Типы литий-ионных аккумуляторов (Li-ion). Что важно знать о li ion аккумуляторах

В течение длительного времени кислотный аккумулятор был единственным устройством, способным обеспечивать электрическим током автономные объекты и механизмы. Несмотря на большой максимальный ток и минимальное внутреннее сопротивление, такие батареи имели ряд недостатков, которые ограничивали их применения в устройствах потребляющих большое количество электроэнергии или в закрытых помещениях. В этом плане литий-ионные аккумуляторы лишены многих негативных качеств своих предшественников, хотя и недостатки у них имеются.

Содрежание

Что такое литий ионный аккумулятор

Первые литиевые аккумуляторы появились 50 лет назад. Такие изделия представляли собой обычную батарейку, в которой для повышения уровня отдачи электроэнергии был установлен литиевый анод. Такие изделия имели очень высокие эксплуатационные характеристики, но одним из самых серьёзных недостатков являлась высокая вероятность воспламенения лития при перегреве катода. Учитывая эту особенность, учёные со временем заменили чистый элемент ионами металла, вследствие чего значительно увеличилась безопасность.

Современные li-ion аккумуляторы очень надёжны и способны выдерживать большое количество циклов заряда - разряда. Они имеют минимальный эффект памяти и относительно небольшой вес. Благодаря таким свойствам, литиевая батарея нашла широкое применение во многих устройствах. Изделие может применяться в качестве АКБ, в виде батареек для бытовой техники, а также как высокоэффективный тяговый источник электроэнергии.

На сегодняшний день такие устройства обладают несколькими недостатками:

  • высокая стоимостью;
  • не любят глубокие разряды;
  • могут умереть при низких температурах;
  • теряют емкость при перегреве.

Как осуществляется производство li-ion АКБ

Литий-ионные аккумуляторы производятся в несколько этапов:

  1. Изготовление электродов.
  2. Объединение электродов в батарею.
  3. Установка платы защиты.
  4. Установка батареи в корпус.
  5. Заливка электролита.
  6. Тестирование и заряд.

На всех этапах производства должна быть соблюдена технология и меры безопасности, что в итоге позволяет получить качественное изделие.

В качестве катода в литий-ионных батареях используется фольга, с нанесённым на её поверхности содержащий литий веществом.

В зависимости от назначения АКБ могут быть использованы следующие соединения лития:

  • LiCoO2;
  • LiNiO2;
  • LiMn2О4.

При изготовлении цилиндрических источников электроэнергии типоразмера AA и AAA основной электрод скручивается в рулон, который отделяется от анода сепаратором. При большой площади катода, плёнка которого имеет минимальную толщину, удаётся добиться высокой энергоёмкости изделия.

Принцип работы и устройство li-ion аккумулятора

Литий ионный аккумулятор работает следующим образом:

  1. При подаче на контакты батареи постоянного электрического тока катионы лития перемещаются в материал анода.
  2. В процессе разрядки ионы лития покидают анод и проникают в диэлектрик на глубину до 50 нм.

В «жизни» литий-ионного аккумулятора таких циклов может быть до 3 000 при этом батарея может отдать практически весь электрический ток накопленный в процессе зарядки. Глубокий разряд не приводит к окислению пластин, что выгодно выделяет такие изделия по сравнению с кислотными АКБ.

Не все li-ion АКБ хорошо переносят глубокие разряды. Если подобная батарея установлена в телефоне или фотоаппарате (типа AAA), то при глубоком разряде контроллерная плата в целях безопасности блокирует возможность заряда батареи, поэтому без специального зарядного устройства зарядить ее не получится. Если это тяговая литиевая батарея для лодочного мотора, то ей глубокий разряд будет совсем не страшен.

В отличие от пальчиковых аккумуляторов сложные батареи состоят из нескольких отдельных источников электроэнергии соединённых параллельно или последовательно. Способ соединения зависит от того, какой показатель электричества необходимо увеличить.

Типоразмеры и виды li-ion батарей

Литий-ионные аккумуляторы получили широкое распространение. Такие источники электрического тока используются в различных бытовых устройствах, гаджетах и даже автомобилях. Кроме этого, изготавливаются промышленные литий ионные аккумуляторы, имеющие большую ёмкость и высокое напряжение. Наиболее востребованными являются следующие типы литиевых аккумуляторов:

Название Диаметр, мм Длинна, мм Емкость, мАч
10180 10 18 90
10280 10 28 180
10440 (AAA) 10 44 250
14250 (AA/2) 14 25 250
14500 14 50 700
15270 (CR2) 15 27 750-850
16340 (CR123A) 17 34.5 750-1500
17500 (A) 17 50 1100
17670 17 67 1800
18500 18 50 1400
18650 (168A) 18 65 2200-3400
22650 22 65 2500-4000
25500 (тип C) 25 50 2500-5000
26650 26 50 2300-5000
32600 (тип D) 34 61 3000-6000

Первые две цифры таких обозначений указывают на диаметр изделия, вторая пара – на длину. Последний «0» ставится, если батарейки имеют цилиндрическую форму.

