Техпроцесс (нм, мкм) — технология производства транзисторов, чипов и полупроводниковых элементов. Что даёт более тонкий техпроцесс? О техпроцессе в компьютерном процессоре Техпроцесс 40 нм

: «Количество транзисторов, размещаемых на кристалле интегральной схемы, удваивается каждые 24 месяца, что приводит к появлению новых технологий, росту производительности и прорывам в области электроники». Излагая этот закон общественности, один из отцов Intel не мог предположить, что инженеры на протяжении целых пятидесяти лет смогут придерживаться его. Не мог он и предположить, что в 2014 году сложности с соблюдением этого закона начнутся и в самой компании Intel. Ведь для увеличения количества транзисторов в процессоре нужно уменьшать технический процесс производства. По-простому, уменьшать физический размер транзисторов и увеличивать их плотность.

На данный момент освоенным размером можно считать 22 нанометра, такой размер транзисторов в процессоре . Казалось бы, от уменьшения одни проблемы: строже нормы чистоты помещения, сложнее изготавливать шаблон для литографии, начинают влиять квантовые эффекты, сложнее контролировать качество. Но ни один успешный производитель не пойдет на такие сложности, если речь не идет о снижении себестоимости производства и конкурентной борьбе. Соответственно, можно выделить несколько причин перехода к более тонким техпроцессам.


Первая: эффекты, связанные с длиной волны света и частотой сигналов. Вся электроника (и не только она) строится на абстракциях и упрощениях. Для того, чтобы можно было безбоязненно комбинировать элементы между собой, не выполняя заново полный анализ, для элементов должен выполняться принцип суперпозиции. Чтобы выполнялся принцип суперпозиции, должно выполняться требование, согласно которому масштаб сигнала должен быть значительно больше, чем задержка распространения сигнала в схеме. То есть, при частоте в 3 ГГц, зная скорость света, получаем, что размер схемы должен быть значительно меньше 10 см. Значительно — это значит раза в 3-4.

Вторая: энергопотребление и тепловыделение. Чем меньше элемент, тем меньше он потребляет энергии и выделяет тепла. Это дает возможность использовать мощные процессоры в ультракомпактных устройствах. Правда, с уменьшением размера транзисторов увеличиваются сложности с теплоотводом, так что, видимо, плюсы и минусы компенсируются.

Третья: транзисторы, из которых современный процессор состоит чуть более, чем полностью, представляют собой не просто переключатель, управляемый напряжением. Из-за своей структуры он также представляет собой маленький конденсатор, емкость которого исчисляется фемто-фарадами, но все-таки не нулевая. Каждый конденсатор вносит небольшую задержку в распространение цифрового сигнала, которая при увеличении количества связанных компонентов суммируется. В результате на выходе вместо прямоугольного импульса мы получаем примерно вот такое:

Четвертая: сокращение затрат на производство. Это, на мой взгляд, немаловажная причина. Каждый отдельный процессор выращивается на пластине, где их очень много. Чем меньше площадь отдельного кристалла (процессора), тем больше их помещается на одной пластине и тем больше прибыль. Но это лишь следствие уменьшения техпроцесса, поэтому говорить, что производители специально пытаются уместить на одной кремниевой подложке побольше процессоров, было бы неправильно.


Как мне кажется, производители быстрее бы согласились, что закон Мура — бред, и перестали бы все уменьшать. Ведь уменьшение техпроцесса ведет к большому количеству отбракованных процессоров. Сложно поверить, что лишь небольшие, незаметные человеку колебания земной коры могут довести количество негодных процессоров до 80%! Здесь и приходит понимание такой немаленькой цены за процессоры. Сложные материалы, суперсовременное оборудование, огромный штат научных сотрудников и другие сложности не останавливают производителей в их стремлении уменьшать техпроцесс. А почему бы и нет? Ведь это наверняка рентабельно. Intel давно уже обещает построить завод на Луне, ведь там слабая гравитация, нет землетрясений и можно уменьшать техпроцесс до атома!

Если не указано иное.


Технорма наиболее сложных микросхем. Падает также их цена - правда, не вдвое (исходя из примерно половинной площади чипа для данного числа транзисторов - за исключением последних техпроцессов…), а примерно в 1,5 раза при каждом переходе на очередной техпроцесс (т. к. он сложнее и дороже на каждую единицу площади). По какой причине физическая длина затвора (не только для ЦП Intel) оказывается меньше технормы - читайте ниже.


Технорма для ЦП Intel. По мнению компании, 15-нанометровый техпроцесс, возможно, станет первым, где будет применяться «экстремальный» ультрафиолет (EUV), если он окажется экономически оправданным. До сих пор чрезвычайная дороговизна (даже по меркам фотолитографов) сдерживала его внедрение, которое 10 лет назад пророчили уже для 45-нанометрового процесса. Основные причины - необходимость в совершенно новом источнике излучения, новой зеркальной (а не линзовой) оптике и полном вакууме в рабочей зоне.


Площади кристаллов наиболее сложных микросхем процессоров и памяти на указанный год. В 1990-е годы тенденция увеличения площади на 14% в год (чёрная линия) остановлена. Впрочем, самые сложные кристаллы ГП и серверных ЦП достигают 400–500 мм², но и эта цифра не растёт уже лет пять, хотя почти все производители уже успели с 90-х перейти на 300-миллиметровые пластины, позволяющие производить с той же массовостью и ценой даже такие большие кристаллы.


Число транзисторов на кристалле ИС как следствие уменьшения технормы и увеличения площади кристалла. Видно, что первоначальная тенденция 2-кратного роста в год, по которой строил свои рассуждения Гордон Мур, была в прямом смысле весьма крутой. Но с 70-х и микросхемы ДОЗУ (теперь - и флэша), и процессоры продолжили её с меньшими темпами - 58% и 38% в год.

Число слоёв, требующих маски. До введения двойного шаблонирования равно числу самих масок. Каждая маска требует 7–8 производственных операций, а также контрольно-измерительные и транспортные. Примерно 20% слоёв в каждом кристалле (элементы транзисторов и первые слои дорожек и изоляторов) являются «критическими» - т. е. выполнены с номинальной технормой для данного техпроцесса. Остальным достаточно быть всё более грубыми по мере удаления вверх от транзисторов (см. иллюстрацию воздушных зазоров), т. к. верхние уровни металла, как правило, поставляют питание и синхронизацию, так что особой плотности проводников им не требуется. Таким образом наиболее дорогие технологии изготовления применяются только для части слоёв, но даже это не спасает от растущей сложности техпроцессов, особенно с 2000-х годов. 20 лет назад такое уже было с технологией БиКМОП (гибрид биполярной и КМОП), из-за чего от неё отказались (правда, Intel успела выпустить на ней 486DX4, Pentium и P.Pro, а Sun Microsystems - SuperSPARC). Сегодня от взрывного роста сложности не страдают пока только динамическая и (в меньшей степени) флеш-память. Сверхбыстрым SiGe-чипам высокая стоимость не сильно мешает, т. к. их изготавливают малыми партиями для военных и авиакосмических применений. В среднем число масок увеличивается на 2 с каждым техпроцессом, т. е. примерно за 2 года.



Плотность дефектов на 1 см² площади кристалла от наиболее продвинутых фабов при финальном тестировании. Жирными цифрами указана технорма в микронах, в скобках - диаметр пластин.


Снова плотность дефектов, но конкретно для чипов Intel. По её утверждению - также отложенная по логарифмической шкале (как и на графике выше), только без шкалы. ;) Данные для 45- и 32-нанометрового техпроцессов показаны не до конца - видимо, коммерческая тайна.


Стоимость постройки наиболее современного на указанный год завода (или его стоимость после обновления) возросла в 70 раз за 30 лет, а цена каждого выпускаемого ими транзистора упала в 2000 раз. Пустые квадраты означают примерные цифры. Тут не хватает графика производственной мощности, но надёжных данных по ней на весь период нет. Впрочем, известно, что современные фабы выпускают от 10 до 60 тыс. пластин в месяц в случае логики и ещё в 2–3 раза больше для памяти. Выпуск пластин удваивается примерно каждые 5 лет, помимо увеличения их диаметра. А «удвоение стоимости фаба каждые 4 года» даже было названо «вторым законом Мура» (иначе - законом Рока, Rock’s law), который в конце 90-х также пришлось поправить - каждые 5 лет. Наиболее дорогой станок - фотолитограф - дорожает с такой же скоростью: первый коммерческий проекционный степпер (1973 г.) стоил 210 тыс. долларов, а современный сканер - 40–50 млн..


