Тест всего оборудования компьютера. Утилиты для определения железа компьютера. Визуальный осмотр материнской платы

Долгое время область применения воздушно-цинковых элементов питания не выходила за рамки медицины. Высокая емкость и длительный срок службы (в неактивном состоянии) позволили им беспрепятственно занять нишу одноразовых батареек для слуховых аппаратов. Но в последние годы наблюдается большой рост интереса к этой технологии у автопроизводителей. Некоторые считают, что нашлась альтернативу литию. Так ли это?

Воздушно-цинковая батарея для электромобиля может быть устроена следующим образом: в разделенную на отсеки емкость вставлены электроды, на которых адсорбируется и восстанавливается кислород воздуха, а также специальные съемные кассеты, заполненные расходным материалом анода, в данном случае гранулами цинка. Между отрицательными и положительными электродами прокладывается сепаратор. В качестве электролита может использоваться водный раствор гидроксида калия, либо раствор хлорида цинка.

Поступающий извне воздух с помощью катализаторов образует в водном растворе электролита гидроксильные ионы, которые окисляют цинковый электрод. В ходе данной реакции высвобождаются электроны, образующие электрический ток.

Преимущества

Мировые запасы цинка по некоторым оценкам составляют примерно 1.9 гигатонн. Если начать мировое производство металлического цинка сейчас, то уже через пару лет можно будет обеспечить сборку миллиарда воздушно-цинковых аккумуляторов емкостью 10 кВт*ч каждый. К примеру, для создания такого же количества при нынешних условиях добычи лития потребуется более 180 лет. Доступность цинка позволит еще и снизить цену на аккумуляторные батареи.

Очень важно и то, что воздушно-цинковые элементы, имея прозрачную схему рециклирования отработанного цинка, являются экологически чистыми изделиями. Используемые здесь материалы не отравляют окружающую среду и могут быть отработанны вторично. Продукт реакции воздушно-цинковых элементов питания (оксид цинка) также абсолютно безопасен для человека и его среды обитания. Не зря оксид цинка применяется в качестве основного компонента для детской присыпки.

Главным же преимуществом, благодаря которому электромобилестроители смотрят на эту технологию с надеждой, является высокая плотность энергии (в 2-3 раза выше, чем у li-ion). Уже сейчас энергоемкость Zinc-Air достигает 450 Вт*ч/кг, но теоретическая плотность может составлять 1350 Вт*ч/кг!

Недостатки

Раз мы не ездим на электромобилях с воздушно-цинковыми батареями, значит, есть и недостатки. Во-первых, такие элементы сложно сделать перезаряжаемыми с достаточным количеством циклов разряда/заряда. В ходе работы воздушно-цинковой батареи электролит попросту высыхает, либо проникает слишком глубоко в поры воздушного электрода. А поскольку осаждающийся цинк распределяется неравномерно, образуя разветвленную структуру, между электродами нередко происходят короткие замыкания.

Ученые пытаются найти выход. Американская компания ZAI решила эту проблему простой заменой электролита и добавлением свежих картриджей с цинком. Естественно, для этого потребуется развитая инфраструктура заправочных станций, на которых будет происходить смена окисленного активного материала в анодной кассете на свежий цинк.

И хотя экономическая составляющая проекта пока не проработана, производители утверждают, что стоимость такой «зарядки» будет существенно ниже заправки машины с ДВС. Кроме того, процесс смены активного материала потребует не более 10 минут. Даже сверхбыстрые за это же время смогут восполнить только 50% своего потенциала. В прошлом году корейская компания Leo Motors уже продемонстрировала воздушно-цинковые батареи ZAI на своем электрическом грузовике.

В слуховых аппаратах применяются воздушно-цинковые батарейки, которые при работе в качестве катода используют кислород, поглощаемый из воздуха, а в качестве анода - порошок цинка.

Благодаря удалению из корпуса батарейки оксида ртути или серебра, которые до сих пор служили в качестве катода, в нем освободилось больше пространства для цинкового порошка. Поэтому воздушно-цинковые батарейки более энергоемкие, если сравнивать между собой батарейки разного типа. Ниже приведена сравнительная характеристика срока службы алкалиновой и воздушно-цинковой батареек. Как видно из рисунка воздушно-цинковая батарейка работает не только дольше, но и держит свое напряжение постоянным в течение всего срока эксплуатации. С воздушно-цинковой батареей, Вы можете ожидать от аппарата более чистого звучания, нормальной и стабильной работы всех его систем. И еще одним очень важным преимуществом батарей является то, что они не текут, как скажем, щелочные батареи . На графике видно, что воздушно-цинковые элементы питания не только служат дольше, но и равномерно отдают свой заряд в течение всего срока службы в отличие от, скажем, щелочных батареек. Это значит, что Вам не придется постоянно прибавлять громоксти, а слуховой аппарат будет обеспечен током необходимого напряжения для нормальной работы всех его функций на протяжении всей службы батарейки.

