Основные источники шумов и помех и методы борьбы с ними. Виды помех процессу получения информации о воздушной и надводной обстановке

Вы включаете телевизор, чтобы посмотреть новости или хоккей, и вдруг экран заполняется черными точками, а из динамиков вместо голоса диктора раздается противное шипение. Что это? А это ваш сосед бреется неисправной электробритвой. Бритву выключили, но стало еще хуже: экран дергается, синхронизация изображения нарушена, а в звуковом канале что-то грохочет и взрывается. А это что? – спросите вы. А это соседка сняла трубку китайского радиотелефона, который по странной случайности настроен на несущую первого метрового телевизионного канала.

В последние десятилетия проблема взаимного воздействия на радиоэлектронные устройства непреднамеренных помех (специалисты говорят о проблеме электромагнитной совместимости, ЭМС) стала настолько острой, что иногда для обеспечения ЭМС приходится искусственно снижать технические характеристики аппаратуры.

В последние десятилетия проблема взаимного воздействия на радиоэлектронные уст-ройства непреднамеренных помех (специалисты говорят о проблеме электромагнитной совместимости, ЭМС) стала настолько острой, что иногда для обеспечения ЭМС приходится искусственно снижать технические характеристики аппаратуры.

Не лучше обстоит дело и при передаче на большие расстояния изображения и звука. Человеческий глаз и ухо – очень чувствительные инструменты, мгновенно замечающие малейшие нарушения качества. Инженерам приходится искать все более сложные и дорогостоящие технические решения, чтобы обеспечить передачу изображения и звука на большие расстояния без существенной потери качества.

  • Индустриальные помехи;
  • Наводки от соседних цепей;
  • Разъемы низкого качества;
До недавних пор борьба с шумами и помехами велась методом проб и ошибок при слабом понимании физики процессов, вызывающих эти шумы и помехи. Такой подход поглощал массу времени, а при малейшем изменении конфигурации аппаратуры все приходилось начинать сначала.

Оставив в стороне эфирные каналы передачи информации, кратко рассмотрим источники шумов и помех в проводных линиях передачи аудио- и видеоинформации.

Итак, требуется передать сигнал (телевизионный, компьютерный, звуковой и т.д.) из одного пункта (Источник ) в другой пункт (Приёмник ). Если кабель короток (например, 1 метр), то многие из рассматриваемых проблем, скорее всего, не возникнут, хотя в некоторых случаях даже такое расстояние может оказаться губительным для сигнала.

Если же реальному кабелю суждено проделать длинный и извилистый путь в помещении или на открытом пространстве, сигнал в нём неизбежно подвергнется воздействию многих негативных факторов.

Основными источниками шумов и помех принято считать:

  • Индустриальные помехи;
  • Наводки от соседних цепей;
  • Разъемы низкого качества;
  • Реактивное сопротивление кабеля и низкое качество кабеля;
  • Неточное согласование кабеля с волновым сопротивлением передатчика и приемника;
  • Питание от разных фаз и наличие «петель заземления», дающих помехи по «земле».

Второстепенными источниками шумов являются гальванические и электролитические процессы, трибоэлектрический эффект 1 и вибрации кабелей.

Индустриальные помехи – эти помехи, называемые также промышленными помехами, проявляют себя в местностях, где работают электростанции и различные электрические установки, аппараты и приборы: электродвигатели, аппараты электросвязи, медицинские приборы, ЭВМ, электросварочные аппараты, электрические звонки, системы электрического зажигания двигателей внутреннего сгорания. Помехи, создаваемые приему другими радиостанциями также можно отнести к индустриальным помехам.

Наводки от соседних цепей возникают в тех случаях, когда сигнальный провод или кабель попадает в зону действия электромагнитного поля, создаваемого другим проводом или кабелем.

Наводки от соседних цепей возникают в тех случаях, когда сигнальный провод или кабель попадает в зону действия электромагнитного поля, создаваемого другим проводом или кабелем. Например, если в квартире рядом проложены телефонный провод и радиотрансляционная линия, то, сняв телефонную трубку, иногда можно будет услышать музыку или речь. Это и есть наводки от соседних цепей. Особенно чувствительны к таким наводкам кабели для небалансных сигналов (например, коаксиальные) с невысоким качеством экранировки (один слой небрежно выполненной оплётки).

Разъемы низкого качества обычно плохо экранированы, но это еще полбеды. Основным источником шумов в разъемах бывают так называемые контактные шумы, которые возникают вследствие несовершенства контакта между материалами штыря и гнезда. Контактные шумы прямо пропорциональны величине протекающего через контактную пару тока, а плотность распределения мощности шумов обратна частоте. Если разъем совсем скверного качества, то возможно даже возникновение «дребезга» и искрение. Если материалы в разъеме подобраны неправильно, без учета их взаимного положения в гальваническом ряду, то между ними может возникнуть своеобразный электрохимический элемент, создающий шумы и ускоряющий коррозию.