Удельные цены пластины и разных видов микросхем за единицу их наиболее ценных количественных характеристик. Чёрная линия указывает ежегодное падение средней цены на 35% или в 1,54 раза. Больше возможностей за ту же цену чипов позволяли расти продажам микросхем на 15% в год с 1960 по 2000 гг.. Однако лопнул пузырь доткомов, а через 8 лет грянул мировой кризис, что прекратило рост продаж (но не параметров). В 2010-х за счёт популярности смартфонов и планшетников возможен рост примерно на 5% в год, если, конечно, опять что-то не стрясётся…


Стоимость разработки сложной микросхемы в зависимости от технормы (данные IBS, GlobalFoundries). Видно, что до 45 нм она каждый раз удваивалась, а начиная с 45 нм - увеличивается примерно в 1,5 раза. Абсолютные цифры уже выросли настолько, что и среди бесфабричных компаний мелким игрокам на рынке ЦП делать нечего.

Средняя стоимость производства пластины для КМОП-логики в 2003 г. на фабах Сев. Америки (в долларах):

Диаметр пластины, мм Технорма, мк Число маскируемых слоёв
8 10 12 14 16 18 20 22 24 26
100 2 145 180 210
125 165 200 230
150 190 230 270
1,2 260 300 340
0,8 375 420 465
200 450 500 560
0,5 560 615 675
0,35 700 760 830
0,25 890 980 1070 1155
0,18 1320 1440 1565
0,13 1815 1970 2130
300 2500 2690 2890
0,09 2860 3065

Цены округлены и не учитывают финишных операций (тестирования, резки и корпусировки). По цифрам видно, почему производителям выгодно переходить на новые техпроцессы и бо́льшие диаметры пластин - дорожание производства каждой новой пластины окупается бо́льшим числом получаемых с неё чипов. Впрочем, переход на больший диаметр означает замену почти всего оборудования в чистой комнате и усиление потока сверхчистых рабочих материалов (особенно воды), поставляемых с сервисного этажа. А переход на новый техпроцесс, даже «несвежий», поначалу (пока его не отладят) даст меньший выход годных. Впрочем, Intel и тут отличилась, применяя на своих фабах по всему миру методику точного копирования (Copy Exactly): как только техпроцесс доведён до массового производства на одном из экспериментальных фабов в Хиллсборо (штат Орегон, США), он переносится на производственные фабы, копируя абсолютно всё до мелочей - список и тип станков, их параметры («рецепты») и программы, действия персонала… Даже ручные инструменты для монтажных и пуско-наладочных работ используются тех же видов. Звучит несколько параноидально, но Intel может перенести техпроцесс с одной фабрики на другую без ожидаемого в таких случаях ущерба для себестоимости всего за несколько месяцев, и ещё быстрее - производство чипа при уже готовом техпроцессе.

Новый шаг

В начале лета 2011 г. Intel объявила, что менее чем через год будет готова массово выпускать процессоры с технормой 22 нм (сначала это будет архитектура Ivy Bridge , основанная на современной Sandy Bridge). Согласно принятому в компании 2-летнему циклу «тик-так» (попеременному ежегодному выпуску новой микроархитектуры и нового техпроцесса) изначально планировалось выпустить Ivy Bridge в конце 2011 г. (также как Sandy Bridge - в 2010-м). Однако Intel преследуют задержки: презентация Sandy Bridge состоялась только этим январём, а недавно компания решила задержать выход Ivy Bridge как минимум до весны 2012 г.. Являются ли тому причиной сложности с техпроцессом - неясно. Это при том, что первые микросхемы СОЗУ с новыми 22-нанометровыми транзисторами Intel представила ещё в сентябре 2009 г..

Никаких технологических революций по части литографических методов не предвидится - помимо того, что длина волны 193 нм требует иметь не только иммерсионные сканеры, но и как минимум двойное шаблонирование. Это само по себе является любопытным, ибо ещё 5 лет назад эксперты в один голос говорили, что для таких длин волн надо переходить на новые виды литографии, что скачкообразно увеличивает сложность и стоимость техпроцесса.

Но самую большую сенсацию (разумеется, с подачи маркетологов компании) назначили на серьёзное изменение конструкции транзисторов, назвав их трёхмерными или трёхзатворными. Точнее, их надо называть FinFET - полевой транзистор с затвором-«плавником». Впрочем, за счёт утончения канала и размещения его вертикально их число может быть более одного для увеличения общей площади между затвором и каналами. Такой транзистор можно назвать многозатворным (multigate FET, MuGFET), хотя каждый его канал скорее будет управляться общим затвором. В результате к нему нужно будет приложить меньшее напряжение, чтобы переключить транзистор, скорость переключения будет больше, а утечка - меньше, т. к. теперь она возможна лишь через узкую нижнюю грань канала.


Транзистор на цельной подложке (какую до сих пор использует Intel) имеет утечку тока из канала, когда в нём полем затвора формируется обращённый слой. Подложка (даже если она заземлена) вытягивает часть носителей заряда в обеднённый слой. ▼

Уменьшить утечки можно технологией КНИ, в данном случае - частично обеднённой (Partially Depleted, PD SOI). Тут изолятор отсекает подложку, но остаточный слой под каналом («плавающее тело») всё ещё приводит к утечкам, хоть и не таким большим. Эта технология широко используется прежде всего из-за относительной дешевизны. ▼

Более продвинутая версия - полностью обеднённый КНИ (Fully Depleted, FD SOI). Тут исток, сток и область канала истончаются так, что плавающему телу не остаётся места. Проблема утечки решается, но (по мнению Intel) с 10-процентным увеличением цены чипа, поэтому её не используют широко. ▼

А вот и решение Intel (показанное сбоку, в отличие от предыдущих сечений вдоль канала) - поставить канал вертикально и окружить его затвором с трёх сторон из четырёх. Плавающего тела нет, утечек нет, площадь обращённого слоя больше, а т. к. дополнительные маски не требуются, цена - всего на 2–3% выше. Опять же, со слов Intel.

«Трёхзатворный» транзистор на деле означает транзистор с каналом, окружённым затвором (через прослойку в виде тонкого изолятора, обозначенного жёлтым) с трёх сторон - по сравнению с планарным, где поверхность сопряжения представляет собой одну плоскость.

Вверху показаны 32-нанометровые планарные транзисторы, внизу - 22-нанометровые 2- (в левом нижнем углу) и 6-затворные «трёхмерные».

4 поколения «плавниковых» транзисторов Intel - демонстрация конструкции (2002 г.), многозатворность (2003), ячейки СОЗУ (2006) и адаптация металлического «затвора последним» (2007).

Конечно, Intel сразу похвасталась, что по сравнению с 10-микронным техпроцессом от i4004 22-нанометровый транзистор работает в 4000 раз быстрее, потребляя в 5000 меньше энергии и стоя в 50 000 меньше. Более важно, что потребовалось 5 лет для разработки и ещё 5 (как теперь выяснилось…) для адаптации к массовому производству. При этом Intel честно указывает на трудности реализации новой технологии: необходимость законцовок для затвора, проблемы с ёмкостью и изменчивостью параметров, трудности равномерной полировки и травления более толстых структур и передача каналом механического напряжения под затвор, и пр.. Надо полагать, все эти проблемы решены хотя бы удовлетворительно, иначе показанные чипы бы не работали. Вопросы о коэффициенте выхода годных и фактической себестоимости пока остаются открытыми. Конкуренты же (TSMC и Global Foundries) пока объявили лишь о начале разработки FinFET’ов для своих 14-нанометровых процессов, которые будут готовы где-то в 2014 г.…


Вольтамперные характеристики (ВАХ) планарного (чёрная линия) и двух трёхмерных (синие) n-канальных транзисторов. Ток при нуле на затворе в идеале должен быть нулевым. Чем он меньше - тем меньше потребляет процессор, в т. ч. при простое. Пороговое напряжение - такое, при котором транзистор переключается (в данном случае - 0,33 В с током в 10% от номинала). Оно должно быть как можно меньше, чтобы транзистор срабатывал быстрее и при меньшем напряжении питания (тут - 1 В). Переход на трёхмерный затвор позволяет либо при том же напряжении уменьшить утечку при закрытом канале (нижняя линия), либо увеличить скорость его открытия (верхняя линия), заодно снизив напряжение.


