Презентация на тему: полупроводниковые приборы. Презентация на тему "полупроводниковые приборы и принцип их работы " Презентация на тему полупроводниковые приборы

Слайд 2

Стремительное развитие и расширение областей применения электронных устройств обусловлено совершенствованием элементной базы, основу которой составляют полупроводниковые приборыПолупроводниковые материалы по своему удельному сопротивлению (ρ=10-6 ÷ 1010 Ом.м) занимают промежуточное место между проводниками и диэлектриками.

Слайд 3

Основными материалами для производства полупроводниковых приборов являются: кремний (Si), карбид кремния (SiС), соединения галлия и индия.

Слайд 4

Для изготовления электронных приборов используют твердые полупроводники, имеющие кристаллическое строение. Полупроводниковыми приборами называются приборы, действие которых основано на использовании свойств полупроводниковых материалов.

Слайд 5

Полупроводниковые диоды

Это полупроводниковый прибор с одним p-n-переходом и двумя выводами, работа которого основана на свойствах p-n - перехода. Основным свойством p-n - перехода является односторонняя проводимость - ток протекает только в одну сторону. Условно-графическое обозначение (УГО) диода имеет форму стрелки, которая и указывает направление протекания тока через прибор. Конструктивно диод состоит из p-n-перехода, заключенного в корпус (за исключением микромодульных бескорпусных) и двух выводов: от p-области - анод, от n-области - катод. Т.е. диод - это полупроводниковый прибор, пропускающий ток только в одном направлении - от анода к катоду. Зависимость тока через прибор от приложенного напряжения называется вольт-амперной характеристикой (ВАХ) прибора I=f(U).

Слайд 6

Транзисторы

Транзистор - это полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических сигналов, а также коммутации электрических цепей. Отличительной особенностью транзистора является способность усиливать напряжение и ток - действующие на входе транзистора напряжения и токи приводят к появлению на его выходе напряжений и токов значительно большей величины. Свое название транзистор получил от сокращения двух английских слов tran(sfer) (re)sistor - управляемый резистор. Транзистор позволяет регулировать ток в цепи от нуля до максимального значения.

Слайд 7

Классификация транзисторов: - по принципу действия: полевые (униполярные), биполярные, комбинированные. - по значению рассеиваемой мощности: малой, средней и большой. - по значению предельной частоты: низко-, средне-, высоко- и сверхвысокочастотные. - по значению рабочего напряжения: низко- и высоковольтные. - по функциональному назначению: универсальные, усилительные, ключевые и др. - по конструктивному исполнению: бескорпусные и в корпусном исполнении, с жесткими и гибкими выводами.

Слайд 8

В зависимости от выполняемых функций транзисторы могут работать в трех режимах: 1) Активный режим - используется для усиления электрических сигналов в аналоговых устройствах. Сопротивление транзистора изменяется от нуля до максимального значения - говорят транзистор «приоткрывается» или «подзакрывается». 2) Режим насыщения - сопротивление транзистора стремится к нулю. При этом транзистор эквивалентен замкнутому контакту реле. 3) Режим отсечки - транзистор закрыт и обладает высоким сопротивлением, т.е. он эквивалентен разомкнутому контакту реле. Режимы насыщения и отсечки используются в цифровых, импульсных и коммутационных схемах.

Слайд 9

Индикатор

Электрóнный индикáтор — это электронное показывающее устройство, предназначенное для визуального контроля за событиями, процессами и сигналами. Электронные индикаторы устанавливается в различное бытовое и промышленное оборудование для информирования человека об уровне или значении различных параметров, например, напряжения, тока, температуры, заряде батареи и т.д. Часто электронным индикатором ошибочно называют механический индикатор с электронной шкалой.

Посмотреть все слайды


Стремительное развитие и расширение областей применения электронных устройств обусловлено совершенствованием элементной базы, основу которой составляют полупроводниковые приборы Полупроводниковые материалы по своему удельному сопротивлению (ρ=10-6 ÷ 1010 Ом м) занимают промежуточное место между проводниками и диэлектриками. Стремительное развитие и расширение областей применения электронных устройств обусловлено совершенствованием элементной базы, основу которой составляют полупроводниковые приборы Полупроводниковые материалы по своему удельному сопротивлению (ρ=10-6 ÷ 1010 Ом м) занимают промежуточное место между проводниками и диэлектриками.


