрезок двухпроводной линии порядка 30-40 см.Волновое сопротивление здесь большой роли не играет. На шлейфе запаивается перемычка по минимуму КСВ. Угол излучения будет 18 градусов, а не 42, как при горизонтальной поляризации. Мачту очень желательно заземлить у основания.

Антенна горизонтальная рамка

В предыдущих материалах были описаны различные варианты штыревых антенн для диапазона 160 метров - от глобально укороченных, до бескомпромиссно четвертьволновых. Но есть еще один класс - минимально (компромиссно) укороченных. Ниже показаны еще четыре 100% работающих штыревых антенны на 160 метров с минимальным количеством дополнительных элементов, приводящим к резонансу антенны на нужной частоте и согласованых до КСВ не более 1,5 с фидером 50 Ом. Сначала два варианта понятных без дополнительного сложного описания. Вариант антенны от W1PL представляет собой вариометр с максимальной индуктивностью 30 микрогенри к "горячему" концу которого подключен вертикальный провод от 17 до 25 метров, который будет резонировать в диапазоне 1800-2000 кгц, а точное согласование до КСВ равного 1 получается при настройке вариометра. За неимением описанного, запросто

подойдёт широко распространённый вариометр от РСБ-5. Их на постсоветском пространстве хоть пруд пруди. Естественно, работать эффективно это будет с противовесами в четверть волны, а это всё равно 41 метр:-(Наличие катушки в основании штыря предполагает некоторую компенсацию неподходящих (укороченных) противовесов, но тем не менее с противовесами надо постараться. Плюсы этого варианта - абсолютная прозрачность устройства и широкий диапазон перестройки.

Еще вариант - ёмкостная нагрузка и, в качестве компенсации реактивности сильно укороченного вертикала подстроечный конденсатор в основании антенны. Два очень серьёзных недостатка: тот самый конденсатор, который придётся набирать при настройке, и собственно ёмкостная нагрузка. Она должна быть максимально близка к металлическому диску диаметром 2,5 метра. Конструктивно это квадрат со стороной 2,3 метра, растянутый на подвесках, к центру которого идут 25 проводников от периметра, а в центре подключен сам вертикал. Это может быть и треугольник, но площадь его должна быть около 7 квадратных метров.


Видимо от отчаяния при рассмотрении вопроса о такой громоздкой ёмкостной нагрузке, W8GDQ перенёс центр тяжести на землю - в основание штыря. В связи с тем, что длина антенны резонансные четверть волны - 41,75 метра, для согласования понадобился ёмкостной делитель и, как следствие, компенсатор в виде индуктивности в 2,9 микрогенри. Недостатки очевидны, а в плюсах только высокая эффективность излучения, тоесть КПД. Но не стоит обольщаться: у штыря в самом хорошем варианте КПД не более 33 процентов. Но если бы мне пришлось выбирать между одним из последних двух вариантов, я бы выбрал последний. Несмотря на то что понадобиться высота подвеса в 42 метра. Я бы его изогнул на доступной высоте:-) Зато выигрывал бы при приёме в соотношении сигнал/шум.
И, наконец, то что я могу рекомендовать к исполнению даже начинающим радиолюбителям - две конструкции GP на 160 метров не требующие никакой настройки и не содержащие сложного конструктива в виде элементов настройки в резонанс и согласования. Первая антенна - вертикал с ёмкостной нагрузкой в виде двух проводов длиной по 11,43 метра в одну линию от W3IN. То есть подвеска в двух точках автоматически решающая проблему крепления верхней точки штыря. Снизу стандартный узел с изолированным основанием.
Второй вариант, от K2GNC, содержит четыре проводника ёмкостной нагрузки длиной по 2,5 метра на расстоянии 2,13 метра от вершины вертикала. В связи с тем, что ёмкостная нагрузка невелика, хороший КСВ можно получить только используя большое количество резонансных противовесов. Что является известным затруднением. Как я уже упоминал выше, чем больше длина отличается от необходимой, тем больше требуется компенсирующих элементов и тем меньше КПД антенны. Но среди десятка конструкций, которых QST посчитал возможным рекомендовать на своих страницах, вы сможете найти для себя компромиссный вариант для своих условий который будет соответствовать основному правилу радиолюбителя: даже плохая антенна лучше чем её отсутствие. (Последнюю мысль, кажется, у кого-то украл:-)

(ua 9 acn ), мастер спорта СССР международного класса.