Зависимость времени переключения от напряжения питания (в идеале - гипербола) для 32-нанометровых (чёрная линия) и 22-нанометровых (серая) планарных, а также 22-нанометровых объёмного (синяя) транзисторов. Последний позволяет при той же скорости снизить напряжение питания на 0,2 В, что в теории уменьшит потребление в 1,56 раза, а по мнению Intel - более чем вдвое. Если же требуется повысить частоту, новые транзисторы принесут небольшую пользу при номинальном одном вольте (обещано ускорение на 18% относительно 32 нм), зато при 0,7 В (видимо, таково будет напряжение для мобильных чипов) дадут аж 37-процентное ускорение. Более того, если судить по этим графикам из презентации, то ускорения будут на 22% и 59% - т. е. 1/(1−0,18) и 1/(1−0,37) , как и следует считать. Неужели мы застукали технарей Intel на элементарных ошибках при расчётах с процентами?..

Разбор нанометров

Самое время разобраться, что понимается под технормой. Попытка дать определение этому важнейшему термину не зря поставлена почти в конец статьи. Когда-то под технормой понимался самый малый по длине или ширине элемент, формируемый данным техпроцессом. Когда технорма стала меньше длины волны, появилось два отдельных определения - для регулярных чипов (память, программируемые матрицы, фотодатчики - в т. ч. со встроенными логическими блоками) и нерегулярных (сложная логика, в т. ч. содержащая кэши, буферы и т. п.). Для первых - минимальный полушаг линейно-регулярной структуры, для вторых - минимальная ширина дорожки нижнего уровня металла (что примерно вдвое длиннее затвора транзистора).

Однако с недавних пор и это перестало иметь значение. Дело в том, что число фабрик, производящих микросхемы по самым современным техпроцессам, неуклонно снижается. При этом ни одна фирма, производящая оборудование для производства полупроводников, их самих не делает - все производители микросхем покупают станки у примерно одних (тоже не очень многочисленных) фирм. Очевидно, собираемые из станков и настроек техпроцессы на фабах получились бы как две капли воды похожи, но это имеет смысл лишь для нескольких фабов одной компании, а таких компаний в мире - единицы. Так что каждая фирма пытается удовлетворить заказчиков чем-то особенным, выпускаемым на почти стандартном оборудовании. И вот тут под нож пошли те самые нанометры…

¹ - Оптимизация по энергоэффективности
² - С иммерсионной литографией
³ - С иммерсионной литографией и низкопроницаемыми межслойными диэлектриками

В этой таблице указана площадь (в кв. микронах) 6-транзисторной ячейки СОЗУ, которой обычно меряют плотность размещения транзисторов для логических микросхем. (Это само по себе любопытно, учитывая, что СОЗУ используются в разнообразных регистрах, буферах и кэшах - т. е. одно-, а чаще даже двухмерно регулярных схемах, а не в синтезированной логике, почти не имеющей повторений. И тем не менее…) А самое главное, что это всё - «45-нанометровые» (как утверждают эти компании) процессы!

Более того, ITRS (International Technology Roadmap for Semiconductors - международный технологический план для [производителей] полупроводников, составляемый экспертами из крупнейших фирм и их ассоциаций) регулярно выпускает рекомендации по основным параметрам техпроцессов для микроэлектронных компаний, т. е. для самих себя. А теперь посмотрим, как эти рекомендации соблюдаются:

Краткий ответ - никак. Дело дошло до того, что на недавнем форуме IEDM технорму признались считать маркетинговым понятием - т. е. не более чем цифрой для рекламы. Фактически, сегодня сравнивать техпроцессы по нанометрам стало не более разумно, чем 10 лет назад (после выхода Pentium 4) продолжать сравнивать производительность ЦП (пусть даже и одной программной архитектуры) по гигагерцам.

Разница в техпроцессах при одинаковых технормах активно влияет и на цену чипов. Например, AMD использовала разработанный совместно с IBM 65-нанометровый процесс с SOI-пластинами, двойными подзатворными оксидами, имплантированным в кремний германием, двумя видами напряжённых слоёв (сжимающим и растягивающим) и 10 слоями меди для межсоединений. 65-нанометровый техпроцесс у Intel включает относительно дешёвую пластину из цельного кремния, диэлектрик одинарной толщины, имплантированный в кремний германий, один растягивающий слой и 8 слоёв меди. По примерным подсчётам Intel потребует для своего процесса 31 маску, а AMD - 42.

В результате из-за значительной разницы в технологиях напряжённого кремния и типа подложки (SOI-пластины стоят примерно в 3,6 раз дороже простых) конечная цена 300-миллиметровой пластины для AMD будет ≈4300 долларов, что на 70% дороже цены для Intel - ≈2500 долларов. Кстати, ЦП Intel как правило оказываются ещё и с меньшими площадями кристаллов, чем аналогичные по числу ядер и размеру кэшей от AMD. Теперь ясно, почему Intel показывает завидную прибыль, а AMD недавно едва держалась на ногах.


Данные с IEDM о техпроцессах к 2010 году. Источник - .

По докладам на IEDM можно составить сводную таблицу с параметрами последних техпроцессов ведущих компаний. Из неё видно, что все техпроцессы с «мелкой» технормой (process node) перешли на двойное шаблонирование (DP) и иммерсионную литографию, а напряжение питания (V dd) давно остановилось на 1 вольте (потребление транзистором энергии и без этого продолжает падать, но не так быстро). Куда интересней сравнить длину затвора (L Gate), шаг затвора с контактом (Contacted Gate Pitch) и площадь ячейки СОЗУ (SRAM Cell Size).

Тут надо указать, что кэши изготовленного с той же технормой ЦП той же фирмы имеют площадь ячейки на 5–15 % больше указанной в случае L2 и L3, и на 50–70 % больше для L1. Дело в том, что сообщаемые на IEDM цифры площади тоже являются несколько рекламными. Они верны лишь для одиночного массива ячеек и не учитывают усилители, буферы ввода-вывода, декодеры адреса, резервы размера для увеличения надёжности и размены плотности на скорость (для L1).

Для простоты возьмём только «скоростные» (High Performance) процессы Intel. Для 130 нм длина затвора составляла 46% технормы, а сегодня - 94%. Тем не менее, шаг затвора уменьшился в те же 4 раза, что и технорма. Однако если разделить площадь ячейки СОЗУ на квадрат технормы, то старым ячейкам нужно ≈120 таких квадратиков, а новым - уже ≈170. У AMD с её SOI-пластинами - примерно так же. На «65-нанометровом» техпроцессе фактический минимальный размер затвора может быть снижен до 25 нм, но шаг между затворами может превышать 130 нм, а минимальный шаг металлической дорожки - 180 нм. Начиная примерно с 2002 г. размеры транзисторов уменьшаются медленней технорм. Выражаясь языком современного рунета - нанометры уже не те…

А теперь, вооружившись цифрами об этом бардаке сложном микроэлектронном хозяйстве, вернёмся к обещанным Intel «22 нанометрам». По предварительным цифрам выглядит неплохо: площадь ячейки - 0,092 кв.мк. для «быстрой» и 0,108 для энергоэффективной версии процесса (данные 2009 г. для тестовой микросхемы СОЗУ на 22 нм). Для быстрой версии это эквивалентно 190 элементарным квадратам - чуть хуже, чем для прошлых технорм. Но Intel продолжит использовать 193-нанометровую иммерсионную литографию и для 14 нм, возможно - с тройным шаблонированием. А для 10 нм - с пятерным (5 экспозиций и одно скругление распорок). При этом для 10-нанометрового процесса стоимость стадий литографии на единицу площади будет примерно вшестеро больше, чем для 32-нанометрового, а вот окажется ли площадь меньше в 10 раз (как при линейном уменьшении) - сомнительно. Тут уже даже неважно, почему Intel решила, что следующие два её процесса будут иметь технормы 14 и 10 нм, а не 16 и 11, как можно ожидать (каждая следующая - в √2 раз меньше). Ведь нанометры теперь мало что значат… Что дальше?