Для изготовления электронных приборов используют твердые полупроводники, имеющие кристаллическое строение. Для изготовления электронных приборов используют твердые полупроводники, имеющие кристаллическое строение. Полупроводниковыми приборами называются приборы, действие которых основано на использовании свойств полупроводниковых материалов.


Полупроводниковые диоды Это полупроводниковый прибор с одним p-n-переходом и двумя выводами, работа которого основана на свойствах p-n - перехода. Основным свойством p-n – перехода является односторонняя проводимость – ток протекает только в одну сторону. Условно-графическое обозначение (УГО) диода имеет форму стрелки, которая и указывает направление протекания тока через прибор. Конструктивно диод состоит из p-n-перехода, заключенного в корпус (за исключением микромодульных бескорпусных) и двух выводов: от p-области – анод, от n-области – катод. Т.е. диод – это полупроводниковый прибор, пропускающий ток только в одном направлении – от анода к катоду. Зависимость тока через прибор от приложенного напряжения называется вольт-амперной характеристикой (ВАХ) прибора I=f(U).


Транзисторы Транзистор - это полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических сигналов, а также коммутации электрических цепей. Отличительной особенностью транзистора является способность усиливать напряжение и ток - действующие на входе транзистора напряжения и токи приводят к появлению на его выходе напряжений и токов значительно большей величины. Свое название транзистор получил от сокращения двух английских слов tran(sfer) (re)sistor - управляемый резистор. Транзистор позволяет регулировать ток в цепи от нуля до максимального значения.


Классификация транзисторов: Классификация транзисторов: - по принципу действия: полевые (униполярные), биполярные, комбинированные. - по значению рассеиваемой мощности: малой, средней и большой. - по значению предельной частоты: низко-, средне-, высоко- и сверхвысокочастотные. - по значению рабочего напряжения: низко- и высоковольтные. - по функциональному назначению: универсальные, усилительные, ключевые и др. - по конструктивному исполнению: бескорпусные и в корпусном исполнении, с жесткими и гибкими выводами.


В зависимости от выполняемых функций транзисторы могут работать в трех режимах: В зависимости от выполняемых функций транзисторы могут работать в трех режимах: 1) Активный режим - используется для усиления электрических сигналов в аналоговых устройствах. Сопротивление транзистора изменяется от нуля до максимального значения - говорят транзистор «приоткрывается» или «подзакрывается». 2) Режим насыщения - сопротивление транзистора стремится к нулю. При этом транзистор эквивалентен замкнутому контакту реле. 3) Режим отсечки - транзистор закрыт и обладает высоким сопротивлением, т.е. он эквивалентен разомкнутому контакту реле. Режимы насыщения и отсечки используются в цифровых, импульсных и коммутационных схемах.


Индикатор Электрóнный индикáтор - это электронное показывающее устройство, предназначенное для визуального контроля за событиями, процессами и сигналами. Электронные индикаторы устанавливается в различное бытовое и промышленное оборудование для информирования человека об уровне или значении различных параметров, например, напряжения, тока, температуры, заряде батареи и т.д. Часто электронным индикатором ошибочно называют механический индикатор с электронной шкалой.

Работа может использоваться для проведения уроков и докладов по предмету "Физика"

Наши готовые презентации по физике делают сложные темы урока простыми,интересными и легкоусвояемыми. Большинство опытов, изучаемых на уроках физики, невозможно провести в обычных школьных условиях, показать такие опыты можно с помощью презентаций по физике.В данном разделе сайта Вы можете скачать готовые презентации по физике для 7,8,9,10,11 класса, а также презентации-лекции и презентации-семинары по физике для студентов.

