Рентгеновская трубка рисунок. Устройство рентгеновской трубки

Рентгеновская трубка - электровакуумный прибор, который служит источником рентгеновского излучения. Подобное излучение появляется при торможении электронов, которые испускаются катодом, и их ударе об анод; при этом энергия электронов, их скорость в пространстве между анодом и катодом увеличена сильным электрическим полем, частично модифицируется в энергию рентгеновского излучения. Излучение рентгеновской трубки является наложением тормозного рентгеновского излучения на специфическое излучение вещества анода. Рентгеновские трубки различают; по способу получения потока электронов - с катодом, который подвергается бомбардировке положительными ионами и с радиоактивным источником электронов, автоэмис-сионным катодом, термоэмиссионным катодом; по способу вакуумирования - разборные, отпаянные; по времени излучения - импульсные, непрерывного действия; по типу охлаждения анода - с радиационным, масляным, воздушным, водяным охлаждением; по размерам фокуса - микрофокусные, острофокусные и макрофокусные; по его форме - линейчатой, круглой, кольцевой формы; по способу фокусировки электронов на анод - с электромагнитной, магнитной, электростатической фокусировкой.

Рентгеновские трубки используют в рентгеновском структурном анализе, рентгеновской микроскопии , дефектоскопии, рентгенодиагностике, рентгенотерапии, рентгеновском спектральном анализе и микрорентгенографии. Наибольшее использование во всех областях находят отпаянные рентгеновские трубки с электростатической системой фокусировки электронов, водоохлаждаемым анодом, термоэмиссионным катодом. Термоэмиссионный катод рентгеновской трубки, как правило, является прямой нитью или спиралью из вольфрамовой проволоки, которая накаливается электрическим током. Рабочий участок анода представляет собой металлическую зеркальную поверхность, расположенную к потоку электронов перпендикулярно или под некоторым утлом. Для получения сплошного спектра рентгеновского излучения высоких интенсивности и энергий применяют аноды из Au, W; в структурном анализе применяются рентгеновские трубки с анодами из Ti, Cr, Fe, Си, Mo, Со, Ni, Ag. Основные характеристики рентгеновской трубки - удельная мощность, рассеиваемая анодом (10-104 Вт/мм2), предельно допустимое ускоряющее напряжение (1-500 кВ), электронный ток (0,01 мА - 1А), общая потребляемая мощность (0,002 Вт - 60 кВт) и размеры фокуса (1 мкм - 10 мм). КПД рентгеновской трубки составляет от 0,1 до 3%.

Устройство рентгеновского апарата

Одним из наиболее эффективных методов изучения строения кристаллических веществ является рентгенография.

Рентгенография делится на 2 типа:

1. рентгеноструктурный анализ (РСтА);

2. рентгенофазовый анализ (РФА).

Первый метод является наиболее общим и информативным и позволяет однозначно определить все детали кристаллической структуры (координаты атомов и т.д.). Объектом исследования в РСтА является монокристалл. Второй метод позволяет идентифицировать вещество и определить некоторые параметры кристаллической структуры. Объектами исследования РФА являются поликристаллические образцы.

Рентгеновский аппарат предназначается для превращения электроэнергии в рентгеновское излучение. Устройство рентгеновского аппарата зависит от его функции, но в целом он состоит из источника излучения, блока питания, системы управления и периферии.

Как работает рентгеновский аппарат

Питание аппарата осуществляется обычно от электросети переменного тока в 126 или 220 В. Однако современные рентгеновские установки работают от постоянного тока существенно более высокого напряжения. В связи с этим в состав блока питания входят трансформатор (или система трансформаторов) и выпрямитель тока (иногда выпрямитель может отсутствовать – при низкой мощности аппарата). Генератор излучения – это рентгеновская трубка, одна или несколько.

