Радиопередающие устройства на все волны одновременно. Как происходит радиопередача по радиоволнам. Как работает радио

Шесть часов утра по московскому времени. В пространство несутся мерные удары кремлевских курантов, и затем раздаются торжественные звуки гимна. Едва отзвучали его последние ноты, как раздается спокойный, четкий голос диктора: «Говорит Москва».

Так начинается день центрального радиовещания. Знаете ли Вы, как происходят эти передачи?

Каким образом каждый звук, возникший в радиостудии, на театральной сцене или в другом месте, откуда ведут радиопередачу, мгновенно доносится к вам за сотни и тысячи километров? Для того чтобы мы могли услышать радиопрограмму, нужно ее, во-первых, передать, а затем принять.

Рис. 1. Звуковые волны вокруг камертона.

Рис. 2. Работа микрофона. а—звука нет, в цепи микрофона течет.постоянный ток; б— под действием звука мембрана вогнута, сопротивление уменьшилось, ток возрос: в —под действием звука мембрана выгнута, сопротивлению увеличилось, ток уменьшился.

Задача передающей радиостанции состоит в том, чтобы превратить речь, пение музыку в электрический ток, а затем преобразовать последний в электромагнитные волны и излучать их в окружающее пространство.

Как же практически решается эта задача? Чтобы выяснить это, вспомним, что такое звук. Звук — это колебания какой-либо среды: воздуха, дерева, металла, воды и т. п. Звуковые колебания в неограниченном пространстве распространяются от источника звука по радиусам во всех направлениях. Средняя скорость распространения звука в воздухе 330 м/сек.

На рис. 1 условно показаны (на самом деле невидимые глазу) периодические «сгущения» и «разрежения» в звукопроводящей среде, которые и представляют собой звуковые колебания или звуковую волну.

Наше ухо способно воспринимать как звук только колебания определенных частот (от 16 до 20 000 колебаний в секунду). Кроме того, амплитуда этих колебаний должна быть достаточно большой, т. е. звук должен обладать определенной силой, иначе мы не сможем его услышать.

Микрофон

И электромагнитные волны и звук — это колебания, но разной природы. Нет ли способа превратить звуковые колебания в электромагнитные? Есть. Для этого сначала нужно звук превратить в колебания электрического.тока.

Прибор, преобразующий звуковые колебания в электрические, называется микрофоном. Опишем принцип действия простейшего микрофона.

На рис. 2 показана металлическая камера, в которую насыпан угольный порошок. С одной стороны эту камеру закрывает гибкая пластинка, укрепленная на изоляторах; со всех остальных сторон камера закрыта наглухо. Камера и пластинка присоединены к источнику постоянного напряжения, создающего в цепи постоянный ток. Но представьте себе, что мы начали говорить, приблизившись к пластинке. Если пластинка достаточно тонка, то под действием звуковых волн, т. е. сгущений и разрежений воздуха, она начинает колебаться. При колебаниях пластинки будет изменяться сила ее давления на угольный порошок, отчего будет меняться сопротивление, оказываемое этим порошком электрическому току. Величина тока начнет меняться. В результате в цепи будет течь пульсирующий ток. Применив довольно простые электротехнические устройства, легко разделить пульсирующий ток на переменный и постоянный.

Мы сумели превратить звуковые колебания в переменный электрический ток. Но дело в том, что электрические колебания, созданные микрофоном, очень слабы; их следует усилить с помощью радиоламп, применяемых в специальных аппаратах — усилителях низкой частоты, а после этого можно передать их по проводам на радиостанцию.

Чтобы понять, как работает радиостанция, придется вернуться к колебательному контуру.

Снова о колебательном контуре. Вспомним наши рассуждения. Излучая радиоволны, антенна непрерывно посылает в пространство электромагнитную энергию высокой частоты, порцию за порцией. Эту энергию антенна поручает из колебательного контура.

Откуда же беспрерывно черпает энергию сам колебательный контур? Очевидно, нужно осуществить устройство, передающее контуру все новые и новые количества энергии взамен тех, которые он с пользой передает антенне, и тех, которые бесполезно затрачивает в самом себе. Нельзя предполагать, что колебательный контур работает как какой-то «вечный» маятник.

Вот о работе устройств, обеспечивающих создание радиоволн, мы теперь и должны сказать.

Радиотехника знает много всяких способов «подбрасывания» энергии в колебательный контур. Все они, за исключением одного, были отвергнуты практикой. Дело в том, что подбрасывание новых порций электрической энергии в контур нужно производить в такт с колебаниями. Не вовремя подброшенная порция электрической энергии не только не поддержит колебания, но будет заглушать их.

Наиболее пригодный способ, посредством которого производится передача в контур новых и новых количеств электрической энергии, применяется уже около 40 лет. Мы имеем в виду использование электронной лампы, которая является душой современной радиотехники.

Для ознакомления с тем, как электронная лампа вместе с колебательным контуром создает токи высокой частоты, в качестве главного «действующего лица» мы возьмем трехэлектродную лампу. Для простоты объяснения принципа работы радиопередатчика мы воспользуемся этой старой заслуженной ветеранкой, а не современными более сложными генераторными лампами.

Поучительный эпизод. Известен интересный эпизод из истории развития паровой машины. Один мальчик был приставлен к примитивной старинной паровой машине. Обязанности мальчика были несложные, но весьма однообразные. В строго определенные моменты времени он должен был открывать и закрывать кран. Важно было не спутаться и н-е открыть кран раньше времени, чтобы не остановить машину. Мальчику; наделенному природной сообразительностью, надоело утомительное занятие. Желая выкроить хотя бы немного свободного времени для своих игр, он пустился на хитрость. Веревками соединил он кран с качающимся коромыслом машины, предоставив самой машине заботиться об открывании и закрывании крана в нужные моменты. Машина была переведена с ручного обслуживания на автоматическое. Краны открывались и закрывались без прикосновения рук.