В состоянии хранения (храниться они могут 2 и более лет) воздушные отверстия батареек заклеены липкой пленкой. Как только Вы срываете защитную пленку с положительного контакта, батарея активируется и начинает отдавать энергию. Разряд активированной батарейки происходит независимо от того, питает она слуховой аппарат или просто лежит на столе. Поэтому срывать защитную пленку следует только, если Вы действительно будете использовать ее в слуховом аппарате.

Время работы батареек составляет от нескольких дней до нескольких недель. К концу периода работы Вашей батарейки Вы заметите, что слуховой аппарат стал работать заметно тише. Значит, пришло время заменить батарейку.

Если воздушно-цинковая батарейка разряжена почти полностью, то обычно заметны следующие проявления: после включения слуховой аппарат работает совершенно нормально, но через короткое время почти полностью замолкает. Чем более разряжена батарейка, тем быстрее замолкает слуховой аппарат.

  • Используйте в слуховом аппарате батарейки типоразмера, указанного в паспорте или инструкции по эксплуатации к слуховому аппарату.
  • Для подготовки к работе необходимо удалить наклейку и дать время активному веществу насытиться кислородом (от 3 до 5 минут) . Если начать эксплуатацию батарейки сразу после вскрытия, то активация произойдет только в поверхностном слое вещества, что существенно скажется на сроке службы.
  • Каждый раз, вставляя батарейку, обращайте внимание на плюсовую сторону. Плюсовая сторона отличается тем, что является плоской и обычно имеет на себе одно или несколько воздушных отверстий и небольшой крестик — плюс в центре.
  • Используйте батарейку до конца, после чего вставьте новую. Не храните уже использованные батарейки.
  • Храните батарейки в блистерах при комнатной температуре и нормальной влажности. Желание «сберечь» подольше батарейки в холодильнике может привести к прямо противоположному результату - слуховой аппарат с новой батарейкой вообще не заработает.
  • Выключайте слуховой аппарат, когда им не пользуетесь. На ночь вынимайте источники питания из аппарата и оставляйте открытым батарейный отсек.
  • Всегда имейте при себе новую запасную батарейку. Запасные батарейки не должны храниться вместе с металлическими предметами (ключами, другими батарейками) , которые могут закоротить контакты батарейки, и вызвать ее преждевременный разряд или порчу. Лучше поместить каждую запасную батарейку в индивидуальный изолирующий контейнер.
  • Храните батарейки в местах, недоступных для детей. Дети могут проглотить батарейки и этим причинить вред здоровью.

Выход компактных воздушно-цинковых аккумуляторов на массовый рынок может значительно изменить ситуацию в рыночном сегменте малогабаритных источников автономного питания для портативных компьютеров и цифровых устройств.

Энергетическая проблема

а последние годы значительно увеличился парк портативных компьютеров и различных цифровых устройств, многие из которых появились на рынке совсем недавно. Этот процесс заметно ускорился в связи с увеличением популярности мобильных телефонов. В свою очередь, стремительный рост количества портативных электронных устройств вызвал серьезное увеличение спроса на автономные источники электроэнергии, в частности на различные виды батареек и аккумуляторов.

Однако необходимость обеспечения огромного количества портативных устройств элементами питания является лишь одной стороной проблемы. Так, по мере развития портативных электронных устройств увеличивается плотность монтажа элементов и мощность используемых в них микропроцессоров — всего за три года тактовая частота используемых процессоров КПК возросла на порядок. На смену крошечным монохромным экранам приходят цветные дисплеи с высоким разрешением и увеличенным размером экрана. Все это приводит к росту энергопотребления. Кроме того, в сфере портативной электроники явно прослеживается тенденция к дальнейшей миниатюризации. С учетом перечисленных факторов становится вполне очевидно, что увеличение энергоемкости, мощности, долговечности и надежности используемых элементов питания является одним из важнейших условий для обеспечения дальнейшего развития портативных электронных устройств.