Система управления – это распределительное устройство, то есть пульт управления, регулирующий работу всей установки. Кроме того, аппарат включает в себя штатив (систему штативов), на который крепится генератор излучения. Принцип работы установки следующий. Переменный ток от электросети подводится к первичной обмотке трансформатора. С его вторичной обмотки снимается более высокое напряжение и подается на излучатель непосредственно (полуволновые установки) или через выпрямитель – кенотрон. Накалом катодной нити рентгеновской трубки регулируется ее работа. В излучение при этом переходит не более 1% подаваемой на трубку энергии, остальное превращается в тепло, прежде всего греется анод. Для того чтобы избежать его повреждения от перегрева, либо используются тугоплавкие материалы (вольфрам, молибден), либо конструируется специальная система охлаждения (водное охлаждение, вращающийся анод). Современные рентгеновские установки снабжаются специальными устройствами для стабилизации тока и защиты излучателя от перегрузки. Кроме того, устанавливается система защиты окружающих от избыточного излучения (а также от тока высокого напряжения).

Рентгеновская трубка устройство

Рентгеновская трубка - электровакуумный прибор с источником излучения электронов (катод) и мишенью, в которой они тормозятся (анод). Высоковольтное напряжение для разогревакатода подается через минусовой высоковольтный кабель с накального трансформатора, который находится вгенераторном устройстве. Накаленная спираль катода, при прикладывание к рентгеновской трубке высокого напряжения,начинает выбрасывать ускоряющийся потокэлектронов, а затем они резко тормозятся на вольфрамовой пластинке анода, что и приводит к появлениюрентгеновских лучей.


Принцип работы рент геновской трубки

Рисунок 1 - Схема рентгеновской трубки для структурного анализа: 1 - металлический анодный стакан (обычно заземляется); 2 – окна из бериллия для выхода рентгеновского излучения; 3 – термоэмиссионный катод; 4 – стеклянная колба, изолирующая анодную часть трубки от катодной; 5 – выводы катода, к которым подводится напряжение накала, а также высокое (относительно анода) напряжение; 6 – электростатическая система фокусировки электронов; 7 – ввод (антикатод); 8 – патрубки для ввода и вывода проточной воды, охлаждающей вводный стакан.

Площадь анода, на которую попадают электроны, называют фокусом. В современных рентгеновских трубках обычно имеется два фокуса: большой и малый. В аноде свыше 95% энергии электронов превращается в тепловую энергию, нагревающую анод до 2000° и более. По этой причине с увеличением длительности экспозиции допустимая мощность снижается.

Рентгенодиагностическую трубку размещают в просвинцованном кожухе, который заполнентрансформаторным маслом. В кожухе имеются отверстиядля подсоеденения высоковольтных кабелей и выходное окно, через которое выводится пучок излучения. Для минимизации дозы рентгеновского излучения в современных рентгеновских аппаратах, например ФМЦ на выходном окне крепится устройство колимации. Для того, чтоб исключить появление на аноде рентгеновской трубки повреждений, последний должен вращаться, для этого внизу кожуха рентгеновской трубки размещается устройство вращения анода.

Рентгеновские камеры

Рентгеновская камера – прибор для изучения или контроля атомной структуры образца путем регистрации на фотопленке картины, возникающей при дифракции рентгеновских лучей на исследуемом образце. Рентгеновскую камеру применяют в рентгеновском структурном анализе. Назначение рентгеновской камеры – обеспечить выполнение услови й дифракции рентгеновских лучей и получение рентгенограмм.

Рисунок 2 - Гониометрическая головка : О – образец, Д – дуговые направляющие для наклона образца в двух взаимно перпендикулярных направлениях; МЦ – механизм центрирования образца, служащий для вынесения центра дуг, в котором находится образец, на ось вращения камеры.

Рисунок 3 - Основные схемы рентгеновских камер для исследования поликристаллов: а – дебаевская камера; б – фокусирующая камера с изогнутым кристаллом-монохроматором для исследования образцов «на просвет» (область малых углов дифракции); в – фокусирующая камера для обратной съемки (большие углы дифракции) на плоскую кассету. Стрелками показаны направления прямого и дифракционного пучков. О – образец; F – фокус рентгеновской трубки; М – кристалл-монохроматор; К – кассета с фотопленкой Ф; Л – ловушка, перехватывающая неиспользованный рентгеновский пучок; ФО – окружность фокусировки (окружность, по которой располагаются дифракционные максимумы); КЛ – коллиматор; МЦ – механизм центрировки образца.