Этот эпизод напоминает то, что двумя столетиями позже произошло с изобретением лампового генератора токов высокой частоты. В 1913 г. была разработана первая схема лампового генератора, положившая начало ряду других схем, обеспечивающих удобные способы получения токов высокой частоты.

В это время знали, что радиолампа может усиливать слабые переменные электрические токи практически любой частоты. Знали и то, что если усиления одной лампы недостаточно, можно последовательными ступенями включить несколько электронных ламп одну вслед за другой. Несомненно, и до этого времени считали возможным усиленные таким образом мощные колебания высокой частоты подать прямо в антенну. В дверь стучалась идея создания ламповой передающей радиостанции. Не хватало одного: умения решить задачу — откуда взять первоначальный переменный ток, который следует подвести к сетке первой усилительной лампы.

И ученым пришла идея, с внешней стороны имевшая много общего с детской хитростью мальчика, обслуживавшего паровую машину. Они решили перевести электронную лампу на самообслуживание. Пусть она не ждет, когда ей соберутся подать к сетке переменное напряжение, а сама заботится об этом.

Рис. 3. Схема генератора с трансформаторной связью.

Иными словами, лампу заставили заниматься не только усилением уже ранее где-то и чем-то созданных переменных токов, но и самой возбуждать, генерировать их..

Таким образом, был создан первый ламповый генератор незатухающих колебаний. Первый ламповый генератор. Схема этого генератора исключитель но проста (рис. 3). В анодной цепи электронной лампы (триода) Л включен колебательный контур LC, а в цепи сетки лампы — катушка L c , близко расположенная в контурной катушке L. Вот и весь генератор.

Чтобы понять, как работает ламповый генератор, сделаем небольшое допущение. Оно нужно только на короткое время, и мы от него вскоре откажемся. Представим дебе, что в колебательном контуре LC уже поддерживаются незатухающие колебания. Ток в катушке L непрерывно меняет свое направление, и с такой же частотой заряжается и разряжается конденсатор С. Следуя за изменениями тока в контуре, меняются величина и направление магнитного поля вокруг катушки L То возникая, то исчезая, оно воздействует на витки катушки L с (пересекает их) и,как это получается в любом трансформаторе, по индукции наводит в них напряжение.

Но к катушке L c присоединена сетка лампы; следовательно, с такой же частотой, с какой колеблется ток в контуре, будет меняться и напряжение на сетке. Сетка действует автоматически, она не ошибается: «плюс» на сетке увеличивает анодный ток, протекающий через лампу, а «минус»— уменьшает его.

Качели можно раскачивать, подталкивая их в такт. Эту обязанность в лампе с большим прилежанием выполняет сетка, получающая то положительные, то отрицательные заряды. Она не дает покоя анодному току, заставляя его совершать непрерывные колебания.

Так и, не удается анодному току течь спокойно. Все время, пока нить (катод) лампы накалена, а на аноде лампы имеется положи-, тельное напряжение, ламповый генератор создает незатухающие колебания. Лампа за счет энергии анодной батареи Б покрывает все потери в контуре. Получается своего рода «идеальный» колебательный контур. Решена задача, получения незатухающих колебаний.

Ламповый генератор может быть уподоблен заведенным пружинным часам или стенным часам с поднятыми гирями. Упругость пружины или вес гирь полностью компенсирует все тормозящие силы трения и заставляет часовой механизм работать безостановочно.

Теперь мы уже можем отбросить наше допущение. Пусть в анодном контуре нет затухающих колебаний: Но первый же толчок тока, вызванный включением генератора, импульсом создаст магнитное поле вокруг контурной катушки. Этот импульс будет передан сетке, и та незамедлительно сделает свое дело. Качели придут в движение. Раскачиваясь все более, они достигнут максимальных размахов, при которых раскачивающих усилий как раз хватит на преодоление всех сил, стремящихся остановить колебания.

Удалось точно построить генератор, который работает сам, без ручного или механического управления. Он сам себя принуждает к действию, самовозбуждается. Поэтому такой генератор называется самовозбуждающимся.

Обратная связь. Разнесите контурную и сеточную катушки на большое расстояние, чтобы магнитное поле контурной катушки не «зацепляло» за витки сеточной катушки, и все кончится. Колебания создаются только потоку что анодная цепь связана с сеточной и передает‘ей возбуждающие импульсы. Такая связь называется обратной связью: вместо того, чтобы колебания из анодной цепи поступали куда-либо дальше, «на выход», они (не полностью, а частично) передаются обратно, на сетку своей Же собственной лампы. Сеточная катушка, посредством которой сетка связывается с цепью анода, называется катушкой обратной связи. Чем больше витков в ней и чем ближе она расположена к контурной катушке, тем большее напряжение индуктируется в ней, тем сильнее связь.

Итак, не электронная лампа создает колебания — они создаются в колебательном контуре. Но никогда бы контур не создал незатухающих колебаний, если бы лампа не подбрасывала в контур все новые и новые количества электрической энергии для компенсации всех потерь — полезных и вредных. Но и лампа не могла бы ничего передать контуру, если бы не получала энергию от источников питания— батарей или электрогенераторов, подающих напряжение на анод.

Темп колебаний или, лучше сказать, частоту навязывает колебательный контур. Колебания медленные, и электронная лампа будет в таком же медленном темпе передавать контуру очередные порции электрической энергии. Но ей никакого труда не составит производить это со скоростью нескольких миллионов или десятков и сотен миллионов раз в секунду. Попробуйте-ка вручную управлять электрической энергией с такой скоростью!