Весьма остро проблема возобновляемых источников автономного питания стоит в сегменте портативных ПК. Современные технологии позволяют создавать ноутбуки, практически не уступающие по своей функциональной оснащенности и производительности полноценным настольным системам. Однако отсутствие достаточно эффективных источников автономного питания лишает пользователей ноутбуков одного из главных преимуществ данного вида компьютеров — мобильности. Хорошим показателем для современного ноутбука, оснащенного литий-ионным аккумулятором, является время автономной работы порядка 4 часов 1 , но для полноценной работы в мобильных условиях этого явно недостаточно (например, перелет из Москвы в Токио занимает около 10 часов, а из Москвы в Лос-Анджелес — почти 15).

Одним из вариантов решения проблемы увеличения времени автономной работы портативных ПК является переход от ныне распространенных никель-металлгидридных и литий-ионных аккумуляторов к химическим топливным элементам 2 . Наиболее перспективными с точки зрения применения в портативных электронных устройствах и ПК являются топливные элементы с низкой рабочей температурой — такие как PEM (Proton Exchange Membrane) и DMCF (Direct Methanol Fuel Cells). В качестве топлива для этих элементов используется водный раствор метилового спирта (метанола) 3 .

Впрочем, на данном этапе описывать будущее химических топливных элементов исключительно в розовых тонах было бы чересчур оптимистично. Дело в том, что на пути массового распространения топливных элементов в портативных электронных устройствах стоят как минимум два препятствия. Во-первых, метанол является довольно токсичным веществом, что предполагает повышенные требования к герметичности и надежности топливных картриджей. Во-вторых, для обеспечения приемлемой скорости прохождения химических реакций в топливных элементах с низкой рабочей температурой необходимо использовать катализаторы. В настоящее время в PEM- и DMCF-элементах применяются катализаторы из платины и ее сплавов, но природные запасы этого вещества невелики, а его стоимость высока. Теоретически возможно заменить платину иными катализаторами, однако пока ни одному из коллективов, занимающихся исследованиями в данном направлении, не удалось найти приемлемой альтернативы. Сегодня так называемая платиновая проблема является, пожалуй, наиболее серьезной преградой на пути широкого распространения топливных элементов в портативных ПК и электронных устройствах.

1 Имеется в виду время работы от штатного аккумулятора.

2 Подробнее о топливных элементах можно прочитать в статье «Топливные элементы: год надежд», опубликованной в № 1’2005.

3 PEM-элементы, работающие на газообразном водороде, оснащаются встроенным конвертором для получения водорода из метанола.

Воздушно-цинковые элементы

отя авторы ряда публикаций считают воздушно-цинковые батареи и аккумуляторы одним из подвидов топливных элементов, это не совсем верно. Ознакомившись с устройством и принципом работы воздушно-цинковых элементов даже в общих чертах, можно сделать вполне однозначный вывод о том, что корректнее рассматривать их именно как отдельный класс автономных источников питания.

Конструкция ячейки воздушно-цинкового элемента включает катод и анод, разделенные щелочным электролитом и механическими сепараторами. В качестве катода используется газодиффузный электрод (gas diffusion electrode, GDE), водопроницаемая мембрана которого позволяет получать кислород из циркулирующего через нее атмосферного воздуха. «Топливом» является цинковый анод, окисляющийся в процессе работы элемента, а окислителем — кислород, получаемый из поступающего через «дыхательные отверстия» атмосферного воздуха.

На катоде происходит реакция электровосстановления кислорода, продуктами которой являются отрицательно заряженные гидроксид-ионы:

O 2 + 2H 2 O +4e 4OH – .

Гидроксид-ионы движутся в электролите к цинковому аноду, где происходит реакция окисления цинка с высвобождением электронов, которые через внешнюю цепь возвращаются на катод:

Zn + 4OH – Zn(OH) 4 2– + 2e.

Zn(OH) 4 2– ZnO + 2OH – + H 2 O.

Вполне очевидно, что воздушно-цинковые элементы не попадают под классификацию химических топливных элементов: во-первых, в них используется расходуемый электрод (анод), а во-вторых, топливо изначально закладывается внутрь ячейки, а не подается в ходе работы извне.

Напряжение между электродами одной ячейки воздушно-цинкового элемента составляет 1,45 В, что очень близко к аналогичному параметру щелочных (алкалиновых) батареек. При необходимости, чтобы получить более высокое напряжение питания, можно объединять несколько последовательно соединенных ячеек в батарею.

Цинк является довольно распространенным и недорогим материалом, благодаря чему при развертывании массового производства воздушно-цинковых элементов производители не будут испытывать проблем с сырьем. Кроме того, даже на начальном этапе стоимость таких источников питания будет вполне конкурентоспособной.