При использовании полупроводниковых приборов в электронных устройствах для унификации их обозначения и стандартизации параметров используются системы условных обозначений. Эта система классифицирует полупроводниковые приборы по их назначению, основным физическим и электрическим параметрам, конструктивно-технологическим свойствам, виду полупроводниковых материалов. Система условных обозначений отечественных полупроводниковых приборов базируется на государственных и отраслевых стандартах. Первый ГОСТ на систему обозначений полупроводниковых приборов ГОСТ 10862-64 был введен в 1964 году. Затем по мере возникновения новых классификационных групп приборов был изменен на ГОСТ 10862-72, а затем на отраслевой стандарт ОСТ 11.336.038-77 и ОСТ 11.336.919-81 соответственно в 1972, 1977, 1981 годах. При этой модификации основные элементы цифробуквенного кода системы условных обозначений сохранились. Эта система обозначений логически строена и позволяет наращивать по мере дальнейшего развития элементной базы. Основные термины, определения и буквенные обозначения основных и справочных параметров полупроводниковых приборов приведены в следующих гостах: 25529-82 – Диоды полупроводниковые. Термины, определения и буквенные обозначения параметров; 19095-73 – Транзисторы полевые. Термины, определения и буквенные обозначения параметров; 20003-74 – Транзисторы биполярные. Термины, определения и буквенные обозначения параметров; 20332-84 – Тиристоры. Термины, определения и буквенные обозначения параметров.

Презентация «Средства измерения температуры»

В презентации приведена классификация средств измерения температуры контактным и бесконтактным способом. Изложены принципы работы манометрического термометра, термометра сопротивления, термоэлектрического термометра, пирометра. Рассмотрены типовые приборы измерения температуры, применяемые на промышленных предприятиях

Данная презентация может использоваться при изучении теоретического материала по дисциплине «Автоматизация технологических процессов» для специальности 270107 «Производство неметаллических строительных изделий и конструкций»

В презентации изложены следующие вопросы:

1 измерение температуры
2 измерение температуры контактным способом

3 манометрические термометры

4 электрические термометры сопротивления

5 термоэлектрические термометры (термопары)

6 интеллектуальные преобразователи температуры

7 термометры цифровые малогабаритные

8 Бесконтактное измерение температуры

9 пирометры

10 универсальная система измерения температуры

11 бесконтактные инфракрасные датчики

12 одноцветные пирометры

13 пирометры спектрального отношения

14 оптоволоконные пирометры спектрального отношения

15 Вопросы для самоконтроля.

Данная презентация выполнена в соответствии с требованиями к результатам освоения дисциплин и рабочих программ по указанным специальностям

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Средства измерения температуры. Преподаватель НКСЭ Кривоносова Н.В.

содержание 1 Измерение температуры 2 измерение температуры контактным способом 3 манометрические термометры 4 электрические термометры сопротивления 5 термоэлектрические термометры (термопары) 6 интеллектуальные преобразователи температуры 7 термометры цифровые малогабаритные 8 Бесконтактное измерение температуры 9 пирометры 10 универсальная система измерения температуры 11 бесконтактные инфракрасные датчики 12 одноцветные пирометры 13 пирометры спектрального отношения 14 оптоволоконные пирометры спектрального отношения 15 вопросы

Измерение температуры Приборы для измерения температуры делятся на две группы: - контактные - имеет место надежный тепловой контакт чувствительного элемента прибора с объектом измерения; - бесконтактные - чувствительный элемент термометра в процессе измерения не имеет непосредственного соприкосновения с измеряемой средой

Измерение температуры контактным способом Классификация по принципу действия: 1. Термометры расширения – принцип действия основан на изменении объема жидкости (жидкостные) или линейных размеров твердых тел (биметаллические) при изменении температуры. Предел измерения от минус 190°С до плюс 600 °С.

2. Манометрические термометры – принцип действия основан на изменении давления жидкостей, парожидкостной смеси или газа в замкнутом объеме при изменении температуры. Пределы измерения от минус 150 °С до плюс 600 °С. Измерение температуры контактным способом

Измерение температуры контактным способом 3. Электрические термометры сопротивления - основаны на изменении электрического сопротивления проводников или полупроводников при изменении температуры. Пределы измерения от – 200 °С до + 650 °С.

Измерение температуры контактным способом 4. Термоэлектрические преобразователи (термопары) - основаны на возникновении термоэлектродвижущей силы при нагревании спая разнородных проводников или полупроводников. Диапазон температур от – 200 °С до + 2300 °С.