Кроме аккумуляторов цилиндрической формы промышленностью выпускаются батареи типа « » напряжением 9v и мощные промышленные АКБ с напряжением 12v, 24v, 36v и 48v.


Батарея для штабелера

В зависимости от элементов, которые добавляется в изделие, на корпусе батареи может быть следующая маркировка:

  • ICR – содержащие кобальт;
  • IMR - - - - марганец;
  • INR - - - - никель и марганец;
  • NCR - - - - никель и кобальт.

Литиевые батареи отличаются не только размером и химическими добавками, но прежде всего по ёмкости и напряжению. Эти два параметра и определяют возможность их использования в тех или иных видах электрических приборов.

Где применяются li-ion АКБ

Литий-ионные батареи не имеют альтернативы там, где необходим аккумулятор способный отдавать электричество практически в полном объёме, и совершать большое количество циклов заряд/разряд без снижения ёмкости. Преимуществом таких устройств является относительно малый вес, ведь использовать свинцовые решётки в таких устройствах нет никакой необходимости.

Учитывая высокие эксплуатационные характеристики, такие изделия могут использоваться:

  1. В качестве стартерных батарей. Литиевые аккумуляторы для автомобилей с каждым годом дешевеют, благодаря новым разработкам, которые позволяют снизить издержки производства. К сожалению цена таких батарей может быть очень высокой, поэтому многим владельцам машин такой аккумулятор оказывается не по карману. К недостаткам литий-ионных батарей можно отнести существенное падение мощности при температуре ниже минус 20 градусов, поэтому в северных районах эксплуатация таких изделий будет непрактичной.
  2. В качестве тяговых устройств. Благодаря тому, что литий-ионные аккумуляторы легко переносят глубокий разряд их нередко используют как тяговые для лодочных электромоторов. Если мощности двигателя не слишком велика, то одного заряда хватает на 5 – 6 часов непрерывной работы, что вполне достаточно для рыбалки или совершения водной прогулки. Тяговый литий-ионный аккумуляторы устанавливают и на различную погрузочную технику (электроштабелеры, электропогрузчики), работающую в закрытых помещениях.
  3. В бытовой технике. Литий-ионные аккумуляторы применяются в различных бытовых устройствах вместо стандартных батареек. У таких изделий напряжение 3,6v - 3,7v, но существуют модели, которые способны заменить обычную солевую или щелочную батарейку на 1,5 Вольта. Также можно встретить батареи напряжением 3v (15270, ), которые можно установить вместо 2 стандартных батареек.

Используются такие изделия в основном в мощных приборах, в которых обычные солевые батарейки очень быстро разряжаются.


Тяговой АКБ

Правила эксплуатации li ion аккумуляторов

На срок службы литиевого аккумулятора влияют многие факторы, знание которых позволит существенно увеличить ресурс. При использовании этого вида батарей необходимо:

  1. Стараться не допускать полного разряда батареи. Несмотря на высокую устойчивость батареи к такому воздействию, желательно не выжимать из него все «соки». Особенно следует соблюдать осторожность при эксплуатации таких батарей с ИБП и электрическими двигателями высокой мощности. Если полный разряд батареи произошёл необходимо её незамедлительно оживить, то есть подключить к специальному зарядному устройству. Раскачать аккумулятор можно и после длительного пребывания в состоянии глубокого разряда, для чего необходимо произвести качественную зарядку в течение 12 часов, затем разрядить батарею.
  2. Не допускать перезаряда. Перезаряд негативно влияет на характеристики изделия. Встроенный контроллёр не всегда способен вовремя отключить батарею, особенно в том случае, когда зарядка осуществляется в холодном помещении.

Кроме перезаряда и чрезмерного разряда батарею следует оберегать от чрезмерных механических воздействий, которые могут вызвать разгерметизацию корпуса и возгоранию внутренних компонентов аккумулятора. По этой причине существует запрет пересылки почтой батарей, в которых содержание чистого лития превышает 1 г.