Немаловажно и то, что воздушно-цинковые элементы являются весьма экологичными изделиями. Материалы, применяемые для их производства, не отравляют окружающую среду и могут быть вторично использованы после переработки. Продукты реакции воздушно-цинковых элементов (вода и оксид цинка) тоже абсолютно безопасны для человека и окружающей среды — оксид цинка даже применяется в качестве основного компонента детской присыпки.

Из эксплуатационных свойств воздушно-цинковых элементов стоит отметить такие достоинства, как низкая скорость саморазряда в неактивированном состоянии и малое изменение величины напряжения по мере разряда (плоская разрядная кривая).

Определенным недостатком воздушно-цинковых элементов является влияние относительной влажности поступающего воздуха на характеристики элемента. Например, у воздушно-цинкового элемента, рассчитанного на эксплуатацию в условиях относительной влажности воздуха 60%, при увеличении влажности до 90% срок службы уменьшается примерно на 15%.

От батарей к аккумуляторам

аиболее простым в реализации вариантом воздушно-цинковых элементов являются одноразовые батареи. При создании воздушно-цинковых элементов большого размера и мощности (например, предназначенных для питания силовых установок транспортных средств) кассеты цинковых анодов можно делать заменяемыми. В этом случае для возобновления запаса энергии достаточно изъять кассету с отработавшими электродами и установить вместо нее новую. Отработанные электроды можно восстанавливать для повторного применения электрохимическим способом на специализированных предприятиях.

Если же говорить о компактных элементах питания, пригодных для использования в портативных ПК и электронных устройствах, то здесь практическая реализация варианта с заменяемыми кассетами цинковых анодов невозможна из-за небольшого размера батарей. Именно поэтому большинство представленных в настоящее время на рынке компактных воздушно-цинковых элементов являются одноразовыми. Однократно используемые воздушно-цинковые элементы питания небольшого размера выпускают компании Duracell, Eveready, Varta, Matsushita, GP, а также отечественное предприятие «Энергия». Основная сфера применения подобных источников питания — слуховые аппараты, портативные радиостанции, фототехника и т.п.

В настоящее время многие компании производят одноразовые воздушно-цинковые батареи

Несколько лет тому назад компания AER выпускала плоские воздушно-цинковые батареи Power Slice, предназначенные для портативных компьютеров. Эти элементы были разработаны для ноутбуков серий Omnibook 600 и Omnibook 800 компании Hewlett-Packard; время их автономной работы составляло от 8 до 12 часов.

В принципе существует и возможность создания и перезаряжаемых воздушно-цинковых элементов (аккумуляторов), в которых при подключении внешнего источника тока на аноде будет протекать реакция восстановления цинка. Однако практическому воплощению подобных проектов долгое время препятствовали серьезные проблемы, обусловленные химическими свойствами цинка. Оксид цинка хорошо растворяется в щелочном электролите и в растворенном виде распределяется по всему объему электролита, удаляясь от анода. Из-за этого при зарядке от внешнего источника тока в значительной степени изменяется геометрия анода: восстанавливаемый из оксида цинк осаждается на поверхности анода в виде ленточных кристаллов (дендритов), по форме похожих на длинные шипы. Дендриты пронзают насквозь сепараторы, вызывая короткое замыкание внутри батареи.

Данная проблема усугубляется тем, что для повышения мощности аноды воздушно-цинковых элементов изготавливаются из измельченного порошкового цинка (это позволяет значительно увеличить площадь поверхности электрода). Таким образом, по мере увеличения количества циклов заряда-разряда площадь поверхности анода будет постепенно уменьшаться, оказывая негативное влияние на рабочие характеристики элемента.

К настоящему времени наибольших успехов в области создания компактных воздушно-цинковых аккумуляторов удалось достичь компании Zinc Matrix Power (ZMP). Специалисты ZMP разработали уникальную технологию Zinc Matrix, которая позволила решить основные проблемы, возникающие в процессе заряда аккумуляторов. Суть этой технологии заключается в использовании полимерного связующего вещества, которое обеспечивает беспрепятственное проникновение гидроксид-ионов, но при этом блокирует перемещение растворяющегося в электролите оксида цинка. Благодаря использованию этого решения удается избежать заметного изменения формы и площади поверхности анода на протяжении как минимум 100 циклов заряда-разряда.

Достоинствами воздушно-цинковых аккумуляторов являются длительное время работы и большая удельная энергоемкость, как минимум вдвое превышающая аналогичные показатели лучших литий-ионных аккумуляторов. Удельная энергоемкость воздушно-цинковых аккумуляторов достигает 240 Вт·ч на 1 кг веса, а максимальная мощность — 5000 Вт/кг.