Манометрические термометры Манометрический термометр с трубчатой пружиной

Манометрические термометры Зависимость давления от температуры имеет вид где  =1/273,15 – температурный коэффициент расширения газа; t 0 и t – начальная и конечная температуры; Р 0 – давление рабочего вещества при температуре t 0 . P t = P o (1 + β (t - to))

Электрические термометры сопротивления Изготавливают платиновые термометры сопротивления (ТСП) для температур от –200 до +650 0 С и медные термометры сопротивления (ТСМ) для температур от –50 до +180 0 С.

Электрические термометры сопротивления Полупроводниковые термометры сопротивления, которые называются термисторами или терморезисторами, применяются для измерения температуры в интервале от –90 до +180 0 С.

Электрические термометры сопротивления Приборы, работающие в комплекте с термометрами сопротивления: - уравновешенные мосты, - неуравновешенные мосты, - логометры.

термоЭлектрические термометры (термопары) Спай термопары с температурой t 1 называется горячим или рабочим, а спай с t 0 – холодным или свободным. ТермоЭДС термопары есть функция двух температур: E AB = f (t l , t 0).

термоЭлектрические термометры (термопары) Электрическая схема термоэлектрического преобразователя (термопара)

термоЭлектрические термометры (термопары) Приборы, работающие в комплекте с термопарами: - магнитоэлектрические милливольтметры; - автоматические потенциометры.

термоЭлектрические термометры (термопары) Стандартные градуировки термопар

термоЭлектрические термометры (термопары) Термопреобразователи с унифицированным выходным сигналом ТХАУ Метран - 271, ТСМУ Метран - 74

термоЭлектрические термометры (термопары) ТХАУ Метран - 271, ТСМУ Метран - 74 Чувствительный элемент первичного преобразователя и встроенный в головку датчика измерительный преобразователь преобразуют измеряемую температуру в унифицированный токовый выходной сигнал, что дает возможность построения АСУ ТП без применения дополнительных нормирующих преобразователей

термоЭлектрические термометры (термопары) ТХАУ Метран - 271, ТСМУ Метран - 74 Использование термопреобразователей допускается в нейтральных и агрессивных средах, по отношению к которым материал защитной арматуры является коррозионностойким

Интеллектуальные преобразователи температуры Метран - 281 Метран - 28 6

Интеллектуальные преобразователи температуры Интеллектуальные преобразователи температуры (ИПТ) Метран-280: Метран-281, Метран-286 предназначены для точных измерений температуры нейтральных, а также агрессивных сред по отношению к которым материал защитной арматуры является коррозионностойким.

Интеллектуальные преобразователи температуры Управление ИПТ осуществляется дистанционно, при этом обеспечивается настройка датчика: - выбор его основных параметров; - перенастройка диапазонов измерений; - запрос информации о самом ИПТ (типе, модели, серийном номере, максимальном и минимальном диапазонах измерений, фактическом диапазоне измерений).

Интеллектуальные преобразователи температуры В Метран-280 реализовано три единицы измерения температуры: - градусы Цельсия, º С; - градусы Кельвина, К; градусы Фаренгейта, F. Диапазон измеряемых температур от 0 до 1000 º C .

Интеллектуальные преобразователи температуры Конструктивно Метран-280 состоит из термозонда и электронного модуля, встроенного в корпус соединительной головки. В качестве первичного термопреобразователя используются чувствительные элементы из термопарного кабеля КТМС (ХА) или резистивные чувствительные элементы из платиновой проволоки.

Интеллектуальные преобразователи температуры При обнаружении неисправности в режиме самодиагностики выходной сигнал устанавливается в состояние, соответствующее нижнему (I вых ≤ 3,77 мА) сигналу тревоги. В Метран-280 реализован режим защиты настроек датчика от несанкционированного доступа.

Термометры цифровые малогабаритные ТЦМ 9210

Термометры цифровые малогабаритные Термометры ТЦМ 9210 предлагаются для замены жидкостных стеклянных термометров (ртутных и др.). ТЦМ 9210 обеспечивают четкую индикацию температуры в условиях слабой освещенности.