Применяется в качестве АКБ для шуруповертов, ноутбуков и телефонов

Как хранить литий ионные аккумуляторы

Если возникает необходимость в длительном хранении литий-ионных аккумуляторов, то для минимизации негативного воздействия на изделия, необходимо придерживаться следующих рекомендаций:

  1. Хранить изделие только в сухом, прохладном помещении.
  2. Аккумулятор обязательно извлекается из электрического прибора.
  3. Батарею необходимо зарядить перед консервацией. Минимальное напряжение, при котором не будут образовываться внутренние коррозионные процессы равно 2,5 Вольт на 1 элемент.

Учитывая малый саморазряд таких батарей, хранить таким образом аккумулятор можно в течение нескольких лет, но в течение этого срока всё равно неминуемо произойдёт уменьшение ёмкости элемента.

Утилизация литий ионных аккумуляторов

Литий-ионные аккумуляторы содержат опасные для здоровья вещества, поэтому ни в коем случае не следует их разбирать в домашних условиях. После того как батарея выработает свой ресурс её необходимо сдать для дальнейшей переработки. В специализированных приёмных пунктах можно получить денежную компенсацию за старый литиевый аккумулятор, ведь такие изделия содержат дорогостоящие элементы, которые могут быть использованы повторно.

Который широко распространён в современной бытовой электронной технике и находит свое применение в качестве источника энергии в электромобилях и накопителях энергии в энергетических системах. Это самый популярный тип аккумуляторов в таких устройствах как сотовые телефоны , ноутбуки , электромобили , цифровые фотоаппараты и видеокамеры . Первый литий-ионный аккумулятор выпустила корпорация Sony в 1991 году .

Характеристики

В зависимости от электро-химической схемы литий-ионные аккумуляторы показывают следующие характеристики:

  • Напряжение единичного элемента 3,6 В.
  • Максимальное напряжение 4,2 В, минимальное 2,5–3,0 В. Устройства заряда поддерживают напряжение в диапазоне 4,05–4,2 В
  • Энергетическая плотность : 110 … 230 Вт*ч/кг
  • Внутреннее сопротивление : 5 … 15 мОм/1Ач
  • Число циклов заряд/разряд до потери 20 % ёмкости: 1000-5000
  • Время быстрого заряда: 15 мин - 1 час
  • Саморазряд при комнатной температуре: 3 % в месяц
  • Ток нагрузки относительно ёмкости (С):
    • постоянный - до 65С, импульсный - до 500С
    • наиболее приемлемый: до 1С
  • Диапазон рабочих температур: −0 ... +60 °C(при отрицательных температурах заряжание батарей невозможен)

Устройство

Литий-ионный аккумулятор состоит из электродов (катодного материала на алюминиевой фольге и анодного материала на медной фольге), разделенных пропитанными электролитом пористыми сепараторами. Пакет электродов помещен в герметичный корпус, катоды и аноды подсоединены к клеммам-токосъемникам. Корпус имеет предохранительный клапан, сбрасывающий внутреннее давление при аварийных ситуациях и нарушении условий эксплуатации. Литий-ионные аккумуляторы различаются по типу используемого катодного материала. Переносчиком тока в литий-ионном аккумуляторе является положительно заряженный ион лития, который имеет способность внедряться (интеркалироваться) в кристаллическую решетку других материалов (например, в графит, окислы и соли металлов) с образованием химической связи, например: в графит с образованием LiC6, окислы (LiMO 2) и соли (LiM R O N) металлов. Первоначально в качестве отрицательных пластин применялся металлический литий, затем - каменноугольный кокс. В дальнейшем стал применяться графит. В качестве положительных пластин до недавнего времени применяли оксиды лития с кобальтом или марганцем, но они все больше вытесняются литий-ферро-фосфатными, которые оказались безопасны, дешевы и нетоксичны и могут быть подвержены утилизации, безопасной для окружающей среды. Литий-ионные аккумуляторы применяются в комплекте с системой контроля и управления - СКУ или BMS (battery management system) и специальным устройством заряда/разряда. В настоящее время в массовом производстве литий-ионных аккумуляторов используются три класса катодных материалов: - кобальтат лития LiCoO 2 и твердые растворы на основе изоструктурного ему никелата лития - литий-марганцевая шпинель LiMn 2 O 4 - литий-феррофосфат LiFePO 4 . Электро-химические схемы литий-ионных аккумуляторов: литий-кобальтовые LiCoO2 + 6xC → Li1-xCoO2 + xLi+C6 литий-ферро-фосфатные LiFePO4 + 6xC → Li1-xFePO4 + xLi+C6

Благодаря низкому саморазряду и большому количеству циклов заряда-разряда, Li-ion-аккумуляторы наиболее предпочтительны для применения в альтернативной энергетике. При этом помимо системы BMS (СКУ) они укомплектовываются инверторами (преобразователи напряжения).