Трехточка

Мы уже указывали, что сетке лампы совершенно безразлично, откуда ей подается «раскачка». В схеме на рис. 3 обратная связь анодного контура с сеткой — трансформаторная. Вскоре было доказано, что иметь отдельную катушку обратной связи совершенно не обязательно. Для этого применили схему, у которой сетка (рис. 4) непосредственно присоединена к контурной катушке L. На сетку лампы Л подается напряжение, возникающее на части А—Б витков контурной катушки. Чем больше витков между точками А и Б, тем большее напряжение подается на сетку, тем сильнее обратная связь. Наоборот, передвигая соединительный проводник сетки к точке Б, мы уменьшали бы обратную связь. Такая связь называется автотрансформаторной. В принципе она ничем не отличается от трансформаторной. Оба способа представляют разновидности индуктивной связи: напряжение на сетке создается благодаря электромагнитной индукции.

Непременным условием действия схемы является такое соединение трех проводников от лампы Л к контуру LC, при котором провод от катода (нити) присоединяется между проводами от анода и сетки. Только тогда сеточные и анодные импульсы будут действовать в такт. Если анодный ток, например, должен увеличиваться, то для этого должно возрастать положительное напряжение на сетке.

Подачу порций энергии от лампы в контур строго в такт радиоспециалисты называют подачей в фазе. Схема с трансформаторной связью может не возбудиться, если импульсы на сетке не в фазе с импульсами анодного тока. В этой схеме правильная фазировка достигается очень просто: если генератор не возбуждается, достаточно переключить концы сеточной катушки. В схеме с автотрансформаторной связью нужно расположить проводники только так, как показано на рис. 4.

Весьма простая по своему устройству, состоящая всего лишь из колебательного контура, в трех точках соединенного с лампой, эта схема пользовалась в свое время особым расположением радиолюбителей. Почти все радиопередатчики первых коротковолновиков имели генератор «трехточку».

Задающий генератор

Ламповому самовозбуждающемуся генератору не хватает еще антенны, чтобы стать радиопередатчиком. Различие между мощными и маломощными радиостанциями заключается главным образом в степени усиления первоначально полученных в ламповом генераторе высокочастотных колебаний.

Рис. 4. Схема генератора с автотрансформаторной связью.

Если требуется мощность больше той, которую в состоянии отдать непосредственно самовозбуждающийся генератор, то применяют ступенчатое усиление все более мощными лампами. Иногда в одном усилительном мощном каскаде для увеличения мощности одновременно включают «в общую упряжку» несколько ламп — две, три и больше. Нередко можно встретить передатчик с тремя-четырьмя и даже семью-восемью каскадами. В таких условиях самовозбуждающийся ламповый генератор, первоисточник электрических колебаний, получает название задающего генератора: он «задает тон» всем остальным — усилительным каскадам, «раскачивает» их.

Задающий генератор —«сердце» передатчика. Остановится «сердце»—и все остановится. Первый усилительный каскад ничего не получит на сетку лампы от задающего каскада и поэтому ничего не передаст второму каскаду, второму нечего будет передавать третьему и т. д. Тщетно антенна будет ожидать получения токов высокой частоты от мощного оконечного каскада.

И «сердце» передатчика тщательно оберегают. Ему вредна перегрузка. На него действуют тепло, выделяемое током в различных деталях установки. Всякое изменение температуры приводит к изменению размеров металлических конструкций, в частности к изменению размеров деталей конденсатора и катушки контура. Меняется индуктивность — меняется емкость, а от этого меняется генерируемая частота, «гуляет» волна радиостанции. В поисках сигналов станции приходится все время перестраивать приемник.

Чтобы избежать неприятностей, от задающего генератора не требуют большой мощности— лишь бы он генерировал колебания строго определенной частоты. Как нежное растение помещают в оранжерею, так и задающий генератор часто помещают в камеру со строго постоянной температурой. Чаще же применяют особые стабилизаторы частоты, которые не позволяют генерируемой частоте отклоняться от заранее установленного значения, от номинала частоты.

Связующим звеном между ламповым генратором и антенной является питающая линия (фидер). Она играет роль плюса в несложном арифметическом выражении:

радиопередатчик = ламповый генератор + антенна .

Питающая линия состоит из проводов или кабеля, соединяющих антенну с ламповым генератором. Таким образом, мы познакомились с общим принципом действия радиопередатчика.

Включаем радиопередатчик. Через радиопередатчики может быть осуществлен любой вид работы: передача радиограмм с помощью телеграфной азбуки (радиотелеграфная передача), передача речи и музыки (радиотелефонная передача), буквопечатание и передача изображений.

Самый простой вид работы — прерывание колебаний; так поступают радисты, выстукивая ключом знаки телеграфной азбуки: при нажатии -ключа замыкаются его контакты и серия высокочастотных колебаний поступает в антенну, при размыкании контактов подача колебаний в антенну прерывается. Короткое время включения соответствует точке, длинное— тире. Этот процесс называется манипуляцией (рис. 5).

Но таким способом можно передавать лишь условные знаки телеграфной азбуки. А если нужно передать речь или музыку, то прежде всего следует обратиться к помощи микрофона.

О первом этапе превращения звука в электрический ток мы уже знаем. Этот ток мы усилили и направили по проводам на радиостанцию. К передатчику, таким образом, звуки пришли в виде электрических колебаний низкой частоты. Что же теперь с ними делать?

Модуляция. Используемые для вещания на больших расстояниях радиоволны имеют длину от 15 до 2000 м, а это значит, что частота, с которой колеблется вызывающий их электрический ток, равна 20 000 000 (20 Мгц) — 150 000 (150 кгц) колебаний в секунду. Самая же высокая звуковая (низкая) частота, которую способно воспринимать наше ухо, имеет примерно 20 000 колебаний в секунду.

Таким образом, получается, что колебания, которые мы можем услышать, имеют весьма низкую частоту и поэтому неспособны излучаться в пространство.