Термометры цифровые малогабаритные Термометры цифровые малогабаритные ТЦМ – 9210 предназначены для измерений температуры сыпучих, жидких и газообразных сред посредством погружения термопреобразователей в среду (погружные измерения) или для контактных измерений температуры поверхностей (поверхностные измерения) с представлением измеряемой температуры на цифровом табло электронного блока.

Термометры цифровые малогабаритные Термометры применяются при научных исследованиях, в технологических процессах в горнодобывающей, нефтяной, деревоперерабатывающей, пищевой и других отраслях промышленности. Диапазон измеряемых температур от – 50 до +1800 º C .

Термометры цифровые малогабаритные Термометры состоят из термопреобразователя (ТТЦ), электронного блока и сетевого блока питания. ТТЦ состоит из чувствительного элемента (ЧЭ) с защитной оболочкой, внутренних соединительных проводов и внешних выводов, позволяющих осуществить подключение к электронному блоку термометра.

Термометры цифровые малогабаритные В качестве ЧЭ в ТТЦ термометров используются термопреобразователи сопротивления Pt100 , преобразователи термоэлектрические ТХА(К). Электронный блок предназначен для преобразования сигнала, поступающего с выхода ТТЦ в сигнал измерительной информации, который высвечивается на цифровом табло.

Бесконтактное Измерение температуры К бесконтактным приборам относятся пирометры излучения: 1. Пирометры частичного излучения (яркостные, оптические), основанные на изменении интенсивности монохроматического излучения тел в зависимости от температуры. Предел измерений от 800 до 6000 º С.

Бесконтактное Измерение температуры 2. Радиационные пирометры - основаны на зависимости мощности излучения нагретого тела от его температуры. Предел от 20 до 2000 º С.

Бесконтактное Измерение температуры 3. Цветовые пирометры - основаны на зависимости отношения интенсивностей излучения на двух длинах волн от температуры тела. Пределы измерения от 200 до 3800 º С.

пирометры Переносные пирометры ST20/30Pro, ST60/80ProPlus

пирометры Переносные пирометры ST20/30Pro, ST60/80ProPlus Быстродействующие, компактные и легкие пирометры пистолетного типа обеспечивают бесконтактные точные измерения температуры малых, вредных, опасных и труднодоступных объектов, просты и удобны в эксплуатации.

пирометры Переносные пирометры ST20/30Pro, ST60/80ProPlus Диапазон измеряемых температур от – 32 до +760 º C . Погрешность в диапазоне от – 32 до +26 º C . Прицел: лазерный. Спектральная чувствительность: 7 – 18 мкм. Время отклика: 500 мс. Индикатор: ЖК-дисплей с подсветкой и разрешением; 0,1 º C ST60Pro . Температура окружающей среды: 0 – 50 0 C .

пирометры Raynger 3i

пирометры Raynger 3i – серия бесконтактных инфракрасных термометров пистолетного типа с точным визированием, имеющих широкие диапазоны измерений, различные оптические и спектральные характеристики, большое разнообразие функции, что позволяет выбрать пирометр в соответствии с его назначением

пирометры Raynger 3i - 2М и 1М (высокотемпературные модели) – для литейного и металлургического производства: в процессах рафинирования, литья и обработки чугуна, стали и других металлов, для химического и нефтехимического производства; - LT, LR (низкотемпературные модели) – для контроля температуры при производстве бумаги, резины, асфальта, кровельного материала.

пирометры В пирометрах серии Raynger 3i предусмотрено: - память на 100 измерений; - сигнализация верхнего и нижнего пределов измерений; - микропроцессорная обработка сигналов; - выход на компьютер, самописец, портативный принтер; - компенсация отраженной энергии фона.

пирометры Raynger 3i Для модели LT, LR диапазон измеряемых температур от – 30 до + 1200 º C , спектральная чувствительность 8 – 14 мкм. Для модели 2M диапазон измеряемых температур от 200 до 1800 º C , спектральная чувствительность 1,53 – 1,74 мкм.

Универсальная система измерения температуры THERMALERT GP

Универсальная система измерения температуры Thermalert GP – универсальная система для непрерывного измерения температуры, в состав которой входит компактный недорогой монитор и инфракрасный датчик GPR и GPM. При необходимости монитор оснащается релейным модулем для сигнализации по двум точкам, а также обеспечивает питание датчика.