Преимущества

  • Высокая энергетическая плотность.
  • Низкий саморазряд.
  • Отсутствие эффекта памяти .
  • Не требуют обслуживания.

Недостатки

Аккумуляторы Li-ion первого поколения были подвержены взрывному эффекту. Это объяснялось тем, что в них использовался анод из металлического лития, на котором в процессе многократных циклов зарядки/разрядки возникали пространственные образования (дендриты), приводящие к замыканию электродов и, как следствие, возгоранию или взрыву. Эту проблему удалось окончательно решить заменой материала анода на графит. Подобные процессы происходили и на катодах литий-ионных аккумуляторов на основе оксида кобальта при нарушении условий эксплуатации (перезарядке). Литий-ферро-фосфатные аккумуляторы полностью лишены этих недостатков. Кроме того, все современные литий-ионные аккумуляторы снабжаются встроенной электронной схемой, которая предотвращает перезаряд и перегрев вследствие слишком интенсивного заряда.

Аккумуляторы Li-ion при неконтролируемом разряде могут иметь более короткий жизненный цикл в сравнении с другими типами аккумуляторов. При полном разряде литий-ионные аккумуляторы теряют возможность заряжаться при подключении зарядного напряжения. Эта проблема решаема путем приложения импульса более высокого напряжения, но это отрицательно сказывается на дальнейших характеристиках литий-ионных аккумуляторов. Максимальный срок «жизни» Li-ion аккумулятора достигается при ограничении заряда сверху на уровне 95 % и разряда 15–20 %. Такой режим эксплуатации поддерживается системой контроля и управления BMS (СКУ), которая входит в комплект любого литий-ионного аккумулятора.

Оптимальные условия хранения Li-ion-аккумуляторов достигаются при заряде на уровне 40–70 % от ёмкости аккумулятора и температуре около 5 °C. При этом низкая температура является более важным фактором для малых потерь ёмкости при долговременном хранении. Средний срок хранения (службы) литий-ионного АКБ составляет в среднем 36 месяцев, хотя может колебаться в интервале от 24 до 60 месяцев.

Потеря ёмкости при хранении :

температура с 40 % зарядом со 100 % зарядом
0 ⁰C 2 % за год 6 % за год
25 ⁰C 4 % за год 20 % за год
40 ⁰C 15 % за год 35 % за год
60 ⁰C 25 % за год 40 % за три месяца

Согласно всем действующим регламентам хранения и эксплуатации литий-ионных аккумуляторов, для обеспечения длительного хранения необходимо подзаряжать их до уровня 70 % ёмкости 1 раз в 6–9 месяцев.

См. также

Примечания

Литература

  • Хрусталёв Д. А. Аккумуляторы. М: Изумруд, 2003.
  • Юрий Филипповский Мобильное питание. Часть 2. (RU). КомпьютерраLab (26 мая 2009). - Подробная статья о Li-ion аккумуляторах.. Проверено 26 мая 2009.

Ссылки

  • ГОСТ 15596-82 Термины и определения.
  • ГОСТ 61960-2007 Аккумуляторы и аккумуляторные батареи литиевые
  • Литий-ионные и литий-полимерные аккумуляторы. iXBT (2001 г.)
  • Литий-ионные аккумуляторные батареи отечественного производства

Допустимые диапазоны температур при заряде и разряде литий-ионных аккумуляторов

Особенности тестирования

Тесты на количество циклов проводились при разрядке током 1С, для каждого аккумулятора проводились циклы разрядки/зарядки до достижения 80% емкости. Такое число было выбрано исходя из сроков тесто и для возможного сравнения результатов впоследствии. Число полных эквивалентных циклов - до 7500 в некоторых тестах.
Тесты на срок службы проводились при различных уровнях заряда и температуре, каждые 40-50 дней проводились измерения напряжения для контроля разряда, длительность тестов составляла 400-500 дней.

Главной сложностью в экспериментах являются расхождения в заявленной емкости и реальной. Все аккумуляторы имеют емкость выше, чем заявленная, от 0,1% до 5%, что вносит дополнительный элемент непредсказуемости.