Если вернуться к обзорным графикам, последние несколько из них не зря касаются цены или себестоимости. Если по ним попытаться экстраполировать тенденции на будущее, то окажется, что через некоторое время в мире останется лишь 2–3 компании, способные разрабатывать и внедрять самые современные техпроцессы. Им это будет влетать в 11-значные суммы в долларах, окупить которые можно, лишь если продукция будет продаваться по всему миру, что возможно только при полной монополизации - одна платформа, одна архитектура, одна концепция… Для необходимой конкуренции избыточности места уже не останется - нас всего 7 миллиардов, и это число растёт совсем не так быстро, как цены на фабы и техпроцессы.

Более того, наверняка будет уменьшаться и число бесфабричных компаний. Дело даже не в том, что немногие крупные фирмы покроют своими чипами почти все потребности почти для всех. Даже если вы разработали что-то уникальное - стоимость внедрения может оказаться такой высокой, что вы не окупите её всеми своими продажами. И это тоже есть следствие массовых технологий:

Формируемое маской изображение перед попаданием на пластину оптически уменьшается в 4 раза до стандартной полосы засвета размером ≈24 мм (для современных литографов), а размер самой маски составляет около 18×12 см. Однако методы OPC и PSM требуют от неё иметь разрешение не хуже формируемого, что уже для 65 нм поднимает стоимость набора масок до сотен тысяч долларов, а для самых новых техпроцессов - до пары миллионов.

Теперь представим, что нам - маленькой, но гордой фирме - надо выпустить систему-на-кристалле, разработанную для новых планшетов и смартфонов. Маркетологи говорят, что из-за сильной конкуренции со стороны угадайте-какой компании устройства с нашим ЦП точно купят 100 000 человек. Процессор на 28-нанометровом техпроцессе (более старый проиграет гонку прожорливости) будет иметь себестоимость около 15 долларов, но если учесть цену масок (пусть и разделённую на 100 000), то будет уже 35 долларов. И это не учитывая выпуск нескольких ревизий для исправления ошибок и оптимизации параметров. Ревизий для нового сложного чипа нужно штук пять - и для каждой (после первой) надо обновлять значительную долю масок из всего набора.

В итоге окажется, что даже не допуская ни одной ошибки в рыночной стратегии, мы окупим нашу микросхему, лишь рассчитывая на производство и сбыт устройств с ней миллионами, иначе её никто не купит из-за цены. Недавно сотрудник компании Cadence (выпускающей специализированные САПРы для разработки микросхем) рассказал, что стоимость перехода с 32–28 на 22–20 нм сильно выросла по сравнению с предыдущими шагами. Микроэлектронные компании инвестировали в НИОКР по 32–28 нм 1,2 млрд. долларов и 2–3 млрд. для 22–20 нм. Проектирование чипа стоит 50–90 млн. долларов для 32 нм и 120–500 млн. долларов для 22 нм. Компенсация затрат на разработку и производство потребует продать 30–40 млн. 32-нанометровых кристаллов и 60–100 млн. на 20 нм.

Впрочем, и крупным компаниям, товары которых покупают как раз миллионами, тоже придётся с трудом объяснять, зачем покупать очередной процессор с терафлопсами и память на терабайты - учитывая, что и прошлые модели делают всё как надо. Возможно, с некоторого момента не поможет и принудительная плата за новинки - например, как следствие досрочно отменённой поддержки старых моделей или их запрограммированного износа и отключения…

Мировая микроэлектроника, следуя закону Мура, всегда опровергала регулярно выдвигаемые инженерами опасения, что мы вот-вот упрёмся в непреодолимые физические ограничения, после которых отрасль либо застрянет навсегда, либо будет вынуждена перейти на принципиально новые материалы и эффекты. Но как бы не оказалось так, что реальным тормозом будет эффект глобального насыщения: после бурного роста менять каждые год-два процессоры и память как обувь и одежду - на новые, подходящие размеры - уже не потребуется.

Другая проблема в том, что даже в тех применениях, где производительность и память никогда не будут лишними, качественный скачок (вместо очередного удвоения регистров, векторов, кэшей и ядер) может быть лишь при переходе на новый вид элементной базы - графеновой, фотонной, спинтронной, квантовой или прочей «волшебной». Но для её разработки, адаптации к массовому производству и (особенно!) построению самого производства потребуется огромное количество денег - куда большее цены современного фаба. Вполне возможно, лет через 10 (когда нынешнюю литографию растягивать далее уже не получится) никакие частные фирмы это не потянут. А какое из государств даже сегодня захочет профинансировать высокорисковые технологии микроэлектроники будущего?

Корпорация Intel подтвердила задержку массового производства центральных процессоров с применением 10-нм технологического процесса до второй половины 2017 года. Производитель микросхем утверждает, что в связи с трудностями в освоении новых норм производства ей придётся растянуть жизненный цикл 14-нм техпроцесса для CPU ещё на год. Таким образом, в следующем году Intel представит процессоры Kaby Lake, а Cannonlake выйдут только в 2017-м. Руководство Intel признало, что вследствие усложнения производства микросхем знаменитый закон Мура может подвергнуться трансформации. Тем не менее, в отличие от конкурентов, Intel не планирует упрощать характеристики новой технологии производства, чтобы ускорить её выход на рынок. В корпорации уверены, что её 10-нм технологический процесс станет лучшим в индустрии.

Цикличность закона Мура увеличивается

Когда Гордон Мур (Gordon Moore) впервые сделал своё наблюдение об удвоении числа транзисторов в интегральных схемах в 1965 году, он отметил, что их количество увеличивается в два раза каждые 12 месяцев. В 1975 году он пересмотрел своё наблюдение и сделал прогноз, что число транзисторов в микросхемах будет удваиваться каждые два года. В последние несколько лет производственные технологии и интегральные схемы стали настолько сложными, что это привело к удлинению циклов перехода от одного техпроцесса на другой. Как следствие, количество транзисторов в чипах теперь удваивается каждые два с половиной года или реже. В результате корпорация Intel по факту вынуждена производить не два, а три семейства микропроцессоров, используя одну и ту же технологию.

«Последние два перехода на новые технологии показали, что длина цикла сегодня составляет около двух с половиной лет», — сказал Брайан Кржанич (Brian Krzanich), исполнительный директор Intel, в ходе ежеквартальной телеконференции компании с инвесторами и финансовыми аналитиками. « В соответствии с этим, во второй половине 2016 года мы планируем представить Kaby Lake, третье поколение наших 14-нм продуктов, которые будут базироваться на фундаменте архитектуры Skylake, но иметь ключевые улучшения в производительности . Мы ожидаем, что это нововведение в нашем перспективном плане представит новые возможности и увеличит скорость вычислений, одновременно проложив путь для плавного перехода на 10 нм».

Не все техпроцессы одинаковы

Intel намерена начать производство своих микросхем под кодовым названием Cannonlake с использованием 10-нм технологии производства лишь во второй половине 2017-го. Судя по сообщениям неофициальных источников, корпорация Samsung планирует начать массовое производство микросхем по технологии 10 нм уже в 2016 году. Таким образом, Samsung может опередить Intel в области освоения передовых техпроцессов.

Теоретически, отставание может представлять проблему для Intel, поскольку более тонкие нормы производства означают возможность снизить энергопотребление и увеличить производительность. Хотя процессоры Intel не конкурируют напрямую с процессорами Apple A и Samsung Exynos (именно их Samsung производит с использованием передовых технологий), устройства на базе Intel конкурируют с таковыми на базе указанных чипов. Как следствие, при увеличении популярности подобных устройств уменьшится популярность электроники на основе продукции Intel.