Рис. 5, Ток высокой частоты в антенне передатчика при телеграфной работе.

Рис. 6. Графическое изображение результата модуляции.

Колебания же, излучающиеся на огромные расстояния в виде электромагнитных волн, имеют очень высокую частоту. Такие колебания мы не можем слышать.

Остается, видимо, как-то приспособить высокочастотные колебания для «транспортировки» колебаний, звуковой частоты. Такой способ был найден. Колебания звуковой частоты заставляют воздействовать на колебания высокой частоты. Процесс воздействия низкочастотных колебаний на высокочастотные называется модуляцией.

Электрические колебания звуковой частоты трудно передать далеко, а с помощью высокой частоты они свободно перебрасываются вокруг всего земного шара.

Термин «модуляция» издавна применяется в музыке для обозначения перехода из одной тональности в другую — смены ладов.

В электротехнике модуляция — это изменение какой-нибудь из характеристик электрического тока — его величины, частоты, фазы— в соответствии с колебаниями какого-либо другого тока.

Модуляция — это не просто смешение токов, а такое воздействие низкочастотного тока на высокочастотный, когда низкочастотный ток как бы отпечатывает свою форму на высокочастотном.

Ток высокой частоты, на который воздействует телефонный разговор, называется модулируемым током, модулируемым колебанием. Говорят также:гнесущее колебание. Это удачное название. Оно хорошо показывает сущность процесса. Высокочастотное колебание после модуляции несет на себе (или в себе) отпечаток тока низкой частоты.

Процесс модуляции осуществляется с помощью специального устройства, называемого модулятором. Модулятор осуществляет воздействие токов низких частот на высокочастотные колебания. Делается это в радиопередатчиках посредством специальных модуляторных ламп.

Высокочастотные колебания до модуляции ничем не отличаются одно от другого. Но вследствие действия электрических колебаний, поступающих с микрофона, амплитуда их меняется. Она становится то больше, то меньше. Эти изменения в точности соответствуют колебаниям микрофонного тока, а следовательно, и звуковым колебаниям. Так, на электрические колебания высокой частоты накладывается «отпечаток» (узор) передаваемых звуков, и в результате получаются модулированные колебания, которые излучаются радиостанцией (рис. 6).

Назначение радиопередающих станций очень разнообразно. Некоторые из них ведут передачи для всей страны и располагаются в больших помещениях. Любительская радиостанция часто свободно размещается на столе в квартире коротковолновика. Но как бы ни различались они по своему виду и размерам, принципиальной разницы в их работе нет. Радиотехнические процессы в них почти одинаковы и различаются они в основном только мощностью колебаний и длиной излучаемых радиоволн.

Каждая радиостанция — это фабрика радиоволн. Она потребляет электрическую энергию от батарей или от генератора, или от электрической сети и преобразует ее в высокочастотные электрические колебания, которые после усиления и модуляции попадают в передающую антенну. Отсюда они уже в виде радиоволн начинают свое путешествие к радиоприемникам.

Э лектрический ток, протекая в каком либо проводнике, порождает электромагнитное поле, распостраняющееся в окружающем его пространстве.
Если этот ток является переменным, то электромагнитное поле способно наводить(индуцировать) Э. Д. С. в другом проводнике, находящемся на каком то удалении - осуществляется передача электрической энергии на расстояние.

Подобный метод передачи энергии не получил пока широкого применения - весьма высоки потери.
Но для передачи информации, он используется уже более ста лет, и весьма успешно.

Для радиосвязи используются электромагнитные колебания, так называемого, радиочастотного диапазона направленные в пространство - радиоволны. Для наиболее эффективного излучения в пространство используют антенны различных конфигураций.

Полуволновой вибратор.

Простейшая антенна - полуволновой вибратор, состоит из двух отрезков провода, направленных в противоположные стороны, в одной плоскости.

Общая длина их составляет половину длины волны, а длина отдельного отрезка - четверть. Если один из концов вибратора направлен вертикально, вместо второго может использоваться земля, или даже - общий проводник схемы передатчика.

Например, если длина вертикальной антенны составляет - 1 метр, то для радиоволны длиной 4 метра (диапазон УКВ) она будет представлять наибольшее сопротивление. Соответственно, эффективность такой антенны будет максимальной - именно для радиоволн этой длины, как при приеме, так и при передаче.

Говоря по правде, в диапазоне УКВ, наиболее уверенный прием должен наблюдаться, при горизонтальном расположении антенны. Это связано с тем, что передача в этом диапазоне с на самом деле, выполняется чаще всего, с помощью горизонтально расположенных полуволновых вибраторов. Поэтому, именно - полуволновой вибратор(а не четвертьволновой) будет являться более эффективной приемной антенной.


Использование каких - либо материалов этой страницы, допускается при наличии ссылки на сайт

Долгое время радиоприёмники возглавляли список самых значимых изобретений человечества. Первые такие устройства сейчас реконструированы и изменены под современный лад, однако в схеме их сборки мало что поменялось - та же антенна, то же заземление и колебательный контур для отсеивания ненужного сигнала. Бесспорно, схемы сильно усложнились со времён создателя радио - Попова. Его последователями были разработаны транзисторы и микросхемы для воспроизведения более качественного и энергозатратного сигнала.

Почему лучше начинать с простых схем?

Если вам понятна простая то можете быть уверены, что большая часть пути достижения успеха в сфере сборки и эксплуатации уже осилена. В этой статье мы разберём несколько схем таких приборов, историю их возникновения и основные характеристики: частоту, диапазон и т. д.

Историческая справка

7 мая 1895 года считается днём рождения радиоприёмника. В этот день российский учёный А. С. Попов продемонстрировал свой аппарат на заседании Русского физико-химического общества.