Наиболее часто использовались аккумуляторы NCA и NMC, но также тестировались литий-кобальт и литий-фосфатные аккумуляторы.

Немного терминов:
DoD - Depth of Discharge - глубина разряда.
SoC - State of Charge - уровень заряда.

Использование аккумуляторов

Количество циклов
На данный момент есть теория, что зависимость количества циклов, которые может выдержать аккумулятор от степени разряда аккумулятора в цикле имеет следующий вид (синим обозначены циклы разрядки, черным - эквивалентные полные циклы):

Данная кривая носит названия кривой Вёлера (Wöhler). Основная идея пришла из механики о зависимости числа растяжений пружины от степени растяжения. Начальное значение в 3000 циклов при 100% разряде батарей является средневзвешенным числом при разряде в 0,1С. Какие-то аккумуляторы показывают лучшие результаты, какие-то хуже. При токе 1С число полных циклов при 100% разряде падает с 3000 до 1000-1500 в зависимости от производителя.

В целом, данное соотношение, представленное на графиках, получило подтверждение по результатам экспериментов, потому целесообразным является зарядка аккумулятора при любой возможности .

Расчет суперпозиции циклов
При эксплуатации аккумуляторов возможна работа при одновременном наличии двух циклов (например, рекуперативное торможение в автомобиле):


Получается следующий комбинированный цикл:


Возникает вопрос, как это сказывается на эксплуатации аккумулятора, сильно ли уменьшается ресурс аккумулятора?

По результатам экспериментов комбинированный цикл показал результаты, как от сложения полных эквивалентных циклов двух независимых циклов. Т.е. относительная емкость аккумулятора в комбинированном цикле падала соответственно сумме разрядов на малом и большом циклах (линеаризованный график представлен ниже).


Влияние больших циклов разрядки более существенно, а значит подтверждается то, что аккумулятор лучше заряжать при каждой возможности.

Эффект памяти
Эффект памяти литий-ионных аккумуляторов по результатам экспериментов отмечен не был. При различных режимах его полная емкость все равно впоследствии не изменялась. В то же время есть ряд работ, которые подтверждают наличие данного эффекта в литий-фосфатных и литий-титановых аккумуляторах.

Хранение аккумуляторов

Температуры хранения
Тут никаких необычных открытий не было сделано. Температуры 20-25°C являются оптимальными (в обычной жизни) для хранения аккумулятора , если его не использовать. При хранении аккумулятора при температуре в 50°C деградация емкость идет практически в 6 раз быстрее.
Естественно более низкие температуры лучше для хранения, но в быту это означает специальное охлаждение. Так как температура воздуха в квартире, как правило, 20-25°C, то и хранение скорее всего будет при такой температуре.
Уровень заряда
Как показали испытания, чем меньше заряд тем медленнее идет саморазряд аккумулятора. Измерялась емкость аккумулятора, какой бы она была при его дальнейшем использовании после длительного хранения. Наилучший результат показали аккумуляторы, которые хранились с зарядом близким к нулю.
В целом хорошие результаты показали аккумуляторы, которые хранились не более чем с 60% уровнем заряда на момент начала хранения. Цифры отличаются от приведенных ниже для 100% заряда в худшую сторону (т.е. аккумулятор придет в негодность ранее, чем указано на рисунке):

Рисунок взят из статьи 5 практических советов по эксплуатации литий-ионных аккумуляторов
В то же время цифры для малого заряда более оптимистичны (94% после года при температуре 40°C для хранения при SOC 40%).
Так как 10% заряд непрактичен, так как время работы при таком уровне весьма маленькое, хранить аккумуляторы оптимально при SOC 60% , что позволит применить его в любой момент и не скажется критично на сроке его службы.

Основные проблемы результатов экспериментов

Никто не проводил тесты, которые можно считать на 100% достоверными. Выборка, как правило, не превышает пары тысяч аккумуляторов из миллионов произведенных. Большинство исследователей не могут представить достоверные сравнительные анализы по причинам недостаточной выборки. Также результаты этих экспериментов зачастую являются конфиденциальной информацией. Так что данные рекомендации не обязательно подходят к вашему аккумулятору, но могут считаться оптимальными.

Итоги экспериментов

Оптимальная частота зарядки - при каждой возможности.
Оптимальные условия хранения - 20-25°C при 60% заряде аккумулятора.

Источники

1.Курс «Battery Storage Systems», RWTH Aachen, Prof. Dr. rer. nat. Dirk Uwe Sauer

Какие есть типы литиевых аккумуляторов и особенности их конструкции?