Сам по себе кабель, особенно если он экранированный, не является источником существенных шумов, однако, от его качества сильно зависит затухание сигнала в линии, а от индуктивных и емкостных (реактивных) характеристик – искажения передаваемого сигнала.

Сам по себе кабель, особенно если он экранированный, не является источником существенных шумов, однако, от его качества сильно зависит затухание сигнала в линии, а от индуктивных и емкостных (реактивных) характеристик – искажения передаваемого сигнала. Любой кабель имеет проходное омическое сопротивление, ёмкость и индуктивность. Последние два параметра, равно как и потери в диэлектрике кабеля (tgδ) и некоторые другие факторы особенно сильно влияют на качество передачи высокочастотных составляющих сигнала – информации о мелких деталях и цвете в аналоговом видео, фронтов импульсов в цифровом сигнале. Чем длиннее кабель и чем шире спектр передаваемого сигнала, тем больше будут потери.

Чем длиннее кабель и чем шире спектр передаваемого сигнала, тем больше будут потери.

Характерное для кабеля волновое сопротивление может колебаться по его длине (за счёт его недостаточного качества или ошибок в прокладке), что приводит к возникновению отражений и «размытию» и ряби на картинке.

Неправильно заземленный кабель – мощный источник искажений и помех.

Режим электрической цепи, при котором сопротивление приемника равно сопротивлению линии, называется режимом согласованной нагрузки . Если нагрузка несогласованна, то часть передаваемого сигнала не поступит в приемник, а отразится в виде обратной волны, снижая уровень передаваемого сигнала и создавая искажения.

Если нагрузка несогласованна, то часть передаваемого сигнала не поступит в приемник, а отразится в виде обратной волны, снижая уровень передаваемого сигнала и создавая искажения.

Неправильно спроектированное питание аппаратуры (от разных фаз сети переменного тока) и неправильно организованные контуры заземления способны вызвать появление мощных помех, борьба с которыми в уже смонтированной аппаратуре чрезвычайно сложна и малоэффективна. Подключение «земли» сигнального кабеля к общему контуру заземления (или зануления) в нескольких точках приводит к образованию «петель» заземления, а запитывание приёмника и источника сигнала от разных фаз сети переменного тока может даже при полностью исправных источниках питания устройств вызвать появление значительной разности напряжений между ними (и небольших токов, которые будут «выравниваться» через экран сигнального кабеля, создавая характерный фон переменного тока).

Неправильно спроектированное питание аппаратуры (от разных фаз сети переменного тока) и неправильно организованные контуры заземления способны вызвать появление мощных помех, борьба с которыми в уже смонтированной аппаратуре чрезвычайно сложна и малоэффективна.

Все вышеуказанные факторы приводят к уменьшению расстояния, на который можно передать сигнал без заметных искажений (с допустимым уровнем качества). На практике, при использовании только пассивных мер по обеспечению качества передачи (о них – далее), обычно достигаются следующие расстояния:

Аналоговое видео

Композитный видеосигнал – передаётся по коаксиальному кабелю с волновым сопротивлением 75 Ом, используются байонетные разъёмы (BNC, в бытовой технике используются «тюльпаны» – RCA). Спектр стандартного сигнала не превышает 6 МГц, а расстояние передачи достигает 50-100 метров. Ограничивает расстояние, в основном, затухание сигнала (падение его амплитуды). Толстый коаксиальный кабель с толстым одножильным центральным проводником обеспечивает лучшие результаты. Падение амплитуды до некоторой степени парируется регулятором яркости, при дальнейшем увеличении расстояния в сигнале теряется синхронизация.

Видеосигнал S-video (YC) – передаётся по двум параллельным коаксиальным кабелям. Имеет почти такие же спектральные параметры, что и композитный. Передаётся чуть хуже, т.к. может возникать некоторый разбег фаз между сигналами в двух кабелях.

Компонентный видеосигнал (YUV/YPbPr, RGB, RGBS, RGBHV/VGA) – передаётся по нескольким (3-5) параллельным коаксиальным кабелям. Сигнал имеет гораздо более широкий спектр (до 30 МГц для YUV/RGBS, более 300 МГц для VGA/UXGA). Ограничивает расстояние (5-30 метров) подавление ВЧ-составляющих (потеря резкости), затухание сигнала, разбег фаз сигналов. Максимальное расстояние (до 30-60 метров) достигается только при очень качественных и толстых (дорогих) кабелях.