В 1899 году была построена первая линия радиосвязи длиной 45 км между и городом Котка. Во время Первой мировой войны получили распространение приёмник прямого усиления и электронные лампы. Во время военных действий наличие радио оказалось стратегически необходимым.

В 1918 году одновременно во Франции, Германии и США учёными Л. Левви, Л. Шоттки и Э. Армстронгом был разработан метод супергетеродинного приёма, но из-за слабых электронных ламп широкое распространение этот принцип получил только в 1930-х годах.

Транзисторные устройства появились и развивались в 50-х и 60-х годах. Первый широко используемый радиоприёмник на четырёх транзисторах Regency TR-1 был создан немецким физиком Гербертом Матаре при поддержке промышленника Якоба Михаэля. Он поступил в продажу в США в 1954 году. Все старые радиоприёмники работали на транзисторах.

В 70-х начинается изучение и внедрение интегральных микросхем. Сейчас приёмники развиваются с помощью большой интеграции узлов и цифровой обработки сигналов.

Характеристики приборов

Как старые радиоприёмники, так и современные обладают определёнными характеристиками:

  1. Чувствительность - способность принимать слабые сигналы.
  2. Динамический диапазон - измеряется в Герцах.
  3. Помехоустойчивость.
  4. Селективность (избирательность) - способность подавлять посторонние сигналы.
  5. Уровень собственных шумов.
  6. Стабильность.

Эти характеристики не меняются в новых поколениях приёмников и определяют их работоспособность и удобство эксплуатации.

Принцип работы радиоприёмников

В самом общем виде радиоприёмники СССР работали по следующей схеме:

  1. Из-за колебаний электромагнитного поля в антенне появляется переменный ток.
  2. Колебания фильтруются (селективность) для отделения информации от помех, т. е. из сигнала выделяется его важная составляющая.
  3. Полученный сигнал преобразуется в звук (в случае радиоприёмников).

По схожему принципу появляется изображение на телевизоре, передаются цифровые данные, работает радиоуправляемая техника (детские вертолёты, машинки).

Первый приёмник был больше похож на стеклянную трубку с двумя электродами и опилками внутри. Работа осуществлялась по принципу действия зарядов на металлический порошок. Приёмник обладал огромным по современным меркам сопротивлением (до 1000 Ом) из-за того, что опилки плохо контактировали между собой, и часть заряда проскакивала в воздушное пространство, где рассеивалась. Со временем эти опилки были заменены колебательным контуром и транзисторами для сохранения и передачи энергии.

В зависимости от индивидуальной схемы приёмника сигнал в нём может проходить дополнительную фильтрацию по амплитуде и частоте, усиление, оцифровку для дальнейшей программной обработки и т. д. Простая схема радиоприёмника предусматривает единичную обработку сигнала.

Терминология

Колебательным контуром в простейшем виде называются катушка и конденсатор, замкнутые в цепь. С помощью них из всех поступающих сигналов можно выделить нужный за счёт собственной частоты колебаний контура. Радиоприемники СССР, как, впрочем, и современные устройства, основаны на этом сегменте. Как все это функционирует?

Как правило, питание радиоприёмников происходит за счёт батареек, количество которых варьируется от 1 до 9. Для транзисторных аппаратов широко используются батареи 7Д-0.1 и типа "Крона" напряжением до 9 В. Чем больше батареек требует простая схема радиоприёмника, тем дольше он будет работать.

По частоте принимаемых сигналов устройства делятся на следующие типы:

  1. Длинноволновые (ДВ) - от 150 до 450 кГц (легко рассеиваются в ионосфере). Значение имеют приземлённые волны, интенсивность которых уменьшается с расстоянием.
  2. Средневолновые (СВ) - от 500 до 1500 кГц (легко рассеиваются в ионосфере днём, но ночью отражаются). В светлое время суток радиус действия определяется приземлёнными волнами, ночью - отражёнными.
  3. Коротковолновые (КВ) - от 3 до 30 МГц (не приземляются, исключительно отражаются ионосферой, поэтому вокруг приёмника существует зона радиомолчания). При малой мощности передатчика короткие волны могут распространяться на большие расстояния.
  4. Ультракоротковолновые (УКВ) - от 30 до 300 МГц (имеют высокую приникающую способность, как правило, отражаются ионосферой и легко огибают препятствия).
  5. - от 300 МГц до 3 ГГц (используются в сотовой связи и Wi-Fi, действуют в пределах видимости, не огибают препятствия и распространяются прямолинейно).
  6. Крайневысокочастотные (КВЧ) - от 3 до 30 ГГц (используются для спутниковой связи, отражаются от препятствий и действуют в пределах прямой видимости).
  7. Гипервысокочастотные (ГВЧ) - от 30 ГГц до 300 ГГц (не огибают препятствий и отражаются как свет, используются крайне ограниченно).

При использовании КВ, СВ и ДВ радиовещание можно вести, находясь далеко от станции. УКВ-диапазон принимает сигналы более специфично, но если станция поддерживает только его, то слушать на других частотах не получится. В приёмник можно внедрить плейер для прослушивания музыки, проектор для отображения на удалённые поверхности, часы и будильник. Описание схемы радиоприёмника с подобными дополнениями усложнится.

Внедрение в радиоприёмники микросхемы позволило значительно увеличить радиус приёма и частоту сигналов. Их главное преимущество в сравнительно малом потреблении энергии и маленьком размере, что удобно для переноса. Микросхема содержит все необходимые параметры для понижения дискретизации сигнала и удобства чтения выходных данных. Цифровая обработка сигнала доминирует в современных устройствах. были предназначены только для передачи аудиосигнала, лишь в последние десятилетия устройство приёмников развилось и усложнилось.