По данным разработчиков ZMP, сегодня возможно создание воздушно-цинковых аккумуляторов для портативных электронных устройств (мобильных телефонов, цифровых плееров и т.п.) с энергоемкостью порядка 20 Вт·ч. Минимально возможная толщина подобных источников питания составляет всего 3 мм. Экспериментальные же прототипы воздушно-цинковых аккумуляторов для ноутбуков обладают энергоемкостью от 100 до 200 Вт·ч.

Прототип воздушно-цинкового аккумулятора, созданный специалистами компании Zinc Matrix Power

Еще одно важное достоинство воздушно-цинковых аккумуляторов — полное отсутствие так называемого эффекта памяти. В отличие от других типов аккумуляторов, воздушно-цинковые элементы можно подзаряжать при любом уровне заряда, причем без ущерба для их энергоемкости. Кроме того, в отличие от литиевых аккумуляторов воздушно-цинковые элементы являются гораздо более безопасными.

В заключение нельзя не упомянуть об одном важном событии, которое стало символической отправной точкой на пути коммерциализации воздушно-цинковых элементов: 9 июня прошедшего года Zinc Matrix Power официально объявила о подписании стратегического соглашения с корпорацией Intel. В соответствии с пунктами данного соглашения ZMP и Intel объединят свои усилия в области разработки новой технологии аккумуляторных батарей для портативных ПК. Среди основных целей этих работ — увеличение времени автономной работы ноутбуков до 10 часов. Согласно имеющемуся плану, первые модели оснащенных воздушно-цинковыми аккумуляторами ноутбуков должны появиться в продаже уже в 2006 году.

Выход компактных воздушно-цинковых аккумуляторов на массовый рынок может значительно изменить ситуацию в рыночном сегменте малогабаритных источников автономного питания для портативных компьютеров и цифровых устройств.

Энергетическая проблема

а последние годы значительно увеличился парк портативных компьютеров и различных цифровых устройств, многие из которых появились на рынке совсем недавно. Этот процесс заметно ускорился в связи с увеличением популярности мобильных телефонов. В свою очередь, стремительный рост количества портативных электронных устройств вызвал серьезное увеличение спроса на автономные источники электроэнергии, в частности на различные виды батареек и аккумуляторов.

Однако необходимость обеспечения огромного количества портативных устройств элементами питания является лишь одной стороной проблемы. Так, по мере развития портативных электронных устройств увеличивается плотность монтажа элементов и мощность используемых в них микропроцессоров — всего за три года тактовая частота используемых процессоров КПК возросла на порядок. На смену крошечным монохромным экранам приходят цветные дисплеи с высоким разрешением и увеличенным размером экрана. Все это приводит к росту энергопотребления. Кроме того, в сфере портативной электроники явно прослеживается тенденция к дальнейшей миниатюризации. С учетом перечисленных факторов становится вполне очевидно, что увеличение энергоемкости, мощности, долговечности и надежности используемых элементов питания является одним из важнейших условий для обеспечения дальнейшего развития портативных электронных устройств.

Весьма остро проблема возобновляемых источников автономного питания стоит в сегменте портативных ПК. Современные технологии позволяют создавать ноутбуки, практически не уступающие по своей функциональной оснащенности и производительности полноценным настольным системам. Однако отсутствие достаточно эффективных источников автономного питания лишает пользователей ноутбуков одного из главных преимуществ данного вида компьютеров — мобильности. Хорошим показателем для современного ноутбука, оснащенного литий-ионным аккумулятором, является время автономной работы порядка 4 часов 1 , но для полноценной работы в мобильных условиях этого явно недостаточно (например, перелет из Москвы в Токио занимает около 10 часов, а из Москвы в Лос-Анджелес — почти 15).

Одним из вариантов решения проблемы увеличения времени автономной работы портативных ПК является переход от ныне распространенных никель-металлгидридных и литий-ионных аккумуляторов к химическим топливным элементам 2 . Наиболее перспективными с точки зрения применения в портативных электронных устройствах и ПК являются топливные элементы с низкой рабочей температурой — такие как PEM (Proton Exchange Membrane) и DMCF (Direct Methanol Fuel Cells). В качестве топлива для этих элементов используется водный раствор метилового спирта (метанола) 3 .