Рисунок 4 - Основные схемы рентгеновских камер для исследования монокристаллов: а – камера для исследования неподвижных монокристаллов по методу Лауэ; б – камера вращения.

Практическая часть

По полученной от преподавателя рентгенограмме необходимо определить параметры вещества (представленные в таблице 1), а так же его идентифицировать.

№ линии d, A a, A Ширина линии, (рад) I, % hkl L, мкр.
44,7 2,026 3,509 0,855 0,00073 0,0227 0.00181
1,76 3,52 0,808 0,0012 39,7 0,0142 0.00246
76,5 1,245 3,521 0,617 0,00127 16,9 0,01546 0.00162
93,2 1,098 3,521 0,472 0,00167 26,7 0,01343 0.00161
98,7 1,017 3,642 0,425 0,00181 8,6 0,01308 0.00157
122,2 0,881 3,523 0,234 0,00418 5,7 0,00763 0.00232
144,8 0,809 3,526 0,092 0,00233 13,4 0,02183 0.000758
145,7 0,806 3,605 0,087 0,00324 10,6 0,0162 0.001054

Таблица 1 – Данные анализа рентгенограммы 1

1. Получили от преподавателя рентгенограмму порошка неизвестного состава. По рентгенограмме были найдены углы , интенсивности, так же ширины линий и , данные представлены в таблице 1.

2. По формуле Вульфа – Брэгга, найдены межплоскостные расстояния d.

3. Для нахождения параметра решётки, необходимо идентифицировать её структуру. Так как для ОЦК структуры отражение идёт только от плоскостей с чётными суммами индексов hkl, то первые две линии будут (110) и (200), зная, что каждому соответствует своя сумма hkl, получим, что соотношение первой и второй линии должно равняться , если это ОЦК структура. Аналогично рассматривая ГЦК структуру, где видны плоскости с однотипными индексами hkl (все или чётные или не чётные), определяем, что первые две линии будут (111) и (200). Следовательно, соотношение первой и второй линии должны равняться

Так как мы не знаем состава порошка, то мы не можем утверждать по первым двум линиям, что весь порошок имеет ГЦК структуру. Однако, из соображений что

можно получить ряд соотношения первой линии ко всем остальным и сравнить его с рядом соотношений суммы квадратов hkl. Получили следующий ряд:

1, 075, 0,375, 0,292, 0,25, 0,187, 0,1585, 0,157.

Получены так же ряды для ОЦК и ГЦК структур:

ОЦК: 1, 0,5, 0,33, 0,25, 0,2, 0,166, 0,142, 0,125;

ГЦК: 1, 0,75, 0,375, 0,272, 0,25, 0,187, 0,157, 0,15;

Как видно, полученный ряд схож с рядом ГЦК структуры, следовательно, порошок имеет ГЦК структуру.

Зная структуру порошка, можно найти параметр его решётки по известным индексам hkl и межплоскостному расстоянию d:

4. Размер кристаллитов находится из формулы:

Где В – ширина рентгеновской линии, К – коэффициент близкий к 1.

Рисунок 5 – График зависимости параметра решётки от .

6. Зная параметр решётки, а и структуру порошка (ГЦК) можем идентифицировать вещество как никель.

7. Необходимо найти микроискажения.

1)

2)

3)

4)

5)

6)

7)

8)

8. Зная что, полная ширина рентгеновских линий включает в себя уширение от микро искажений и уширение от размера кристаллитов, можем записать что:

Умножив всё на cosθ и разделив на λ, получим формулу Вильямсона - Холла:

Представив это уравнение, как уравнение прямой и подставив значения, полученные в таблице 1, получим следующие значения:

Таблица 2 - Полученные значения для постройки графика по методу Холла

, (Y) , (X)
0,0004397 0,000169
0,000698 0,000746
0,000650 0,00065
0,000733 0,000733
0,000771 0,000771
0,00131 0,00131
0,000419 0,000418
0,000468 0,000469

Y=0.00027+0.00165x – уравнение полученного графика.