Литиевые аккумуляторы на современном рынке прочно заняли несколько различных ниш. В основном они используются во всевозможной потребительской электронике, портативном инструменте и мобильных устройствах, бытовой технике и т. п. Существуют даже литиевые аккумуляторы 12 вольт для авто. Хотя широкого распространения в автомобилестроении они пока не получили. Использование литиевых аккумуляторов в различных отраслях народного хозяйства привело к тому, что на рынке появилось много разновидностей этих аккумуляторных батарей. Основные типы литиевых АКБ мы рассмотрим в сегодняшней статье.

Мы здесь не будем писать о принципе работы Li аккумуляторных батарей и истории их возникновения. Подробно о можно прочитать в статье по указанной ссылке. Также можете прочитать материалы отдельно про и . А в этом материале хотелось бы рассмотреть именно различные типы Li аккумуляторов в зависимости от их характеристик и назначения.

Итак, что касается мощности и ёмкости литиевых батарей. Деление здесь достаточно условное. Для того чтобы выпускать аккумуляторы различной ёмкости, с разными токами разряда, производители изменяют ряд параметров. Например, они регулируют толщину слоя электродной массы на фольге (в случае рулонной конструкции). В большинстве случаев этот электродный слой наносится медную (минусовой электрод) и алюминиевую (плюсовой) фольгу. Благодаря такому увеличению электродного слоя растут удельные параметры аккумулятора.

Однако при наращивании активной массы приходится уменьшать толщину проводящей основы (фольгу). В результате аккумулятор может пропустить меньший ток, не перегреваясь при этом. Кроме того, увеличение слоя электродной массы приводит к увеличению сопротивления элемента. Чтобы снизить сопротивление, часто для активной массы используют более активные и дисперсные вещества. Этими параметрами производители «играют» при выпуске АКБ с теми или иными параметрами. Аккумуляторный элемент с тонкой фольгой и толстой активной массой показывает высокие значения запасаемой энергии. А его мощность будет низкой, и наоборот. И это можно регулировать, не изменяя типоразмера изделия.

Аккумуляторные батареи с разными значениями ёмкости и разрядного тока получаются при изменении следующих параметров:

  • Толщина фольги;
  • Толщина сепаратора;
  • Материал плюсового и минусового электрода;
  • Размер частиц активной массы;
  • Толщина электрода.

При этом модели аккумуляторов, рассчитанных на более высокую мощность, оснащаются токовыводами больших размеров и массы. Это делается для предотвращения перегрева. Также для наращивания тока разряда используются всевозможные вещества, добавляемые в электролит или в электродную массу. У аккумуляторов с большой ёмкостью токовыводы, как правило, небольшие. Они рассчитываются на разрядный ток до 2С (обычно ток заряда-разряда аккумулятора указывается от его ёмкости) и зарядный ─ до 0,5С. Для литиевых АКБ большой ёмкости эти значения до 20С и до 40С, соответственно.

Модели литиевых аккумуляторов с высокой мощностью предназначены для питания стартёров, с высокой ёмкостью – для питания различной портативной аппаратуры. Что касается разработки литиевых батарей, то производители всевозможной электроники заказывают их в специальных фирмах. Те разрабатывают их с учётом предложенных условий, а затем размещают их в серийное производство. При разработке современных литиевых аккумуляторов учитываются следующие параметры:

  • Ёмкость;
  • Штатный и максимальный ток разряда;
  • Размеры;
  • Условия расположения внутри устройства;
  • Рабочая температура;
  • Ресурс (количество циклов заряд-разряд) и прочие.

Различные конструкции литиевых аккумуляторных батарей

По конструктивным особенностям литиевые аккумуляторы можно разделить по двум признакам:

  • Конструкция корпуса;
  • Конструкция электродов.

Конструкция электродов

Рулонного типа

На изображении ниже можно посмотреть Li─Ion аккумулятор с конструкцией рулонного типа.



Элементы рулонной конструкции изготавливаются двух типов:

  • Рулон электродов скручивается вокруг виртуальной пластины. В одном корпусе могут размещаться несколько рулонов, подключённых параллельно;
  • Цилиндрические. Различной высоты и диаметра.

Рулонная конструкция применяется там, где требуется аккумулятор небольшой ёмкости и мощность. Эта технология имеет небольшую трудоёмкость, поскольку скручивание электродных лент и сепаратора полностью автоматизировано. Недостатком такой конструкции является плохое теплоотведение от электродов. Фактически тепло отводится только через торец элемента.