Цифровое видео

Цифровой видеосигнал SDI (Serial Digital Interface) передаётся по толстым коаксиальным кабелям с волновым сопротивлением 75 Ом, используются байонетные разъёмы (BNC). Стандартный видеосигнал имеет полосу до 270 Мбит/с (фактически – МГц), сигналы телевидения высокой чёткости HDTV могут иметь полосу до 1300 Мбит/с. Несмотря на столь широкую полосу сигнала, SDI обычно удаётся передавать на расстояние до 50-200 метров, ограничиваемое, в основном, затуханием сигнала и нарастанием джиттера (дрожания фаз цифровых импульсов). Для сигнала HDTV расстояния обычно значительно меньше.

Цифровой видеосигнал DVI (Digital Video Interface) передаётся по специальному кабелю из медных витых пар. Ширина спектра сигнала – до 165 МГц (для двух каналов получается в сумме до 330 МГц), при этом расстояние передачи ограничено 5 метрами.

Аудиосигналы

Небалансные аудиосигналы обычно передаются по экранированному кабелю, с разъёмами RCA («тюльпаны», иногда используются и другие соединители). На входе приёмника согласованная нагрузка не используется (вход должен быть высокоомным). При спектре сигнала до 20 кГц реально не стоит передавать такие сигналы более чем на 10-30 метров.

Различают пассивные и активные методы борьбы с шумами и помехами.

Балансные аудиосигналы чаще всего транслируются по экранированным витым парам проводов с разъёмами XLR. Такие сигналы гораздо устойчивее к воздействию помех и наводок, поэтому часто используются для подключения микрофонов. Сигналы большего уровня (линейного и выше) можно передавать на расстояние до 200 м и более.

Все возможные источники помех следует предусматривать на этапе проектирования и тогда же закладывать в систему методы и средства противодействия им.

Различают пассивные и активные методы борьбы с шумами и помехами.

Пассивные методы

  • В уменьшении длины кабельных сетей до разумного минимума и уменьшении количества кабелей;
  • В использовании кабелей и разъемов только высокого качества, от известных фирм-производителей;
  • В прокладке кабелей с радиусами большого изгиба, чтобы избежать помех от так называемого трибоэлектрического эффекта (накапливания заряда внутри кабеля);
  • В разделении стволов сигнальных и силовых кабелей;
  • В использовании согласованных нагрузок;
  • В таком использовании аппаратуры, чтобы ее рабочие режимы находились значительно ниже предельных;
  • В использовании самого устойчивого к помехам интерфейса. Лучше всего передавать цифровой сигнал SDI, далее – композитный, S-video и, наконец, компонентный и VGA.

Активные методы борьбы с шумами и помехами состоят:

  • В использовании промежуточных усилителей сигналов, которые компенсируют их затухание в линии из-за омического сопротивления и потери на высоких частотах из-за реактивности кабеля;
  • В переходе на витую пару. Если вместо коаксиального кабеля использовать неэкранированную витую пару (UTP), то кроме весьма существенного экономического выигрыша (витая пара намного дешевле коаксиального кабеля), мы получаем возможность передавать сигналы на очень большие расстояния – композитный или S-video-сигнал на расстояние до 1 км, а VGA-сигнал – на 300 м. Проблемы с наводками и помехами по «земле» при этом в значительной мере снижаются.
  • В переходе на оптоволоконный кабель при необходимости передачи сигнала на очень большие расстояния (до 25 км.). Оптоволоконная линия связи полностью развязана по «земле» и в ней гарантированно отсутствуют помехи.

Если возможности пассивного решения проблемы доставки сигналов исчерпаны (или не дают полной гарантии качества), следует ввести в схему дополнительные активные элементы.

При работе на длинную линию связи многие источники сигнала могут оказаться неспособными «вытянуть» такую линию. К тому же в них обычно не предусмотрено никаких регулировок, способных скомпенсировать потери сигнала в линии. Решением может быть добавление усилителя мощности на выходе источника сигнала.

Использование усилителя мощности

В таком усилителе обычно предусматривается как регулировка усиления (амплитуды сигнала на выходе), позволяющая скомпенсировать омическое сопротивление кабеля, так и регулировка амплитудно-частотной характеристики (АЧХ) в области высоких частот – для компенсации высокочастотных потерь в кабеле из-за его проходной ёмкости, индуктивности и диэлектрических потерь.

Достоинства:

  • Усилитель компенсирует затухание сигнала (из-за сопротивления кабеля) и потери на высоких частотах (из-за ёмкости и индуктивности);
  • Немного улучшает отношение сигнал/шум или помеха (на величину своего усиления, обычно не более 1-2 дБ);
  • Усилитель может иметь несколько выходов для работы на несколько приёмников (называется усилителем-распределителем; стандартный видеовыход источника сигнала не может работать одновременно на несколько приёмников);
  • В некоторых случаях позволяет скомпенсировать (своими регуляторами) различия в уровнях сигналов, выдаваемых источником (иногда даже небольшие отклонения в выходном напряжении передатчика и чувствительности приёмника могут приводить к искажениям яркости и цвета на экране, а иногда и к подрывам синхронизации).