Тем не менее, стоит понимать, что 10 нм — это лишь наименование технологического процесса, указывающее на одну из его характеристик. Все производственные процессы Intel, как правило, превосходят аналогичные технологии других производителей полупроводников. Так, 14-нм и 16-нм FinFET технологии Samsung, GlobalFoundries и TSMC хоть и используют уменьшенные транзисторы, базируются на межблочных соединениях от 20-нм техпроцессов. Таким образом, размер микросхем, произведённых по технологиям 14LPE и CLN16FF, не отличается от тех, что изготовлялись с использованием менее совершенных процессов, что не даёт возможности серьёзно увеличить их транзисторный бюджет по сравнению с предшественниками.

По сравнению с технологиями изготовления микросхем других производителей полупроводников, новые техпроцессы Intel всегда и по всем характеристикам превосходят своих предшественников. Так, 14-нм техпроцесс Intel не только увеличивает частотный потенциал и уменьшает энергопотребление, но и увеличивает плотность транзисторов, что даёт возможности интегрировать в микросхемы больше функциональных блоков.

Intel: Мы останемся лидерами в индустрии полупроводников!

Исполнительный директор Intel подчеркнул, что компания не пойдёт на использование разного рода ухищрений, чтобы формально продекларировать переход на техпроцесс 10 нм. Новая технология изготовления уменьшит размеры как транзисторов, так и межблочных соединений, что максимизирует плотность элементов, уменьшив стоимость микросхем в пересчёте на транзистор.

«Мы считаем, если вы посмотрите на масштабирование [ 10- нм техпроцесса в сравнении с 14-нм], то оно будет достаточно серьёзным по сравнению с типичным при переходе от одного к процесса к другому», — сказал господин Кржанич. «Я не дам вам точные цифры сейчас. Но мы считаем, что если объединить все [инновации, связанные с 10-нм технологией] вместе, наша лидирующая позиция [в индустрии] не изменится, даже в связи с отсрочкой [начала поставок микросхем]».

Глава Intel не стал раскрывать большого количества деталей о 10-нм технологическом процессе, а также точных причин задержки начала его применения. Тем не менее, он намекнул, что новая технология производства использует «улучшенные» транзисторы с вертикально расположенным затвором (FinFET), а также иммерсионную литографию с мультипаттернингом.

«Каждый [техпроцесс] имеет свой собственный рецепт сложностей и трудностей», — объяснил господин Кржанич. «Проблемы с переходом с 14 нм на 10 нм являются примерно тем же самым, что было с переходом с 22 нм на 14 нм. [Иммерсионная] фотолитография становится всё более сложной в использовании по мере уменьшения размеров элементов микросхем. Количество проходов при использовании мультипаттернинга увеличивается».

Intel: Мы выпустим миллионы Cannonlake в первый год

Не секрет, что процесс выхода на рынок микросхем Broadwell растянулся на много месяцев, а первоначальные объёмы выпуска Core M (Broadwell) по технологии 14 нм были мизерными. В Intel обещают, что дополнительный год поможет её инженерам отшлифовать 10-нм техпроцесс для быстрого запуска новых микросхем Cannonlake в по-настоящему массовое производство.

«Во второй половине 2017 года мы начнём производство первых 10-нм процессоров, известных по кодовому названию Cannonlake », — сказал господин Кржанич. «Когда мы говорим про вторую половину 2017 года, мы говорим о миллионах единиц и больших объемах».

Intel: Цикл «тик-так» ещё может вернуться

В Intel говорят, что хотя сейчас время использования одного технологического процесса для изготовления микропроцессоров растянулось до двух с половиной - трёх лет, компания постарается вернуться к своей модели «тик-так», цикл которой составляет около двух лет. Вполне возможно, что для возвращения «тик-так» потребуется переход на использование фотолитографии в глубоком ультрафиолете (extreme ultraviolet lithography, EUV). Если технологический процесс 10 нм будет использован три года, то к 2020 г. EUV-сканеры вполне могут стать экономически целесообразными для производства микросхем по техпроцессу 7 нм.

Следует отметить, что удлинение технологических циклов также означает и удлинение микроархитектурных циклов: теперь одна фундаментальная микроархитектура будет использоваться для трёх поколений процессоров в течение трёх лет. Каким образом Intel планирует увеличивать производительность в каждом поколении и насколько значительным будет увеличение скорости процессоров каждый год, покажет только время.

Несмотря на то, что техпроцесс напрямую не влияет на производительность процессора, мы все равно будем упоминать его как характеристику процессора, так как именно техпроцесс влияет на увеличение производительности процессора, за счет конструктивных изменений. Хочу отметить, что техпроцесс, является общим понятием, как для центральных процессоров, так и для графических процессоров, которые используются в видеокартах.

Основным элементом в процессорах являются транзисторы – миллионы и миллиарды транзисторов. Из этого и вытекает принцип работы процессора. Транзистор, может, как пропускать, так и блокировать электрический ток, что дает возможность логическим схемам работать в двух состояниях – включения и выключения, то есть во всем хорошо известной двоичной системе (0 и 1).

Техпроцесс – это, по сути, размер транзисторов. А основа производительности процессора заключается именно в транзисторах. Соответственно, чем размер транзисторов меньше, тем их больше можно разместить на кристалле процессора.

Новые процессоры Intel выполнены по техпроцессу 22 нм. Нанометр (нм) – это 10 в -9 степени метра, что является одной миллиардной частью метра. Чтобы вы лучше смогли представить насколько это миниатюрные транзисторы, приведу один интересный научный факт: « На площади среза человеческого волоса, с помощью усилий современной техники, можно разместить 2000 транзисторных затворов!»

Если брать во внимание современные процессоры, то количество транзисторов, там уже давно перевалило за 1 млрд.

Ну а техпроцесс у первых моделей начинался совсем не с нанометров, а с более объёмных величин, но в прошлое мы возвращаться не будем.

Примеры техпроцессов графических и центральных процессоров

Сейчас мы рассмотрим парочку последних техпроцессов, которые использовали известные производители графических и центральных процессоров.

1. AMD (процессоры):

Техпроцесс 32 нм. К таковым можно отнести Trinity, Bulldozer, Llano. К примеру, у процессоров Bulldozer, число транзисторов составляет 1,2 млрд., при площади кристалла 315 мм2.

Техпроцесс 45 нм. К таковым можно отнести процессоры Phenom и Athlon. Здесь примером будет Phemom, с числом транзисторов 904 млн. и площадью кристалла 346 мм2.

2. Intel:

Техпроцесс 22 нм. По 22-нм нормам построены процессоры Ivy Bridge (Intel Core ix - 3xxx). К примеру Core i7 – 3770K, имеет на борту 1,4 млрд. транзисторов, с площадью кристалла 160 мм2, видим значительный рост плотности размещения.

Техпроцесс 32 нм. К таковым можно отнести процессоры Intel Sandy Bridge (Intel Core ix – 2xxx). Здесь же, размещено 1,16 млрд. на площади 216 мм2.

Здесь четко можно увидеть, что по данному показателю, Intel явно обгоняет своего основного конкурента.

3. AMD (ATI) (видеокарты):

Техпроцесс 28 нм. Видеокарта Radeon HD 7970

4. Nvidia:

Техпроцесс 28 нм. Geforce GTX 690

Вот мы и рассмотрели понятие техпроцесса в центральных и графических процессорах. На сегодняшний день разработчиками планируется покорить техпроцесс в 14 нм, а затем и 9, с применением других материалов и методов. И это далеко не предел!

we-it.net

Что такое технологический процесс процессора и на что он влияет

Все современные вычислительные технологии базируются на основе полупроводниковой электронной техники. Для ее производства используются кристаллы кремния – одного из самых распространенных минералов в составе нашей планеты. С момента ухода в прошлое громоздких ламповых систем и с развитием транзисторных технологий этот материал занял важное место в производстве вычислительной техники.

Центральные и графические процессоры, чипы памяти, различные контроллеры – все это производится на основе кремниевых кристаллов. Уже полвека основной принцип не меняется, совершенствуются только технологии создания чипов. Они становятся более тонкими и миниатюрными, энергоэффективными и производительными. Главным параметром, который при этом усовершенствуется, является техпроцесс.