Впрочем, на данном этапе описывать будущее химических топливных элементов исключительно в розовых тонах было бы чересчур оптимистично. Дело в том, что на пути массового распространения топливных элементов в портативных электронных устройствах стоят как минимум два препятствия. Во-первых, метанол является довольно токсичным веществом, что предполагает повышенные требования к герметичности и надежности топливных картриджей. Во-вторых, для обеспечения приемлемой скорости прохождения химических реакций в топливных элементах с низкой рабочей температурой необходимо использовать катализаторы. В настоящее время в PEM- и DMCF-элементах применяются катализаторы из платины и ее сплавов, но природные запасы этого вещества невелики, а его стоимость высока. Теоретически возможно заменить платину иными катализаторами, однако пока ни одному из коллективов, занимающихся исследованиями в данном направлении, не удалось найти приемлемой альтернативы. Сегодня так называемая платиновая проблема является, пожалуй, наиболее серьезной преградой на пути широкого распространения топливных элементов в портативных ПК и электронных устройствах.

1 Имеется в виду время работы от штатного аккумулятора.

2 Подробнее о топливных элементах можно прочитать в статье «Топливные элементы: год надежд», опубликованной в № 1’2005.

3 PEM-элементы, работающие на газообразном водороде, оснащаются встроенным конвертором для получения водорода из метанола.

Воздушно-цинковые элементы

отя авторы ряда публикаций считают воздушно-цинковые батареи и аккумуляторы одним из подвидов топливных элементов, это не совсем верно. Ознакомившись с устройством и принципом работы воздушно-цинковых элементов даже в общих чертах, можно сделать вполне однозначный вывод о том, что корректнее рассматривать их именно как отдельный класс автономных источников питания.

Конструкция ячейки воздушно-цинкового элемента включает катод и анод, разделенные щелочным электролитом и механическими сепараторами. В качестве катода используется газодиффузный электрод (gas diffusion electrode, GDE), водопроницаемая мембрана которого позволяет получать кислород из циркулирующего через нее атмосферного воздуха. «Топливом» является цинковый анод, окисляющийся в процессе работы элемента, а окислителем — кислород, получаемый из поступающего через «дыхательные отверстия» атмосферного воздуха.

На катоде происходит реакция электровосстановления кислорода, продуктами которой являются отрицательно заряженные гидроксид-ионы:

O 2 + 2H 2 O +4e 4OH – .

Гидроксид-ионы движутся в электролите к цинковому аноду, где происходит реакция окисления цинка с высвобождением электронов, которые через внешнюю цепь возвращаются на катод:

Zn + 4OH – Zn(OH) 4 2– + 2e.

Zn(OH) 4 2– ZnO + 2OH – + H 2 O.

Вполне очевидно, что воздушно-цинковые элементы не попадают под классификацию химических топливных элементов: во-первых, в них используется расходуемый электрод (анод), а во-вторых, топливо изначально закладывается внутрь ячейки, а не подается в ходе работы извне.

Напряжение между электродами одной ячейки воздушно-цинкового элемента составляет 1,45 В, что очень близко к аналогичному параметру щелочных (алкалиновых) батареек. При необходимости, чтобы получить более высокое напряжение питания, можно объединять несколько последовательно соединенных ячеек в батарею.

Цинк является довольно распространенным и недорогим материалом, благодаря чему при развертывании массового производства воздушно-цинковых элементов производители не будут испытывать проблем с сырьем. Кроме того, даже на начальном этапе стоимость таких источников питания будет вполне конкурентоспособной.

Немаловажно и то, что воздушно-цинковые элементы являются весьма экологичными изделиями. Материалы, применяемые для их производства, не отравляют окружающую среду и могут быть вторично использованы после переработки. Продукты реакции воздушно-цинковых элементов (вода и оксид цинка) тоже абсолютно безопасны для человека и окружающей среды — оксид цинка даже применяется в качестве основного компонента детской присыпки.

Из эксплуатационных свойств воздушно-цинковых элементов стоит отметить такие достоинства, как низкая скорость саморазряда в неактивированном состоянии и малое изменение величины напряжения по мере разряда (плоская разрядная кривая).

Определенным недостатком воздушно-цинковых элементов является влияние относительной влажности поступающего воздуха на характеристики элемента. Например, у воздушно-цинкового элемента, рассчитанного на эксплуатацию в условиях относительной влажности воздуха 60%, при увеличении влажности до 90% срок службы уменьшается примерно на 15%.

От батарей к аккумуляторам

аиболее простым в реализации вариантом воздушно-цинковых элементов являются одноразовые батареи. При создании воздушно-цинковых элементов большого размера и мощности (например, предназначенных для питания силовых установок транспортных средств) кассеты цинковых анодов можно делать заменяемыми. В этом случае для возобновления запаса энергии достаточно изъять кассету с отработавшими электродами и установить вместо нее новую. Отработанные электроды можно восстанавливать для повторного применения электрохимическим способом на специализированных предприятиях.