Из набора электродов

Литиевые аккумуляторы со сборкой из отдельных электродов применяются при производстве призматических АКБ.

Тепло здесь также отводится с торца электрода. Производители стараются улучшить теплоотвод посредством регулировки состава и дисперсности активной массы.

Конструкция корпуса

Цилиндрические

Стоит уделить внимание цилиндрическим литиевым аккумуляторам. Они широко распространены в различной бытовой технике и электронике. Особенно популярны аккумуляторные элементы .

В качестве плюсов цилиндрического корпуса специалисты называют отсутствие изменения объёма при длительной эксплуатации. Это происходит за счёт того, что АКБ немного меняет объём в процессе заряда-разряда. Конструкция электродов в таком корпусе всегда рулонного типа. К недостаткам относят плохое теплоотведение.

Цилиндрические литиевые аккумуляторы могут иметь следующие токовыводы:

  • Винтовые борны;
  • Обычные контактные площадки.

Там, где более высокие требования к съёму тока, используются винтовые борны. Это АКБ с большим разрядным током и большой ёмкостью (более 20 Ач). Многочисленные испытания показывают, что цилиндрические литиевые аккумуляторы с винтовыми борнами выдерживают токи не более 10─15С. И это значения кратковременной нагрузки, при которой элемент быстро перегревается. При длительной работе они выдерживают разрядные токи 2─3С. В основном используют в портативном электроинструменте.



Аккумуляторные элементы с контактными площадками обычно используются для объединения в батареи. Для этого их сваривают лентой при помощи контактной сварки. Иногда производители уже выпускают элементы с лепестками под самостоятельную пайку. Причём вид лепестков может быть различным в зависимости от типа пайки.

В обозначении типоразмера цилиндрических литиевых аккумуляторов обычно присутствуют их размеры. Например, литий─ионные элементы 18650 имеют высоту 65, а диаметр ─ 18 мм.

Когда говорят о литиевых батарейках или аккумуляторах, то чаще всего даже не догадываются, что их в последние пару лет появилось чуть ли не десяток , каждая из которых представляет из себя литий с различными добавками других химических элементов, в итоге существенно отличающихся друг от друга.

Давайте разберёмся в их типах и начнём с классики:

Литий-ионные аккумуляторы - это классические перезаряжаемые аккумуляторов, в которой ионы лития перемещаются от отрицательного электрода к положительному электроду во время разряда и обратно при зарядке. Литий-ионные АКБ широко распространены в бытовой электронике. Они являются одним из самых популярных типов аккумуляторных батарей для портативной электроники, с одной из лучших энергетической плотностью, отсутствие эффекта памяти и медленной потери заряда, когда он не используется (низкий саморазряд).

Эта серия охватывает цилиндрические и призматические типоразмеры аккумуляторов. Li-ion имеет наивысшую плотность мощности среди любого аккумулятора старого типа. Очень легкий вес и большой цикл жизни делает его идеальным продуктом для многих решений.

Литий-титанат (титанат лития) - это относительно новый класс литий-ионных АКБ - (подробнее ). Он характеризуется очень длинным жизненным циклом, который измеряется в тысячах циклов. Литий-титанат свинца является также очень безопасным и сравним в этом плане с фосфатом железа. Энергетическая плотность ниже, чем у других литий-ионных источников тока и его номинальное напряжение 2.4 В.

Эта технология отличается очень быстрой зарядкой, низким внутренним сопротивлением, очень высоким жизненным циклом и отличной выносливостью (также безопасностью). LTO нашел свое применение в основном в электромобилях и наручных часах. В последнее время она начинает находить применение в мобильных медицинских устройствах, благодаря своей высокой безопасности. Одна из особенностей технологии заключается в том, что используются нанокристаллы на аноде вместо углерода, что обеспечивает гораздо более эффективную площадь поверхности. К сожалению, эта батарея имеет более низкие напряжения, чем другие типы литиевых АКБ.

Особенности:

  • Удельная энергия: около 30-110Wh/кг
  • Плотность энергии: 177 Вт * ч/л
  • Удельная мощность: 3,000-5,100 Вт/кг
  • Разряд КПД: примерно 85%; зарядки эффективность более 95%
  • Энергия-цена: 0.5 Вт/доллар
  • Срок годности: >10 лет
  • Саморазряд: 2-5 %/месяц
  • Долговечность: 6000 циклов до 90% емкости
  • Номинальное напряжение: от 1,9 до 2,4 В
  • Температура: от -40 до +55°C
  • Метод зарядки: используется стабильный постоянный ток, затем постоянное напряжение до тех пор, пока не достигнет порога.