Что такое техпроцесс

Практически все современные чипы состоят из кристаллов кремния, которые обрабатываются методом литографии, с целью формирования отдельных транзисторов. Транзистор – ключевой элемент любой интегральной микросхемы. В зависимости от состояния электрического поля, он может передавать значение, эквивалентное логической единице (пропускает ток) или нулю (выступает изолятором). В чипах памяти с помощью комбинаций нулей и единиц (положений транзистора) записываются данные, а в процессорах – при переключении производятся вычисления.


В 14-нм технологии (по сравнению с 22-нм) сокращено количество барьеров, увеличена их высота, уменьшено расстояние между диэлектрическими ребрами

Технологический процесс – это процедура и порядок изготовления какой-либо продукции. В электронной промышленности, в общепринятом значении, это величина, которая указывает на разрешающую способность оборудования, применяемого при производстве чипов. От нее также напрямую зависит размер функциональных элементов, получаемых после обработки кремния (то есть, транзисторов). Чем чувствительнее и точнее оборудование используется для обработки кристаллов под заготовки процессоров – тем тоньше будет техпроцесс.

Что значит числовая величина техпроцесса

В современном полупроводниковом производстве наиболее распространена фотолитография – вытравливание элементов на кристалле, покрытом диэлектрической пленкой, с помощью воздействия света. Именно разрешающая способность оптического оборудования, излучающего свет для вытравливания, и является техпроцессом в общепринятом толковании этого слова. Это число указывает, насколько тонким может быть элемент на кристалле.


Фотолитография – вытравливание элементов на кристалле

На что влияет техпроцесс

Техпроцесс напрямую сказывается на количестве активных элементов полупроводниковой микросхемы. Чем тоньше техпроцесс – тем больше транзисторов поместится на определенной площади кристалла. В первую очередь это значит увеличение количества продукции из одной заготовки. Во вторую – снижение потребления энергии: чем тоньше транзистор – тем меньше он расходует энергии. Как итог, при равном количестве и структуре размещения транзисторов (а значит, и увеличения производительности) процессор будет меньше расходовать энергию.

Минусом перехода на тонкий техпроцесс является удорожание оборудования. Новые промышленные агрегаты позволяют делать процессоры лучше и дешевле, но сами набирают в цене. Как следствие, лишь крупные корпорации могут вкладывать миллиарды долларов в новое оборудование. Даже такие известные компании, как AMD, Nvidia, Mediatek, Qualcomm или Apple самостоятельно процессоров не делают, доверяя это задание гигантам вроде TSMC.

Что дает уменьшение техпроцесса

При уменьшении технологического процесса производитель получает возможность поднять быстродействие, сохранив прежние размеры чипа. К примеру, переход с 32 нм на 22 нм позволил вдвое увеличить плотность транзисторов. Как следствие, на том же кристалле, что раньше, стало возможным размещение не 4, а уже 8 ядер процессора.

Для пользователей главное преимущество заключается в снижении энергопотребления. Чипы на более тонком техпроцессе требуют меньше энергии, выделяют меньше тепла. Благодаря этому можно упростить систему питания, уменьшить кулер, меньше внимания уделить обдуву компонентов.


Схематический прогноз изменения техпроцесса в будущем

Техпроцесс процессоров на смартфонах

Смартфоны требовательны к аппаратным ресурсам и быстро расходуют заряд аккумулятора. Поэтому, для замедления расхода разряда, разработчики процессоров для мобильных устройств стараются внедрять в производство самые новые техпроцессы. К примеру, некогда популярные двухъядерники MediaTek MT6577 производились по техпроцессу 40 нм, а Qualcomm Snapdragon 200 ранних серий изготавливались по 45-нанометровой технологии.

В 2013-2015 годах основным техпроцессом для чипов, используемых в смартфонах, стал 28 нм. MediaTek (вплоть до Helio X10 включительно), Qualcomm Snapdragon серий S4, 400, а также модели 600, 602, 610, 615, 616 и 617 – это все 28 нм. Он же использовался и при изготовлении Snapdragon 650, 652, 800, 801, 805. «Горячий» Snapdragon 810, что интересно, был выполнен по более тонкому техпроцессу 20 нм, но это ему не сильно помогло.

Apple в своем A7 (iPhone 5S) тоже обходилась 20-нанометровой технологией. В Apple A8 для шестого Айфона применили 20 нм, а в модели A9 (для 6s и SE) уже используется новый 16 нм технологический процесс. В 2013-2014 годах Intel делали свои Atom Z3xxx по 22-нанометровой технологии. С 2015 года в производство запустили чипы с 14 нм.

Следующим шагом в развитии процессоров для смартфонов является повсеместное освоение техпроцессов 14 и 16 нм, а дальше стоит ожидать 10 нм. Первыми экземплярами на нем могут стать Qualcomm Snapdragon 825, 828 и 830.

mobcompany.info

Что такое техпроцесс в процессоре: важность размер кристалла

09.07.2017
Блог Дмитрия Вассиярова.

Доброго времени суток.

Давайте вместе приоткроем завесу такого сложного дела как производство CPU для компьютеров. В частности, из этой статьи вы узнаете, что такое техпроцесс в процессоре и почему с каждым годом разработчики стараются его уменьшить.

Как изготавливаются процессоры?

Для начала вам стоит знать ответ на данный вопрос, чтобы дальнейшие разъяснения были понятны. Любая электронная техника, в том числе и CPU, создается на основе одного из наиболее часто используемых минералов - кристаллов кремния. Причем применяется он в данных целях уже более 50 лет.

Кристаллы обрабатываются посредством литографии для возможности создания отдельных транзисторов. Последние являются основополагающими элементами чипа, так как он полностью состоит из них.

Функция транзисторов заключается в блокировке или пропуске тока, в зависимости от актуального состояния электрического поля. Таким образом, логические схемы работают по двоичной системе, то есть в двух положениях - включения и выключения. Это значит, что они либо пропускают энергию (логическая единица), либо выступают в роли изоляторов (ноль). При переключении транзисторов в CPU производятся вычисления.

Теперь о главном

Если говорить обобщенно, то под технологическим процессом понимается размер транзисторов.

Что это значит? Снова вернемся к производству процессоров.

Чаще всего применяется метод фотолитографии: кристалл покрыт диэлектрической пленкой, и из него вытравливаются транзисторы с помощью света. Для этого используется оптическое оборудование, разрешающая способность которого, по сути, и является техническим процессом. От ее значения - от точности и чувствительности аппарата - зависит тонкость транзисторов на кристалле.


Что это дает?

Как вы понимаете, чем они будут меньше, тем больше их можно расположить на чипе. Это влияет на:

  • Тепловыделение и энергопотребление. Из-за уменьшения размера элемента он нуждается в меньшем количестве энергии, следовательно, и меньше выделяет тепла. Данное преимущество позволяет устанавливать мощные CPU в небольшие мобильные устройства. Кстати, благодаря низкому энергопотреблению современных чипов, планшеты и смартфоны дольше держат заряд. Что касается ПК, пониженное тепловыделение дает возможность упростить систему охлаждения.
  • Численность заготовок. С одной стороны, производителям выгодно уменьшать техпроцесс, потому что из одной заготовки получается большее количество продукции. Правда, это лишь следствие утончения техпроцесса, а не преследование выгоды, потому что с другой стороны, чтобы снизить размер транзисторов, необходимо более дорогое оборудование.

  • Производительность чипа. Чем больше он будет иметь элементов, тем быстрее будет работать, при том, что его физический размер останется прежним.

Техпроцесс в числах и примерах

Измеряется технологический процесс в нанометрах (нм). Это 10 в -9 степени метра, то есть один нанометр является миллиардной его частью. В среднем, современные процессоры производятся по техпроцессу 22 нм.

Можете себе представить, сколько транзисторов умещается на процессоре. Чтобы вам было понятнее, на площади среза человеческого волоса могут разместиться 2000 элементов. Хоть чип и миниатюрный, но явно больше волоска, поэтому может включать в себя миллиарды транзисторных затворов.