Если же говорить о компактных элементах питания, пригодных для использования в портативных ПК и электронных устройствах, то здесь практическая реализация варианта с заменяемыми кассетами цинковых анодов невозможна из-за небольшого размера батарей. Именно поэтому большинство представленных в настоящее время на рынке компактных воздушно-цинковых элементов являются одноразовыми. Однократно используемые воздушно-цинковые элементы питания небольшого размера выпускают компании Duracell, Eveready, Varta, Matsushita, GP, а также отечественное предприятие «Энергия». Основная сфера применения подобных источников питания — слуховые аппараты, портативные радиостанции, фототехника и т.п.

В настоящее время многие компании производят одноразовые воздушно-цинковые батареи

Несколько лет тому назад компания AER выпускала плоские воздушно-цинковые батареи Power Slice, предназначенные для портативных компьютеров. Эти элементы были разработаны для ноутбуков серий Omnibook 600 и Omnibook 800 компании Hewlett-Packard; время их автономной работы составляло от 8 до 12 часов.

В принципе существует и возможность создания и перезаряжаемых воздушно-цинковых элементов (аккумуляторов), в которых при подключении внешнего источника тока на аноде будет протекать реакция восстановления цинка. Однако практическому воплощению подобных проектов долгое время препятствовали серьезные проблемы, обусловленные химическими свойствами цинка. Оксид цинка хорошо растворяется в щелочном электролите и в растворенном виде распределяется по всему объему электролита, удаляясь от анода. Из-за этого при зарядке от внешнего источника тока в значительной степени изменяется геометрия анода: восстанавливаемый из оксида цинк осаждается на поверхности анода в виде ленточных кристаллов (дендритов), по форме похожих на длинные шипы. Дендриты пронзают насквозь сепараторы, вызывая короткое замыкание внутри батареи.

Данная проблема усугубляется тем, что для повышения мощности аноды воздушно-цинковых элементов изготавливаются из измельченного порошкового цинка (это позволяет значительно увеличить площадь поверхности электрода). Таким образом, по мере увеличения количества циклов заряда-разряда площадь поверхности анода будет постепенно уменьшаться, оказывая негативное влияние на рабочие характеристики элемента.

К настоящему времени наибольших успехов в области создания компактных воздушно-цинковых аккумуляторов удалось достичь компании Zinc Matrix Power (ZMP). Специалисты ZMP разработали уникальную технологию Zinc Matrix, которая позволила решить основные проблемы, возникающие в процессе заряда аккумуляторов. Суть этой технологии заключается в использовании полимерного связующего вещества, которое обеспечивает беспрепятственное проникновение гидроксид-ионов, но при этом блокирует перемещение растворяющегося в электролите оксида цинка. Благодаря использованию этого решения удается избежать заметного изменения формы и площади поверхности анода на протяжении как минимум 100 циклов заряда-разряда.

Достоинствами воздушно-цинковых аккумуляторов являются длительное время работы и большая удельная энергоемкость, как минимум вдвое превышающая аналогичные показатели лучших литий-ионных аккумуляторов. Удельная энергоемкость воздушно-цинковых аккумуляторов достигает 240 Вт·ч на 1 кг веса, а максимальная мощность — 5000 Вт/кг.

По данным разработчиков ZMP, сегодня возможно создание воздушно-цинковых аккумуляторов для портативных электронных устройств (мобильных телефонов, цифровых плееров и т.п.) с энергоемкостью порядка 20 Вт·ч. Минимально возможная толщина подобных источников питания составляет всего 3 мм. Экспериментальные же прототипы воздушно-цинковых аккумуляторов для ноутбуков обладают энергоемкостью от 100 до 200 Вт·ч.

Прототип воздушно-цинкового аккумулятора, созданный специалистами компании Zinc Matrix Power

Еще одно важное достоинство воздушно-цинковых аккумуляторов — полное отсутствие так называемого эффекта памяти. В отличие от других типов аккумуляторов, воздушно-цинковые элементы можно подзаряжать при любом уровне заряда, причем без ущерба для их энергоемкости. Кроме того, в отличие от литиевых аккумуляторов воздушно-цинковые элементы являются гораздо более безопасными.

В заключение нельзя не упомянуть об одном важном событии, которое стало символической отправной точкой на пути коммерциализации воздушно-цинковых элементов: 9 июня прошедшего года Zinc Matrix Power официально объявила о подписании стратегического соглашения с корпорацией Intel. В соответствии с пунктами данного соглашения ZMP и Intel объединят свои усилия в области разработки новой технологии аккумуляторных батарей для портативных ПК. Среди основных целей этих работ — увеличение времени автономной работы ноутбуков до 10 часов. Согласно имеющемуся плану, первые модели оснащенных воздушно-цинковыми аккумуляторами ноутбуков должны появиться в продаже уже в 2006 году.