Хорошо известно, что эффектив­ная работа в эфире невозможна без тщательно настроенной ан­тенны. Вот почему прежде, чем присту­пать к установке антенны, необходимо изготовить хотя бы простейшие измери­тельные приборы: измеритель КСВ (рефлектометр) и индикатор напря­женности поля.

Рефлектометр - это прибор, с по­мощью которого можно согласовать волновое сопротивление антенны с вол­новым сопротивлением фидерной линии и настроить антенну на частоту пере­датчика.

Схема простого рефлектометра при­ведена на рис. 1.

В качестве индикатора в нем применен микроамперметр с током полного отклонения 100 мкА. Диоды vi и v 2 - КД503А. Здесь можно использовать практически любые диоды (ГД507. Д2. Д9 и т п). Конденсаторы должны быть керамические или слюдя­ные (КМ, КЛС, КСО), а резисторы - безындукционные (С2-10, mЛ t ).

Сопротивление резистора r 1 - 75 или 50 Ом - выбирают в соответствии с волновым сопротивлением коаксиаль­ного кабеля, примененного в качестве фидерной линии антенны. Поскольку сопротивления различных образцов ре­зисторов отличаются от обозначенных на них номинальных значений, следует подобрать из числа 76- и 51-омных резисторов экземпляр с сопротивлеиием, возможно более близким к тре­буемому. Этот резистор можно соста­вить из нескольких соединенных парал­лельно (например, 50-омный резис­тор - из двух или трех по 150, 100 Ом).

Для измерения коэффициента стоя­чей волны в фидере (его подключают к разъему Х2) через разъем xi на реф­лектометр подают от ГСС (или от пере­датчика с уменьшенной мощностью) сигнал с частотой, на которую должна быть настроена антенна. Установив уро­вень сигнала таким, чтобы стрелка мик­роамперметра не «зашкаливала» (це­лесообразно устанавливать ее на по­следнее деление шкалы - точность из­мерений будет выше), записывают по­казания микроамперметра при поло­жениях переключателя s1 «Пад» и «Отр». Обозначая эти показания соот­ветственно А пад и А отр, вычисляют коэффициент стоячей волны по форму­ле

Штырь индика­тора представляет собой медный, латун­ный или алюминиевый стержень, ос­тальные элементы таких же типов, как в рефлектометре.

Одной из лучших антенн диапазона 160 метров является обычный полуволновый диполь, хотя из-за относи­тельно больших размеров его установка доступна далеко не каждому радио­любителю. Как известно, чем меньше угол излучения антенны по отношению к горизонту, тем большую дальность связи можно ожидать при прочих рав­ных условиях. Простейший диполь (рис. 3), длина которого для 160-метро­вого диапазона должна быть около 77 м. При практически доступных радио­любителям высотах подвеса (они обыч­но меньше четверти длины волны) из­лучает под углами более 60°. При мощ­ности передатчика 10 Вт с такой антен­ной наиболее вероятны связи на рас­стояние до 750 км.

Диполь выполняют нз медного прово­да или канатика диаметром 1,5...2 мм. Кабель 5 жестко крепят к Т-образно­му изолятору 4, а центральную жилу кабеля н оплетку припаивают к плечам диполя 2 и 3. Изолятор изготовляют из текстолита толщиной не менее 3 мм, в части, работающей на растяжение, изолятор усиливают текстолитовым брус­ком размерами 15x25x100 мм.

Правильность выбора длины диполя определяют по измерениям КСВ в полосе частот. Из этих измерений на­ходят резонансную частоту антенны, т. е частоту, на которой КСВ минима­лен. Если она меньше (больше) задан­ной, плечи диполя укорачивают (удли­няют). Дли­ны обеих половин диполя нужно изме­нять на одинаковую величину.

Если предполагается работать как телеграфом, так и телефоном, то резо­нансную частоту антенны следует выб­рать близкой к середине диапазона (примерно 1900 кГц). Если же работа будет вестись в основном только одним видом излучения, то ее целесообразно выбрать посередине соответствующего участка.

В местности с одно-двухэтажными строениями можно применить антенну с высотой подвеса h = 10 ..12 м и длиной горизонтальной части l= около 20 м (рис 4).

В такую антенну нужно вклю­чить удлиняющую катушку индук­тивностью около 52 мкГ. Ее можно намотать на каркасе диаметром 75 мм, выполненном из хорошего изо­ляционного материала (органическое стекло, текстолит и т. п.). Намотку ведут проводом ПЭВ-2 1,0... 1,5. Число вит­ков - 75, отводы от каждого 5-го витка. Катушка должна быть надежно защищена от атмосферных воздействий.




Top