Хотите знать точнее? Приведу несколько примеров:

  • В процессорах фирмы AMD, а именно Trinity, Llano, Bulldozer, техпроцесс составляет 32 нм. В частности, площадь кристалла последнего - 315 мм2, где располагаются 1,2 млрд. транзисторов. Phenom и Athlon того же производителя выполнены по техпроцессу 45 нм, то есть имеют 904 млн. при площади основания 346 мм2.

  • У компании Intel есть чипы по стандарту 22 нм - это семейство Ivy Bridge (Intel Core ix - 3xxx). Для наглядности: Core i7 – 3770K обладает 1,4 млрд. элементов, при том, что размер его кристалла всего 160 мм. У этого же бренда есть и 32-нанометровая продукция. Речь идет об Intel Sandy Bridge (2xxx). На площади 216 мм2 она умещает 1,16 млрд. транзисторов.

К слову, все, что вы узнали о техпроцессах для центральных компьютерных аппаратов, применимо и к графическим устройствам. Например, данное значение в видеокартах AMD (ATI) и Nvidia составляет 28 нм.


Теперь вы знаете больше о таком важном компоненте вашего компьютера как процессор. Возвращайтесь за новой информацией.

До скорого.

Intel: Наш 10-нм технологический процесс будет лучшим в индустрии

Корпорация Intel подтвердила задержку массового производства центральных процессоров с применением 10-нм технологического процесса до второй половины 2017 года. Производитель микросхем утверждает, что в связи с трудностями в освоении новых норм производства ей придётся растянуть жизненный цикл 14-нм техпроцесса для CPU ещё на год. Таким образом, в следующем году Intel представит процессоры Kaby Lake, а Cannonlake выйдут только в 2017-м. Руководство Intel признало, что вследствие усложнения производства микросхем знаменитый закон Мура может подвергнуться трансформации. Тем не менее, в отличие от конкурентов, Intel не планирует упрощать характеристики новой технологии производства, чтобы ускорить её выход на рынок. В корпорации уверены, что её 10-нм технологический процесс станет лучшим в индустрии.

Цикличность закона Мура увеличивается

Когда Гордон Мур (Gordon Moore) впервые сделал своё наблюдение об удвоении числа транзисторов в интегральных схемах в 1965 году, он отметил, что их количество увеличивается в два раза каждые 12 месяцев. В 1975 году он пересмотрел своё наблюдение и сделал прогноз, что число транзисторов в микросхемах будет удваиваться каждые два года. В последние несколько лет производственные технологии и интегральные схемы стали настолько сложными, что это привело к удлинению циклов перехода от одного техпроцесса на другой. Как следствие, количество транзисторов в чипах теперь удваивается каждые два с половиной года или реже. В результате корпорация Intel по факту вынуждена производить не два, а три семейства микропроцессоров, используя одну и ту же технологию.


«Последние два перехода на новые технологии показали, что длина цикла сегодня составляет около двух с половиной лет», - сказал Брайан Кржанич (Brian Krzanich), исполнительный директор Intel, в ходе ежеквартальной телеконференции компании с инвесторами и финансовыми аналитиками. «В соответствии с этим, во второй половине 2016 года мы планируем представить Kaby Lake, третье поколение наших 14-нм продуктов, которые будут базироваться на фундаменте архитектуры Skylake, но иметь ключевые улучшения в производительности. Мы ожидаем, что это нововведение в нашем перспективном плане представит новые возможности и увеличит скорость вычислений, одновременно проложив путь для плавного перехода на 10 нм».

Не все техпроцессы одинаковы

Intel намерена начать производство своих микросхем под кодовым названием Cannonlake с использованием 10-нм технологии производства лишь во второй половине 2017-го. Судя по сообщениям неофициальных источников, корпорация Samsung планирует начать массовое производство микросхем по технологии 10 нм уже в 2016 году. Таким образом, Samsung может опередить Intel в области освоения передовых техпроцессов.


Теоретически, отставание может представлять проблему для Intel, поскольку более тонкие нормы производства означают возможность снизить энергопотребление и увеличить производительность. Хотя процессоры Intel не конкурируют напрямую с процессорами Apple A и Samsung Exynos (именно их Samsung производит с использованием передовых технологий), устройства на базе Intel конкурируют с таковыми на базе указанных чипов. Как следствие, при увеличении популярности подобных устройств уменьшится популярность электроники на основе продукции Intel.

Тем не менее, стоит понимать, что 10 нм - это лишь наименование технологического процесса, указывающее на одну из его характеристик. Все производственные процессы Intel, как правило, превосходят аналогичные технологии других производителей полупроводников. Так, 14-нм и 16-нм FinFET технологии Samsung, GlobalFoundries и TSMC хоть и используют уменьшенные транзисторы, базируются на межблочных соединениях от 20-нм техпроцессов. Таким образом, размер микросхем, произведённых по технологиям 14LPE и CLN16FF, не отличается от тех, что изготовлялись с использованием менее совершенных процессов, что не даёт возможности серьёзно увеличить их транзисторный бюджет по сравнению с предшественниками.

По сравнению с технологиями изготовления микросхем других производителей полупроводников, новые техпроцессы Intel всегда и по всем характеристикам превосходят своих предшественников. Так, 14-нм техпроцесс Intel не только увеличивает частотный потенциал и уменьшает энергопотребление, но и увеличивает плотность транзисторов, что даёт возможности интегрировать в микросхемы больше функциональных блоков.

Intel: Мы останемся лидерами в индустрии полупроводников!

Исполнительный директор Intel подчеркнул, что компания не пойдёт на использование разного рода ухищрений, чтобы формально продекларировать переход на техпроцесс 10 нм. Новая технология изготовления уменьшит размеры как транзисторов, так и межблочных соединений, что максимизирует плотность элементов, уменьшив стоимость микросхем в пересчёте на транзистор.

«Мы считаем, если вы посмотрите на масштабирование , то оно будет достаточно серьёзным по сравнению с типичным при переходе от одного к процесса к другому», - сказал господин Кржанич. «Я не дам вам точные цифры сейчас. Но мы считаем, что если объединить все [инновации, связанные с 10-нм технологией] вместе, наша лидирующая позиция [в индустрии] не изменится, даже в связи с отсрочкой [начала поставок микросхем]».


В производственном комплексе Intel

Глава Intel не стал раскрывать большого количества деталей о 10-нм технологическом процессе, а также точных причин задержки начала его применения. Тем не менее, он намекнул, что новая технология производства использует «улучшенные» транзисторы с вертикально расположенным затвором (FinFET), а также иммерсионную литографию с мультипаттернингом.

«Каждый [техпроцесс] имеет свой собственный рецепт сложностей и трудностей», - объяснил господин Кржанич. «Проблемы с переходом с 14 нм на 10 нм являются примерно тем же самым, что было с переходом с 22 нм на 14 нм. [Иммерсионная] фотолитография становится всё более сложной в использовании по мере уменьшения размеров элементов микросхем. Количество проходов при использовании мультипаттернинга увеличивается».

Intel: Мы выпустим миллионы Cannonlake в первый год

Не секрет, что процесс выхода на рынок микросхем Broadwell растянулся на много месяцев, а первоначальные объёмы выпуска Core M (Broadwell) по технологии 14 нм были мизерными. В Intel обещают, что дополнительный год поможет её инженерам отшлифовать 10-нм техпроцесс для быстрого запуска новых микросхем Cannonlake в по-настоящему массовое производство.

«Во второй половине 2017 года мы начнём производство первых 10-нм процессоров, известных по кодовому названию Cannonlake», - сказал господин Кржанич. «Когда мы говорим про вторую половину 2017 года, мы говорим о миллионах единиц и больших объемах».


300-мм подложка с микросхемами Intel

Intel: Цикл «тик-так» ещё может вернуться

В Intel говорят, что хотя сейчас время использования одного технологического процесса для изготовления микропроцессоров растянулось до двух с половиной – трёх лет, компания постарается вернуться к своей модели «тик-так», цикл которой составляет около двух лет. Вполне возможно, что для возвращения «тик-так» потребуется переход на использование фотолитографии в глубоком ультрафиолете (extreme ultraviolet lithography, EUV). Если технологический процесс 10 нм будет использован три года, то к 2020 г. EUV-сканеры вполне могут стать экономически целесообразными для производства микросхем по техпроцессу 7 нм.