По данным таблицы 2 построен график рисунок 6:

Рисунок 6 – График для разделения вкладов в уширение рентгеновских линий методом Холла.

По полученной от преподавателя рентгенограмме необходимо сделать задание аналогичное части 2 и количественный фазовый анализ.

Рисунок 7 – Рентгенограмма неизвестного двухфазного порошка.

Рисунок 8 – Начальные данные к рентгенограмме рисунка 7.

№ линии a, A Ширина линии, (рад) I, % hkl L, А.
3,619 0,00211 846,6 0,00532
2,882 0,00142 41,3 0,00347
3,619 0,00319 40,5 588,6 0,00679
2,883 0,00164 11,9 0,00259
3,618 0,00286 21,8 844,2 0,00379
2,884 0,00163 17,8 0,00188
3,619 0,0036 21,8 852,7 0,00361
3,619 0,00337 10,7 0,00388
2,882 0,00186 9,6 0,00161
2,885 0,00251 11,6 0,00159
3,619 0,00444 6,7 0,00273

Таблица 3 – Данные анализа рентгенограммы 2 (рисунок 7).

1. Так как мы знаем, что в порошке содержится две фазы, необходимо отделить одну фазу от другой, для этого предположим, что у этих фаз разные структуры и попытаемся по отношению синусов отличить одну фазу от другой:

1; 0,95; 0,75; 0,477; 0,376; 0,317; 0,272; 0,25; 0,238; 0,190; 0,187

Как можно заметить в ряде присутствуют числа схожие с рядом ГЦК структуры:

1; 0,75; 0,376; 0,272; 0,25; 0,187

Предположив, что линии 1, 3, 5, 7, 8, 11 это первая фаза, рассмотрим отношения квадратов синусов оставшихся линий, приняв вторую линию, как первую линию во второй фазе:

1; 0.498; 0,331; 0,249; 0,199

Полученный ряд схож с рядом ОЦК структуры.

Судя по полученным рядам, имеем на рентгенограмме две фазы со структурами ГЦК и ОЦК.

2. Зная, что имеем две структуры ОЦК и ГЦК, можно провести количественный состав фаз.

Количество фазы определяется: , где - отражательные факторы определяемые как произведение структурного фактора и фактора повторяемости. Расчёт ведём для линии с похожими значениями интенсивности, это линии 8 и 9:

Структурный фактор для ГЦК решётки равен , так как у нас далее будет отношение, уйдёт, следовательно, берём 16. Фактор повторяемости для восьмой линии равен 8, так как имеем индексы hkl = (222).

По тому же принципу для ОЦК решётки структурный фактор равен , а фактор повторяемости 12, так как имеем hkl = (220).

Тогда количество фазы с ОЦК структурой будет равно:

Следовательно, ГЦК фазы 72,8%.

Аналогично проведём расчёт пиков 3 (200) и 2 (110):

При расчёте 2 и 3- его пиков получили, что ГЦК фазы 66,2%. Больше пиков с похожей интенсивностью нет, значит возьмём среднее количество фазы между 27,2% и 33.8%, это 30%. Значит в нашем порошке примерно 30% хрома и 70% меди.

3. Определение параметра решётки

Для ГЦК структуры

Зная параметр решётки и её структуру, можем предположить, что это медь.

Для ОЦК структуры

Вскоре после открытия В.-К. Рентгеном нового вида излучения оно стало активно использоваться в медицине с диагностическими целями. Таким образом, родилась новая медицинская специальность, названная рентгенодиагностикой. Само новое излучение, электромагнитное по своей природе, в России и Германии получило название рентгеновского, а в англоязычных странах Х-лучей (Х-гау).

Устройство и принцип работы рентгеновской трубки

Рентгеновское излучение возникает в рентгеновской трубке в момент подачи на нее высокого напряжения. Наиболее распространенная современная модель рентгеновской трубки представляет собой электрический прибор, состоящий из двух электродов: катода, выполненного в виде тонкой спирали, и анода -- в виде пластины или диска, которые запаяны в вакуумной стеклянной колбе. Таким образом, между катодом и анодом имеется безвоздушное пространство. Поскольку процесс получения рентгеновского излучения связан с сильным нагреванием электродов, они конструктивно выполнены из тугоплавкого металла (вольфрама).