Химическая формула: Li4Ti5O12 + 6LiCoO2 < > Li7Ti5O12 + 6Li0.5CoO2 (Е=2,1 В)

Литий-полимер имеет бОльшую плотность энергии в плане веса, чем литий-ионные АКБ. В очень тонких ячейках (до 5 мм) литий-полимер обеспечивает высокую объемную плотность энергии. Великолепная стабильность в перенапряжениях и высоких температурах.

Эта серия аккумуляторов может производиться в диапазоне от 30 до 23000 мА/ч, корпуса призматического и цилиндрического типов. Литий-полимерные аккумуляторы имеют ряд преимуществ: большую плотность энергии по объему, гибкость в размерах ячеек и более широкий запас прочности, с превосходной стабильностью напряжения даже на высокой температуре. Основные области применения: портативные плееры, Bluetooth, беспроводные устройства, КПК и цифровые камеры, электрические велосипеды, GPS навигаторы, ноутбуки, электронные книги.

Особенности:

  • Номинальное напряжение: 3,7 В
  • Зарядное напряжение: 4,2±0,05 В
  • Ток заряда, скорость: 0.2-10С
  • Предельное напряжение разряда: 2.5 В
  • Скорость разряда: до 50С
  • Выносливость в циклах: 400 циклов

Литий-фосфат железа имеет хорошие характеристики безопасности, длительный срок службы (до 2000 циклов), и невысокую стоимость производства. LiFePO4 батареи хорошо подходят для высоких токов разрядки, например военной техники, электроинструментов, электровелосипедов, мобильных компьютеров, ИБП и солнечных энергетических систем.

В качестве нового анодного материала для литий-ионных аккумуляторов, lifepo4 был впервые представлен в 1997 году и постоянно совершенствуется до настоящего времени. Он привлек внимание экспертов благодаря его надежной безопасности, долговечности, низкого воздействия на окружающую среду при утилизации, и удобных зарядно-разрядных характеристик. Многие специалисты утверждают, что lifepo4 аккумуляторы являются на сегодняшний день лучшим вариантом для автономного питания электроники.

Литий диоксид серы (батарея Li и SO2) - эти батареи имеют высокую плотность энергии и хорошую устойчивость к разряду на высокой мощности. Такие элементы используются в основном в военке, метеорологии и космонавтике.

Аккумуляторы на базе литий диоксида серы с металлическим литиевым анодом (самый легкий из всех металлов) и жидким катодом, содержащим пористый углеродный токосъемник с наполнением диоксида серы (SO2) выдают напряжение 2.9 В и имеют цилиндрическую форму.

Особенности:

  • Высокое рабочее напряжение, стабильное на протяжении большей части разряда
  • Чрезвычайно низкий саморазряд
  • Работоспособность в экстремальных условиях
  • Широкий рабочий температурный диапазон (-55°C до +65°С)

Литий-диоксид марганца (батарея Li-MnO2) - такие аккумуляторы обладают легким металлическим литиевым анодом и твердым катодом из диоксида марганца, погруженный в неагрессивный, нетоксичный органический электролит. Этот тип батареи соответствуют RoHS ЕС и характеризуется большой емкостью, высокой допустимой разрядкой и длинной продолжительностью службы.

Li-MnO2 широко используется в резервных источниках питания, аварийных радиобуях, пожарных сигнализациях, электронных системах контроля доступа, цифровых фотоаппаратах, медицинском оборудовании.

Особенности:

  • Высокая плотность энергии
  • Очень стабильное напряжение разрядки
  • Более чем 10-ти летний срок хранения
  • Рабочая температура: -40 до +60°С

Хлорида тионил лития (литий-SOCl2) батареи обладают легким металлическим литиевым анодом и жидким катодом, содержащий пористый углеродный токосъемник наполненный тионилхлоридом (SOCl2). Батарея Li-SOCL2 идеально подходят для автомобильных устройств, медицинской техники, а также военных и аэрокосмических устройств. Они имеют самый широкий диапазон рабочих температур от -60 до + 150°С.

Особенности:

  • Высокая плотность энергии
  • Долгий срок годности при хранении
  • Широкий температурный диапазон
  • Хорошая герметизация
  • Стабильное разрядное напряжение

Li-FeS2 батареи

Аккумуляторы и батареи Li-FeS2 расшифровываются как литий-железодисульфидные. Информация про них будет добавлена позже.




Top