Схемы простейших приёмников

Схема простейшего радиоприёмника для сборки дома была разработана ещё во времена СССР. Тогда, как и сейчас, устройства разделялись на детекторные, прямого усиления, прямого преобразования, супергетеродинного типа, рефлексные, регенеративные и сверхрегенеративные. Наиболее простыми в восприятии и сборке считаются детекторные приёмники, с которых, можно считать, началось развитие радио в начале 20-ог века. Наиболее сложными в построении стали устройства на микросхемах и нескольких транзисторах. Однако если вы разберетесь в одной схеме, другие уже не будут представлять проблемы.

Простой детекторный приёмник

Схема простейшего радиоприёмника содержит в себе две детали: германиевый диод (подойдут Д8 и Д9) и главный телефон с высоким сопротивлением (ТОН1 или ТОН2). Так как в цепи не присутствует колебательный контур, ловить сигналы определённой радиостанции, транслирующиеся в данной местности, он не сможет, но со своей основной задачей справиться.

Для работы понадобится хорошая антенна, которую можно закинуть на дерево, и провод заземления. Для верности его достаточно присоединить к массивному металлическому обломку (например, к ведру) и закопать на несколько сантиметров в землю.

Вариант с колебательным контуром

В прошлую схему для внедрения избирательности можно добавить катушку индуктивности и конденсатор, создав колебательный контур. Теперь при желании можно поймать сигнал конкретной радиостанции и даже усилить его.

Ламповый регенеративный коротковолновой приёмник

Ламповые радиоприёмники, схема которых довольно проста, изготавливаются для приёма сигналов любительских станций на небольших расстояниях - на диапазоны от УКВ (ультракоротковолнового) до ДВ (длинноволнового). На этой схеме работают пальчиковые батарейные лампы. Они лучше всего генерируют на УКВ. А сопротивление анодной нагрузки снимает низкая частота. Все детали приведены на схеме, самодельными можно считать только катушки и дроссель. Если вы хотите принимать телевизионный сигналы, то катушка L2 (EBF11) составляется из 7 витков диаметром 15 мм и провода на 1,5 мм. Для подойдет 5 витков.

Радиоприёмник прямого усиления на двух транзисторах

Схема содержит и двухкаскадный усилитель НЧ - это настраиваемый входной колебательный контур радиоприёмника. Первый каскад - детектор ВЧ модулированного сигнала. Катушка индуктивности намотана в 80 витков проводом ПЭВ-0,25 (от шестого витка идёт отвод снизу по схеме) на ферритовом стержне диаметром 10 мм и длиной 40.

Подобная простая схема радиоприёмника рассчитана на распознавание мощных сигналов от недалёких станций.

Сверхгенеративное устройство на FM-диапазоны

FM-приёмник, собранный по модели Е. Солодовникова, несложен в сборке, но обладает высокой чувствительностью (до 1 мкВ). Такие устройства используют для высокочастотных сигналов (более 1МГЦ) с амплитудной модуляцией. Благодаря сильной положительной обратной связи коэффициент возрастает до бесконечности, и схема переходит в режим генерации. По этой причине происходит самовозбуждение. Чтобы его избежать и использовать приёмник как высокочастотный усилитель, установите уровень коэффициента и, когда дойдет до этого значения, резко снизьте до минимума. Для постоянного мониторинга усиления можно использовать генератор пилообразных импульсов, а можно сделать проще.

На практике нередко в качестве генератора выступает сам усилитель. С помощью фильтров (R6C7), выделяющих сигналы низких частот, ограничивается проход ультразвуковых колебаний на вход последующего каскада УНЧ. Для FM-сигналов 100-108 МГц катушка L1 преобразуется в полувиток с сечением 30 мм и линейной частью 20 мм при диаметре провода 1 мм. А катушка L2 содержит 2-3 витка диаметром 15 мм и провод с сечением 0,7 мм внутри полувитка. Возможно усиление приёмника для сигналов от 87,5 МГц.

Устройство на микросхеме

КВ-радиоприёмник, схема которого была разработана в 70-е годы, сейчас считают прототипом Интернета. Коротковолновые сигналы (3-30 МГц) путешествуют на огромные расстояния. Нетрудно настроить приёмник для прослушивания трансляции в другой стране. За это прототип получил название мирового радио.

Простой КВ-приёмник

Более простая схема радиоприёмника лишена микросхемы. Перекрывает диапазон от 4 до 13 МГц по частоте и до 75 метров по длине. Питание - 9 В от батареи "Крона". В качестве антенны может служить монтажный провод. Приёмник работает на наушники от плейера. Высокочастотный трактат построен на транзисторах VT1 и VT2. За счёт конденсатора С3 возникает положительный обратный заряд, регулируемый резистором R5.

Современные радиоприёмники

Современные аппараты очень похожи на радиоприёмники СССР: они используют ту же антенну, на которой возникают слабые электромагнитные колебания. В антенне появляются высокочастотные колебания от разных радиостанций. Они не используются непосредственно для передачи сигнала, но осуществляют работу последующей цепи. Сейчас такой эффект достигается с помощью полупроводниковых приборов.

Широкое развитие приёмники получили в середине 20-го века и с тех пор непрерывно улучшаются, несмотря на замену их мобильными телефонами, планшетами и телевизорами.

Общее устройство радиоприёмников со времён Попова изменилось незначительно. Можно сказать, что схемы сильно усложнились, добавились микросхемы и транзисторы, стало возможным принимать не только аудиосигнал, но и встраивать проектор. Так приёмники эволюционировали в телевизоры. Сейчас при желании в аппарат можно встроить всё, что душе угодно.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Принципы действия радиопереда тчика и радиоприёмника

радиопередатчик радиоприемник напряженность

Радиопереда тчик (радиопередающее устройство) - устройства для формирования радиосигналов, предназначенных для передачи информации на расстояние с помощью радиоволн. Формируют радиосигналы с заданными характеристиками, необходимыми для работы конкретных радиотехн. систем, и излучают их в пространство.