Перед подачей на электроды высокого напряжения катод нагревается сильным током низкого напряжения (напряжение 6--14 В, сила тока 2,5-8 А). При этом катод начинает испускать свободные электроны, которые образуют вокруг него так называемое электронное облачко, а процесс отрыва электронов от поверхности катода называется электронной эмиссией.

Схема рентгеновской трубки: 1 - катод, 2 -- поток электронов, 3 - фокусное пятно анода, 4 -- анод, 5 -- двигатель на оси анода

При подаче на электроды высокого напряжения (порядка десятков и сотен киловольт) оторвавшиеся от катода электроны через вакуум начинают устремляться к аноду с огромной скоростью. Встречая на своем пути анод, электроны начинают ударяться о его поверхность. При этом происходит торможение электронов и преобразование их высокой кинетической энергии в энергию электромагнитных волн с различной частотой, большая часть которой рассеивается в виде теплового излучения. Небольшое количество энергии, образованной вследствие торможения электронов об анод (примерно 1/1000), покидает рентгеновскую трубку в виде рентгеновского излучения. Таким образом, рентгеновское излучение -- это волновое тормозное электромагнитное излучение. При этом оно направляется перпендикулярно по отношению к оси движения электронов в вакууме рентгеновской трубке. Это становится возможным благодаря особой форме анода, имеющего скошенную поверхность в месте контакта с падающими на него электронами, называемую фокусным пятном. Кроме того, во время подачи на рентгеновскую трубку высокого напряжения анод, выполненный в виде диска, начинает вращаться с высокой частотой. Поэтому в разные моменты времени пучок электронов ударяется о разные участки его поверхности, что предохраняет анод от избыточного нагревания, равномерно распределяя тепловую нагрузку по его поверхности.

Формирование рентгеновского изображения

Принцип получения рентгеновского изображения исследуемого органа основан на неоднородном ослаблении (поглощении) пучка рентгеновского излучения при прохождении его через ткани различной плотности и попадании неоднородно ослабленного излучения на воспринимающую систему (рентгеновскую пленку или флюоресцирующий экран).

Все диагностические изображения, получаемые методами медицинской визуализации, подразделяют на две основные группы - аналоговые и цифровые. Аналоговые изображения получают на специальной рентгенографической пленке или флюоресцирующих экранах с помощью методов классической рентгенодиагностики (рентгенографии, рентгеноскопии, флюорографии, линейной томографии, методик с применением искусственного контрастирования).

Схема формирования рентгеновского изображения за счет неравномерного ослабления рентгеновского излучения: 1 - источник рентгеновского излучения, 2 - тело пациента, 3 -- рентгеновская пленка, флюоресцирующий экран

Существуют негативные и позитивные изображения одного и того же объекта (органов грудной клетки). Органы и ткани, обладающие высокой рентгеновской плотностью (кости, сердце, купола диафрагмы), на негативных изображениях белого цвета, а на позитивных -- черного. При анализе рентгенограмм необходимо также помнить о наличии суммационного эффекта. Суммационный эффект заключается в наслоении изображений различных органов и тканей, расположенных вдоль прохождения пучка рентгеновского излучения.

Рентгеновское излучение, невидимое излучение, способное проникать, хотя и в разной степени, во все вещества. Представляет собой электромагнитное излучение с длиной волны порядка 10-8 см.

Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это его свойство имеет важное значение для медицины, промышленности и научных исследований. Проходя сквозь исследуемый объект и падая затем на фотопленку, рентгеновское излучение изображает на ней его внутреннюю структуру. Поскольку проникающая способность рентгеновского излучения различна для разных материалов, менее прозрачные для него части объекта дают более светлые участки на фотоснимке, чем те, через которые излучение проникает хорошо. Так, костные ткани менее прозрачны для рентгеновского излучения, чем ткани, из которых состоит кожа и внутренние органы. Поэтому на рентгенограмме кости обозначатся как более светлые участки и более прозрачное для излучения место перелома может быть достаточно легко обнаружено. Рентгеновская съемка используется также в стоматологии для обнаружения кариеса и абсцессов в корнях зубов, а также в промышленности для обнаружения трещин в литье, пластмассах и резинах.