Следует отметить, что удлинение технологических циклов также означает и удлинение микроархитектурных циклов: теперь одна фундаментальная микроархитектура будет использоваться для трёх поколений процессоров в течение трёх лет. Каким образом Intel планирует увеличивать производительность в каждом поколении и насколько значительным будет увеличение скорости процессоров каждый год, покажет только время.

Если вы заметили ошибку - выделите ее мышью и нажмите CTRL+ENTER.

3dnews.ru

Битва за нанометры: зачем производители уменьшают техпроцесс

С 1965 года нам известно о так называемом законе Мура: «Количество транзисторов, размещаемых на кристалле интегральной схемы, удваивается каждые 24 месяца, что приводит к появлению новых технологий, росту производительности и прорывам в области электроники». Излагая этот закон общественности, один из отцов Intel не мог предположить, что инженеры на протяжении целых пятидесяти лет смогут придерживаться его. Не мог он и предположить, что в 2014 году сложности с соблюдением этого закона начнутся и в самой компании Intel. Ведь для увеличения количества транзисторов в процессоре нужно уменьшать технический процесс производства. По-простому, уменьшать физический размер транзисторов и увеличивать их плотность. На данный момент освоенным размером можно считать 22 нанометра, такой размер транзисторов в процессоре Intel Haswell. Казалось бы, от уменьшения одни проблемы: строже нормы чистоты помещения, сложнее изготавливать шаблон для литографии, начинают влиять квантовые эффекты, сложнее контролировать качество. Но ни один успешный производитель не пойдет на такие сложности, если речь не идет о снижении себестоимости производства и конкурентной борьбе. Соответственно, можно выделить несколько причин перехода к более тонким техпроцессам.

Первая: эффекты, связанные с длиной волны света и частотой сигналов. Вся электроника (и не только она) строится на абстракциях и упрощениях. Для того, чтобы можно было безбоязненно комбинировать элементы между собой, не выполняя заново полный анализ, для элементов должен выполняться принцип суперпозиции. Чтобы выполнялся принцип суперпозиции, должно выполняться требование, согласно которому масштаб сигнала должен быть значительно больше, чем задержка распространения сигнала в схеме. То есть, при частоте в 3 ГГц, зная скорость света, получаем, что размер схемы должен быть значительно меньше 10 см. Значительно - это значит раза в 3-4.

Вторая: энергопотребление и тепловыделение. Чем меньше элемент, тем меньше он потребляет энергии и выделяет тепла. Это дает возможность использовать мощные процессоры в ультракомпактных устройствах. Правда, с уменьшением размера транзисторов увеличиваются сложности с теплоотводом, так что, видимо, плюсы и минусы компенсируются.

Третья: транзисторы, из которых современный процессор состоит чуть более, чем полностью, представляют собой не просто переключатель, управляемый напряжением. Из-за своей структуры он также представляет собой маленький конденсатор, емкость которого исчисляется фемто-фарадами, но все-таки не нулевая. Каждый конденсатор вносит небольшую задержку в распространение цифрового сигнала, которая при увеличении количества связанных компонентов суммируется. В результате на выходе вместо прямоугольного импульса мы получаем примерно вот такое:

Четвертая: сокращение затрат на производство. Это, на мой взгляд, немаловажная причина. Каждый отдельный процессор выращивается на пластине, где их очень много. Чем меньше площадь отдельного кристалла (процессора), тем больше их помещается на одной пластине и тем больше прибыль. Но это лишь следствие уменьшения техпроцесса, поэтому говорить, что производители специально пытаются уместить на одной кремниевой подложке побольше процессоров, было бы неправильно.

Как мне кажется, производители быстрее бы согласились, что закон Мура - бред, и перестали бы все уменьшать. Ведь уменьшение техпроцесса ведет к большому количеству отбракованных процессоров. Сложно поверить, что лишь небольшие, незаметные человеку колебания земной коры могут довести количество негодных процессоров до 80%! Здесь и приходит понимание такой немаленькой цены за процессоры. Сложные материалы, суперсовременное оборудование, огромный штат научных сотрудников и другие сложности не останавливают производителей в их стремлении уменьшать техпроцесс. А почему бы и нет? Ведь это наверняка рентабельно. Intel давно уже обещает построить завод на Луне, ведь там слабая гравитация, нет землетрясений и можно уменьшать техпроцесс до атома!

Как восстановить данные после форматирования с жесткого диска

Корпорация Intel в прошлом году потратила значительные усилия, пытаясь доказать инвесторам, что занимает лидирующую позицию в технологии производства чипов. Компания заявляла в частности, что её будущий 10-нанометровый техпроцесс может обеспечить вдвое большую плотность транзисторов по сравнению с конкурирующими 10-нм нормами.

И хотя это утверждение Intel, вероятно, соответствует действительности, реальность такова, что конкуренты начали производство 10-нм кристаллов ещё в конце 2016 или в начале 2017 года, а собственный 10-нм техпроцесс Intel всё ещё не используется для выпуска массовой продукции. Огромная задержка Intel в освоении 10-нм норм означает, что сравнения Intel были бессмысленны, ведь её 10-нм технологии придётся соперничать уже с 7-нм нормами конкурентов.

На недавней международной конференции по полупроводниковым схемам (International Solid-State Circuits Conference, ISSCC) инженер Intel, по-видимому, признал проблемы, которые отдел маркетинга его корпорации не замечает: 10-нм технология Intel уступает 7-нм нормам конкурентов в одном из критических показателей.

Большинство компьютерных процессоров включают в себя тип чрезвычайно быстрой памяти, известный как SRAM. Поскольку SRAM представляет собой общую почти для всех процессоров структуру, на ней удобно сравнивать относительную плотность тех или иных технологий производства чипов. Особенно если ячейки, хранящие один бит, требуют одинакового количества транзисторов.

Итак, согласно данным Intel, однобитовая шеститранзисторная ячейка SRAM, произведённая с соблюдением её 10-нм норм, занимает 0,0312 квадратных микрометра площади кристалла. Конкурирующая одноразрядная шеститранзисторная ячейка SRAM, производимая по 7-нм техпроцессу Samsung, TSMC и GlobalFoundries, занимает соответственно 0,026, 0,0272 и 0,0296 квадратных микрометра.

Как можно видеть, 7-нанометровые технологии трёх упомянутых компаний весьма различаются между собой, но 10-нм нормы Intel существенно уступают им всем. Так вот, на прошедшей конференции и представитель Intel согласился, что произведённые по их техпроцессу 10-нм ячейки SRAM, «лишь» на 15 % уступают самым мелким из известных 7-нм ячеек.

Учитывая, что Intel всегда заявляла о значительном превосходстве над конкурентами с точки зрения плотности транзисторов на кристалле, это знаковое признание. В конечном счёте, потеря лидерства Intel в этой области является ещё одним признаком неудовлетворительной работы производственного подразделения компании. Небольшое отставание в плотности транзисторов при печати SRAM не подорвёт соотношение сил, но если тенденция продолжится, то в перспективе Intel вполне может уступить лидерство в области технологий производства полупроводниковых кристаллов.

Задержки Intel уже привели к переносу запусков (и, в некоторых случаях, к отмене) важных продуктов, что ухудшило позиции компании. Вдобавок с подобными задержками в освоении более тонких производственных норм столкнулась исключительно Intel — TSMC и Samsung последовательно соблюдали заявленные графики перехода на новые технологические процессы в течение целого ряда лет. И даже GlobalFoundries, которая исторически была не особенно надёжной производственной компанией, похоже, начинает исправляться.

И если сейчас компания Intel потеряла лидерство в плотности размещения транзисторов на кристалле (очень важный показатель), то в перспективе она вполне может утратить и прочие преимущества, например, в области производительности и энергоэффективности. Сегодня Intel стоит перед выбором: либо удвоить усилия по развитию и преобразованию своего производственного подразделения, пытаясь снова выйти в лидеры, либо постепенно свернуть собственную печать чипов, передав её сторонним компаниям. Но в первом случае есть вероятность неудачи и, соответственно, дальнейшей сдачи позиций в течение многих грядущих лет.




Top