Функционально радиопередатчик состоит из следующих частей:

Любая система радиосвязи включает в себя радиопередающие устройства, функции которого включаются в преобразовании энергии постоянного тока источников питания в электромагнитные колебания и управлении этими колебаниями.

Передача энергии с помощью радиосвязи широко используется при управлении автоматическими объектами.

Основными устройствами радиосвязи являются радиопередатчик и радиоприемник. Радиопередатчик предназначен для создания высокочастотного сигнала, некоторые параметры которого (частота, амплитуда или фаза) изменяются по закону, соответствующему передаваемой информации. Частота высокочастотного сигнала называется несущей. Первые радиопередатчики искрового принципа действия на основе катушки Румкорфа были очень просты по конструкции -- излучателем радиоволн служил искровой разряд, а модулятором являлся телеграфный ключ. С помощью такого радиопередатчика информация передавалась в кодированной дискретной форме -- например азбукой Морзе или иным условным сводом сигналов. Недостатками такого радиопередатчика была относительно высокая мощность, требуемая для эффективного излучения радиоволн искровым разрядом, а также очень широкий радиочастотный диапазон излучаемых им волн. В результате одновременная работа нескольких близко расположенных искровых передатчиков была практически невозможной из-за интерференции их сигналов.

Современный радиопередатчик состоит из следующих конструктивных частей:

· задающий генератор частоты (фиксированной или перестраиваемой) несущей волны;

· модулирующее устройство, изменяющее параметры излучаемой волны (амплитуду, частоту, фазу или несколько параметров одновременно) в соответствии с сигналом, который требуется передать (часто задающий генератор и модулятор выполняют в одном блоке -- возбудитель);

· усилитель мощности, который увеличивает мощность сигнала возбудителя до требуемой за счёт внешнего источника энергии;

· устройство согласования, обеспечивающее максимально эффективную передачу мощности усилителя в антенну;

· антенна, обеспечивающая излучение сигнала.

Радиоприёмник -- устройство, соединяемое с антенной и служащее для осуществления радиоприёма .

Радиоприёмник (радиоприёмное устройство) -- устройство для приёма электромагнитных волн радиодиапазона (то есть с длиной волны от нескольких тысяч метров до долей миллиметра) с последующим преобразованием содержащейся в них информации к виду, в котором она могла бы быть использована.

Классификация радиоприёмников

Радиоприёмные устройства делятся по следующим признакам:

· по основному назначению: радиовещательные, телевизионные, связные, пеленгационные, радиолокационные, для систем радиоуправления, измерительные и др.;

· по роду работы: радиотелеграфные, радиотелефонные, фототелеграфные и т.д.;

· по виду модуляции, применяемой в канале связи: амплитудная, частотная, фазовая;

· по диапазону принимаемых волн, согласно рекомендациям МККР:

· мириаметровые волны -- 100-10 км, (3 кГц-30 кГц), СДВ

· километровые волны -- 10-1 км, (30 кГц-300 кГц), ДВ

· гектометровые волны -- 1000--100 м, (300 кГц-3 МГц), СВ

· декаметровые волны -- 100-10 м, (3 МГц-30 МГц), КВ

· метровые волны -- 10-1 м, (30 МГц-300 МГц), УКВ

· дециметровые волны -- 100-10 см, (300 МГц-3 ГГц), ДМВ

· сантиметровые волны -- 10-1 см, (3 ГГц-30 ГГц), СМВ

· миллиметровые волны -- 10-1 мм, (30 ГГц-300 ГГц), ММВ

· приёмник, включающий все широковещательные диапазоны (ДВ, СВ, КВ, УКВ) называют всеволновым .

· по принципу построения приёмного тракта: детекторные, прямого усиления, прямого преобразования,регенеративные, сверхрегенераторы, супергетеродинные с однократным, двукратным или многократным преобразованием частоты;

· по способу обработки сигнала: аналоговые и цифровые;

· по применённой элементной базе: на кристаллическом детекторе, ламповые, транзисторные, на микросхемах;

· по исполнению: автономные и встроенные (в состав др. устройства);

· по месту установки: стационарные, носимые;

· по способу питания: сетевое, автономное или универсальное.

Элемент, с помощью которого осуществляется воздействие на колебания высокой частоты, называется модулятором. Модулятор является неотъемлемой частью радиопередатчика, так как формирует сигнал информации, подлежащий передаче на расстояние. Модулированные высокочастотные колебания усиливаются усилителем мощности и излучаются в окружающее пространство с помощью антенны.

Уменьшение напряжённости поля, а следовательно, и потока энергии, переносимого радиоволной вдоль поверхности Земли (земной волной), обусловлено проводимостью поверхности в этой области. Вдоль проводящей поверхности возникает поток энергии, направленный в проводящую среду и быстро затухающий по мере распространения в ней. Глубина проникновения радиоволны в земную кору определяется толщиной слоя и, следовательно, увеличивается с увеличением длины волны. Поэтому для подземной и подводной радиосвязи используются длинные и сверхдлинные радиоволны. т.к. чем больше число столкновений, тем большая часть энергии, получаемой электроном из волн, переходит в тепло. Поэтому поглощение больше в ниж. областях ионосферы, где v больше, т.к. выше плотность газа. С увеличением частоты поглощение уменьшается. Короткие волны испытывают слабое поглощение и распространяются на большие расстояния. По этому короткие волны используются для передачи

Короткие волны (3-30 МГц)так же в результате их отражения от ионосферы возможна связь как на малых, так и на больших расстояниях при значительно меньшем уровне мощности передатчика и гораздо более простых антеннах, чем в более низкочастотных диапазонах.

Размещено на Allbest.ru

...