В ртутно-цинковых элементах используется пористый цинковый электрод, в который для уменьшения коррозии вводят до 10 % ртути, и катод из оксида ртути в смеси с графитом. Электролит представляет собой 30…40 % раствор КОН. Основные электродные процессы описываются уравнениями:

Zn + 2OH − → Zn(OH) 2 + 2e − (с последующим разложением

гидрооксида цинка на ZnО и воду) и

Hg + H 2 O + 2e − → Hg + 2OH −

Напряжение ртутно-цинкового элемента остается стабильным до конца разряда малыми токами (до 0,01 С Н). При таких токах стабильное напряжение обеспечивается даже при 0 0 С. Это позволяет использовать их в качестве опорных элементов в измерительной аппаратуре. Элементы имеют одинаково хорошие характеристики, как при непрерывном, так и при прерывистом режимах работы. Типовые разрядные характеристики ртутно-цинковых элементов приведены на рис.17.7.

Напряжение разорванной цепи этих элементов составляет 1,35 В, рабочее напряжение – 1,22…1,25 В. Диапазон рабочих температур от −30 до +70 0 С. Конечное напряжение разряда составляет 0,9…1,0 В.

Наибольшее распространение получили ртутно-цинковые элементы в дисковом исполнении (рис.17.8), в которых положительный цинковый электрод 1 впрессовывается в стальной корпус, а отрицательный (активная масса) 2 – в крышку. В них нет свободного пространства, и водород, который выделяется при коррозии цинка, удаляется через герметизирующую прокладку 4 путем диффузии. Электролит при этом вытекать не должен.

Миниатюрные ртутно-цинковые элементы широко использовались в фототехнике, ручных электронных часах, калькуляторах и медицинской аппаратуре. Однако экологические проблемы, связанные с токсичностью ртути, привели повсеместно к прекращению производства этих элементов. Для их замены рекомендуется использовать серебряно-цинковые или литиевые гальванические элементы.

17.3.3 Серебряно-цинковые элементы

Серебряно-цинковые гальванические элементы обладают электрическими характеристиками близкими к характеристиками ртутно-цинковых элементов, стабильной разрядной характеристикой при высоком рабочем напряжении (1,5 В) и длительным сроком хранения. Однако, они менее чувствительны к повышению токовой нагрузки. Диапазон рабочих температур составляет от 0 до +40 0 С. Эти элементы наиболее безопасны для экологии, однако они относительно дороги.

Серебряно-цинковые элементы выпускаются в основном в дисковом исполнении и их конструкция подобна конструкции ртутно-цинковых элементов. Основное применение серебряно-цинковых элементов – ручные электронные часы. Параметры таких элементов основных производителей приведены в табл.17.7.

17.3.4 Воздушно-цинковые элементы

Воздушно-цинковые элементы отличаются от остальных первичных химических источников тока наличием специального отверстия, которое вскрывается при вводе в эксплуатацию для того, чтобы обеспечивать поступление внутрь элемента воздуха, кислород которого используется в качестве окислителя.

В качестве катода, на котором восстанавливается кислород воздуха, используются угольные электроды, модифицированные катализатором. Активным материалом анода является цинк, электролитом – раствор КОН или NaOH. Суммарная токообразующая реакция в элементе может быть записана:

Zn +1/2 H 2 O + 2OH − + H 2 O → Zn(OH) 4 2−

По мере растворения цинка и насыщения раствора цинкат-ионами Zn(OH) 4 2− разлагается с выпадением в осадок оксида цинка ZnO.

Напряжение разорванной цепи такого элемента составляет 1,4 В, а рабочее напряжение – 1,35 В.Диапазон рабочих температур составляет +10…+40 0 С.

Малогабаритные воздушно-цинковые элементы имеют дисковую конструкцию (рис.17.9) и в основном применяются для слуховых аппаратов. Анод изготавливается из порошкообразного цинка. Катод – тонкий из активированного угля, сажи и катализатора. Электролит обычно сгущенный. С помощью специальной мембраны воздух после вскрытия отверстия равномерно распределяется по поверхности катода. Электролит через гидрофорбный слой не проходит. Такие элементы изготавливаются емкостью от 50 до 6300 мА·ч.

Батареи из марганцево-воздушно-цинковых элементов в призматическом исполнении используются также для работы навигационного оборудования, например, серии «Лиман» или «Бакен».




Top