Универсальная система измерения температуры Инфракрасные датчики необходимы в таких областях, где контактное измерение температуры повредит поверхность, например, пластиковой пленки, или загрязнит продукт, а также для измерения температуры двигающихся или труднодоступных объектов.

Универсальная система измерения температуры В пирометрах серии Thermalert GP: - параметры монитора и датчика устанавливаются с клавиатуры монитора; - обеспечена обработка результатов измерений: фиксация пиковых значений, вычисление средней температуры, компенсация температуры окружающей среды; - предусмотрена стандартная или фокусная оптика;

Универсальная система измерения температуры - диапазоны сигнализации устанавливаются оператором; - имеется возможность работы монитора GP с другими инфракрасными пирометрами фирмы Raytek , например, Thermalert C l и Thermalert TX . Диапазон измеряемых температур от – 18 до + 538 º0 C .

Бесконтактные инфракрасные датчики THERMALERT

Бесконтактные инфракрасные датчики Стационарные бесконтактные инфракрасные датчики серии Thermalert ТХ предназначены для бесконтактного измерения температуры труднодоступных объектов и подключаются по двухпроводной линии связи к монитору, например, Thermalert GP

Бесконтактные инфракрасные датчики Thermalert ТХ Для модели LT диапазон измеряемых температур от – 18 до + 500 º C , спектральная чувствительность 8–14 мкм. Для модели LTO диапазон измеряемых температур от 0 до 500 º C , спектральная чувствительность 8 – 14 мкм. Для модели MT диапазон измеряемых температур от 200 до 1000 º C , спектральная чувствительность 3 ,9

Одноцветные пирометры Marathon MA

Пирометры спектрального отношения Marathon MR1S

Пирометры спектрального отношения Marathon MR 1 S Стационарные инфракрасные пирометры спектрального отношения серии Marathon MR 1 S используют двухцветный метод измерения для получения высокой точности при работе с высокими температурами. Пирометры MR1S имеют улучшенную электронно-оптическую систему, "интеллектуальную" электронику, которые размещаются в прочном, компактном корпусе.

Пирометры спектрального отношения Marathon MR 1 S Эти пирометры – идеальное решение при измерении температуры в загазованных, задымленных зонах, движущихся объектов или очень маленьких объектов, поэтому находят применение в различных отраслях промышленности: плавке руды, выплавке и обработке металлов, нагреве в печах различных типов, в том числе индукционных, выращивании кристаллов и др.

Пирометры спектрального отношения В пирометрах MarathonMR 1 S предусмотрено: - одно - или двухцветный режим измерения; - изменяемое фокусное расстояние; - высокоскоростной процессор; - программное обеспечение для "полевой " калибровки и диагностики; - уникальное предупреждение о "грязной" линзе; программное обеспечение Marathon DataTemp .

Пирометры спектрального отношения Для модели MR A1 S A диапазон измеряемых температур от 600 до 14 00 º C. Для модели MR A1 SС диапазон измеряемых температур от 1000 до 3000 º C.

Оптоволоконные пирометры спектрального отношения Marathon FibreOptic

Оптоволоконные пирометры спектрального отношения Стационарные пирометры серии Marathon FR1 используют технологию инфракрасного спектрального отношения, что обеспечивает высочайшую точность измерений в диапазоне от 500 до 2500 0 С. Пирометры позволяют измерять объекты, находящиеся в опасных и агрессивных зонах, и особенно применяются там, где невозможно использовать другие инфракрасные датчики.

Оптоволоконные пирометры спектрального отношения Marathon FR1 способны точно измерять температуру труднодоступных объектов, находящихся при высокой температуре окружающей среды, загрязненной атмосфере или сильных электромагнитных полях.

вопросы Назовите с редства измерения температуры контактным способом? Назовите средства измерения температуры бесконтактным способом? На чем основан принцип работы манометрического термометра? На чем основан принцип работы термоэлектрического термометра? Принцип работы пирометра?

ресурсы http://kipia.ru/ http://www.thermopribor.com/ http://www2.emersonprocess.com/ http://hi-edu.ru/ http://www.omsketalon.ru/

Спасибо за внимание





Top