Подобные документы

    Системы передачи информации с помощью радиотехнических и радиоэлектронных приборов. Понятие, классификация радиоволн, особенности их распространения и диапазон. Факторы, влияющие на дальность и качество радиоволн. Рефракция и интерференция радиоволн.

    реферат , добавлен 27.03.2009

    Радиопередающие устройства, их назначение и принцип действия. Разработка структурной схемы радиопередатчика, определение его элементной базы. Электрический расчет и определение потребляемой мощности радиопередатчика. Охрана труда при работе с устройством.

    курсовая работа , добавлен 11.01.2013

    Основные понятия и классификация приборов для измерения напряженности электромагнитного поля и помех. Измерение напряженности электромагнитного поля. Метод эталонной антенны. Метод сравнения. Измерительные приемники и измерители напряженности поля.

    реферат , добавлен 23.01.2009

    Радиоволны, распространяющиеся вдоль земной поверхности от радиопередатчика, до приемника, без использования верхних слоев атмосферы. Электромагнитные волны с частотами, использующиеся в традиционной радиосвязи. Преимущества работы на коротких волнах.

    презентация , добавлен 13.03.2015

    Структурная схема радиопередатчика подвижной связи с угловой модуляцией. Расчет полосового фильтра, опорного (кварцевого) генератора, ограничителя амплитуд, интегратора. Электрический расчет фазового модулятора. Принципиальная схема радиопередатчика.

    курсовая работа , добавлен 04.05.2013

    Принципы выбора необходимого числа транзисторов и каскадов и их энергетический расчёт. Составление структурной и электрической принципиальной схем радиопередатчика. Расчёт умножителя частоты, LC-автогенератора с параметрической стабилизацией частоты.

    курсовая работа , добавлен 26.05.2014

    Назначение радиоприемников для приема и воспроизведения аналоговых и цифровых сигналов. Классификация приемных устройств по принципу действия. Построение приемников УКВ-диапазона. Схема супергетеродинного приемника. Расчет смесителя УКВ-радиоприемника.

    дипломная работа , добавлен 05.06.2012

    Структурная схема устройства. Миниатюрный микромощный радиопередатчик: классификация по назначению; выбор номенклатуры задаваемых показателей надежности; установление критериев отказов и предельных состояний. Расчет показателей ремонтопригодности.

    курсовая работа , добавлен 04.03.2011

    Классификация источников индустриальных радиопомех. Среда их распространения. Подавление индустриальных радиопомех. Проявление их в радиопередатчике. Создание линиями передач и их оборудованием наибольшей напряженности поля индустриальных радиопомех.

    реферат , добавлен 22.10.2009

    Устройство общих схем организации радиосвязи. Характеристика радиосистемы передачи информации, в которой сигналы электросвязи передаются посредством радиоволн в открытом пространстве. Особенности распространения и области применения декаметровых волн.

Доказал, что электромагнитная энергия может быть отправлена в космос в виде радиоволн, которые проходят через атмосферу примерно со скоростью света. Это открытие помогло разработать принципы радиосвязи, которыми пользуются и сегодня. Кроме того, ученый доказал, что радиоволны имеют электромагнитную природу, а главная их характеристика - это частота, при которой энергия колеблется между электрическими и магнитными полями. Частота в герцах (Гц) связана с длиной волны λ, представляющей собой расстояние, которое радиоволна проходит в течение одного колебания. Таким образом, получается следующая формула: λ = C/F (где C равна скорости света).

Принципы радиосвязи основаны на передаче несущих информацию радиоволн. Они могут передавать голос или цифровые данные. Для этого радиостанция должна иметь:

Устройство для сбора информации в электрический сигнал (например, микрофон). Этот сигнал называется основной полосой частот в обычном звуковом диапазоне.

Модулятор внесения информации в полосу частот сигнала на выбранной

Передатчик, сигнала, который посылает его на антенну.

Антенну из проводящего электричество стержня определенной длины, которая будет излучать электромагнитную радиоволну.

Усилитель сигнала на стороне приемника.

Демодулятор, который будет способен восстановить первоначальную информацию из принимаемого радиосигнала.

Наконец, устройство для воспроизведения переданной информации (например, громкоговоритель).

Современный принцип радиосвязи был задуман еще в начале прошлого века. В то время радио разработали в основном для передачи голоса и музыки. Но очень скоро появилась возможность использовать принципы радиосвязи для передачи более сложной информации. Например, такой ​​как текст. Это привело к изобретению телеграфа Морзе.

Общим для голоса, музыки или телеграфа является то, что основная информация зашифрована в которые характеризуются амплитудой и частотой (Гц). Люди могут слышать звуки в диапазоне от 30 Гц и примерно до 12 000 Гц. Этот диапазон называется звуковой спектр.

Радиочастотный спектр делится на различные Каждый из которых имеет конкретные характеристики в отношении излучения и затухания в атмосфере. Выделяют описанные в таблице ниже коммуникационные приложения, которые работают в том или ином диапазоне.

LF-диапазон от 30 кГц до 300 кГц В основном используется для воздушных судов, маяков, навигации, а также для передачи информации.
FM-диапазон от 300 кГц до 3000 кГц Используется для цифрового вещания.
ВЧ-диапазон от 3000 кГц до 30000 кГц Этот диапазон широко подходит для средней и дальней наземной радиосвязи.
УКВ-диапазон от 30000 кГц до 300000 кГц УКВ обычно используется для наземного радиовещания и связи морских и воздушных судов
UHF-диапазон от 300000 кГц до 3000000 кГц С помощью этого спектра работают спутниковые системы позиционирования, а также мобильные телефоны.

Сегодня сложно представить, что делало бы человечество без радиосвязи, которая нашла свое применение во многих современных устройствах. Например, принципы радиосвязи и телевидения используются в мобильных телефонах, клавиатуре, GPRS, Wi-Fi, беспроводных компьютерных сетях и так далее.




Top