Рентгеновское излучение используется в химии для анализа соединений и в физике для исследования структуры кристаллов. Пучок рентгеновского излучения, проходя через химическое соединение, вызывает характерное вторичное излучение, спектроскопический анализ которого позволяет химику установить состав соединения. При падении на кристаллическое вещество пучок рентгеновских лучей рассеивается атомами кристалла, давая четкую правильную картину пятен и полос на фотопластинке, позволяющую установить внутреннюю структуру кристалла.

Применение рентгеновского излучения при лечении рака основано на том, что оно убивает раковые клетки. Однако оно может оказать нежелательное влияние и на нормальные клетки. Поэтому при таком использовании рентгеновского излучения должна соблюдаться крайняя осторожность.

Получение рентгеновского излучения

Рентгеновское излучение возникает при взаимодействии электронов, движущихся с большими скоростями, с веществом. Когда электроны соударяются с атомами какого-либо вещества, они быстро теряют свою кинетическую энергию. При этом большая ее часть переходит в тепло, а небольшая доля, обычно менее 1%, преобразуется в энергию рентгеновского излучения. Эта энергия высвобождается в форме квантов - частиц, называемых фотонами, которые обладают энергией, но масса покоя которых равна нулю. Рентгеновские фотоны различаются своей энергией, обратно пропорциональной их длине волны. При обычном способе получения рентгеновского излучения получают широкий диапазон длин волн, который называют рентгеновским спектром

Рентгеновские трубки. Чтобы получать рентгеновское излучение за счет взаимодействия электронов с веществом, нужно иметь источник электронов, средства их ускорения до больших скоростей и мишень, способную выдерживать электронную бомбардировку и давать рентгеновское излучение нужной интенсивности. Устройство, в котором все это есть, называется рентгеновской трубкой. Ранние исследователи пользовались «глубоко вакуумированными» трубками типа современных газоразрядных. Вакуум в них был не очень высоким.

В газоразрядных трубках содержится небольшое количество газа, и когда на электроды трубки подается большая разность потенциалов, атомы газа превращаются в положительные и отрицательные ионы. Положительные движутся к отрицательному электроду (катоду) и, падая на него, выбивают из него электроны, а они, в свою очередь, движутся к положительному электроду (аноду) и, бомбардируя его, создают поток рентгеновских фотонов.

В современной рентгеновской трубке, разработанной Кулиджем (рис. 11), источником электронов является вольфрамовый катод, нагреваемый до высокой температуры.

Рис. 11.

Электроны ускоряются до больших скоростей высокой разностью потенциалов между анодом (или антикатодом) и катодом. Поскольку электроны должны достичь анода без столкновений с атомами, необходим очень высокий вакуум, для чего нужно хорошо откачать трубку. Этим также снижаются вероятность ионизации оставшихся атомов газа и обусловленные ею побочные токи.

При бомбардировке электронами вольфрамовой антикатод испускает характеристическое рентгеновское излучение. Поперечное сечение рентгеновского пучка меньше реально облучаемой площади. 1 - электронный пучок; 2 - катод с фокусирующим электродом; 3 - стеклянная оболочка (трубка); 4 - вольфрамовая мишень (антикатод); 5 - нить накала катода; 6 - реально облучаемая площадь; 7 - эффективное фокальное пятно; 8 - медный анод; 9 - окно; 10 - рассеянное рентгеновское излучение.

Электроны фокусируются на аноде с помощью электрода особой формы, окружающего катод. Этот электрод называется фокусирующим и вместе с катодом образует «электронный прожектор» трубки. Подвергаемый электронной бомбардировке анод должен быть изготовлен из тугоплавкого материала, поскольку бульшая часть кинетической энергии бомбардирующих электронов превращается в тепло. Кроме того, желательно, чтобы анод был из материала с большим атомным номером, т.к. выход рентгеновского излучения растет с увеличением атомного номера. В качестве материала анода чаще всего выбирается вольфрам, атомный номер которого равен 74. Конструкция рентгеновских трубок может быть разной в зависимости от условий применения и предъявляемых требований.

Генератором рентгеновых лучей является рентгеновская трубка. Современная электронная трубка конструируется по единому принципу и имеет следующее устройство. Основой является стеклянная колба в виде шара или цилиндра, в концевые отделы которой впаяны электроды: анод и катод. В трубке создается вакуум, что способствует вылету электронов из катода и быстрейшему их перемещению.

Катод представляет собой спираль из вольфрамовой (тугоплавкой) нити, которая укрепляется на молибденовых стержнях и помещается в металлический колпак, направляющий поток электронов в виде узкого пучка в сторону анода.
Анод делается из меди (быстрее отдает тепло и сравнительно легко охлаждается), имеет массивные размеры. Конец, обращенный к катоду, косо срезается под углом 45-70°. В центральной части скошенного анода имеется вольфрамовая пластинка, на которой находится фокус анода - участок 10-15 мм2, где в основном и образуются рентгеновы лучи.

Процесс образования рентгеновых лучей . Нить накала рентгеновской трубки - вольфрамовая спираль катода при подведении к ней тока низкого напряжения (4-15 В, 3-5А) накаливается, образуя свободные электроны вокруг нити. Включение тока высокого напряжения создает на полюсах рентгеновской трубки разность потенциалов, в результате чего свободные электроны с большой скоростью устремляются к аноду в виде потока электронов - катодных лучей, которые, попав на фокус анода, резко тормозятся, вследствие чего часть кинетической энергии электронов превращается в энергию электромагнитных колебаний с очень малой длиной волны. Это и будет рентгеновское излучение (лучи торможения).

По желанию врача и техника можно регулировать как количество рентгеновых лучей (интенсивность), так и качество их (жесткость). Повышая степень накала вольфрамовой нити катода можно добиться увеличения количества электронов, что обусловливает интенсивность рентгеновых лучей. Повышение напряжения, подаваемого к полюсам трубки, ведет к увеличению скорости полета электронов, что является основой проникающего качества лучей.

Выше уже было отмечено, что фокус рентгеновской трубки - это тот участок на аноде, куда попадают электроны и где генерируются . Величина фокуса влияет на качество рентгеновского изображения: чем меньше фокус, тем резче и структурней рисунок и наоборот, чем он больше, тем более расплывчатым становится изображение исследуемого объекта.

Практикой доказано, чем острее фокус , тем быстрее трубка приходит в негодность - происходит расплавление вольфрамовой пластинки анода. Поэтому в современных аппаратах трубки конструируются с несколькими фокусами: малым и большим, или линейным в виде узкой полосы с коррекцией угла скошенности анода в 71°, что позволяет получать оптимальную резкость изображения при наибольшей электрической нагрузке на анод.

Удачной конструкцией рентгеновской трубки является генератор с вращающимся анодом, что позволяет делать фокус незначительных размеров и удлинить тем самым срок эксплуатации аппарата.

Из потока катодных лучей только около 1% энергии превращается в рентгеновы лучи, остальная энергия переходит в тепло, что приводит к перегреванию анода. Для целей охлаждения анода используются различные способы: водяное охлаждение, калорифер-но-воздушное, масляное охлаждение под давлением и комбинированные способы.

Рентгеновская трубка помещается в специальный просвинцованный футляр или кожух с отверстием для выхода рентгеновского излучения из анода трубки. На пути выхода рентгеновского излучения из трубки устанавливаются фильтры из различных металлов, которые отсеивают мягкие лучи и делают более однородным излучение рентгеновского аппарата.

Во многих конструкциях рентгеновских аппаратов в футляр наливается трансформаторное масло, которое со всех сторон обтекает рентгеновскую трубку. Все это: металлический футляр, масло, фильтры экранируют персонал кабинета и больных от воздействия рентгеновского облучения.




Top