Недостатки:

  • Усилитель не может бороться с помехами эффективно. Максимальное расстояние ограничивается в этом случае именно помехами, т.к. кабель работает в той же помеховой обстановке, что и без усилителя.
  • Возможно ограничение сигнала при слишком сильном усилении. Возможности любого усилителя небезграничны, и слишком большие потери в линии скомпенсировать не удастся - в этом случае можно посоветовать либо разбить длинный кабель на части с промежуточными усилителями между ними (каскадное включение), либо перейти на другой способ передачи (скажем, на витую пару или оптоволоконный кабель)
  • Каскадное включение нескольких усилителей (см. предыдущий абзац) может привести к искажению и зашумлению сигнала, поскольку каждый последующий усилитель усиливает также и все шумы и помехи, которые накопились в линии связи до него.

Использование витой пары (UTP)

Иногда использование коаксиальных кабелей не даёт нужного результата – расстояние оказывается слишком большим, помехи – слишком сильными, а проблемы с «петлями» по контуру заземления – трудноразрешимыми. В этом случае следует с помощью специальных устройств преобразовать сигнал в балансный и передавать его по кабелям из обычной витой пары – и при этом избавляться от перечисленных проблем.

Иногда использование коаксиальных кабелей не даёт нужного результата – расстояние оказывается слишком большим, помехи – слишком сильными, а проблемы с «петлями» по контуру заземления – трудноразрешимыми. В этом случае следует с помощью специальных устройств преобразовать сигнал в балансный и передавать его по кабелям из обычной витой пары.

Специальный передатчик преобразует входной сигнал в сигнал для стандартного кабеля UTP категории 5 или выше (используется для прокладки компьютерных сетей Ethernet), приёмник на другом конце линии связи осуществляет обратное преобразование. Для связи используется только неэкранированный кабель (Unshielded Twisted Pair, UTP), экранированный кабель STP работать не будет (у него слишком большая проходная ёмкость). Кабель UTP много дешевле высококачественного коаксиального кабеля, и при больших длинах линии связи (даже с учётом цены дополнительных передатчика и приёмника) тракт передачи сигнала в целом оказывается даже дешевле. Кабели UTP обычно закладываются в современных зданиях уже на этапе проектирования, то есть во многих случаях для передачи сложных видео и аудиосигналов можно воспользоваться уже имеющейся проводкой, что дополнительно удешевляет проект. Использование специального балансного сигнала и качественной витой пары позволяет передавать сигналы на очень большие расстояния: композитный или S-video – до 1 км, VGA – более 300 м, при этом уменьшаются и проблемы с наводками и помехами по «земле».

Использование ВОЛС

Если нужно передавать видеосигнал на особо длинные расстояния, можно перейти к использованию волоконно-оптической линии связи (ВОЛС).

Если нужно передавать видеосигнал на особо длинные расстояния, можно перейти к использованию волоконно-оптической линии связи (ВОЛС). При этом проблем с помехами и контурами заземления не возникает в принципе. При использовании многомодового кабеля композитный сигнал можно передавать на расстояние до 5 км, а при использовании одномодового кабеля – до 25 км.

Выводы:

  1. Проектирование систем передачи сигналов на большие расстояния должно проводиться с учетом их защиты от шумов и помех.
  2. Защищать от воздействия шумов и помех уже спроектированные без учета ЭМС системы, как правило, сложно, дорого и малоэффективно.
  3. Основными источниками шумов и помех принято считать: индустриальные помехи; наводки от соседних цепей; разъемы низкого качества; реактивное сопротивление кабеля и низкое качество кабеля; неточное согласование кабеля с волновым сопротивлением передатчика и приемника; питание от разных фаз и наличие «петель заземления». Второстепенными источниками шумов являются гальванические и электролитические процессы, трибоэлектрический эффект и вибрации кабелей.
  4. Методы борьбы с шумами и помехами принято делить на пассивные и активные. Пассивные методы, в общем, дешевле, но менее эффективны. Наибольший эффект дают активные методы, состоящие в использовании специальных промежуточных усилителей сигнала, передаче балансного сигнала по витой паре и переходе на оптоволоконные линии связи.

Таблица. Ограничение по расстоянию передачи

Вид сигнала Тип кабеля Разъемы Полоса пропускания Дальность передачи
Видеосигнал
композитный коаксиальный кабель75 Ом разъёмы BNC, в бытовой технике – RCA до 6 МГц до
50-100 м
S-video (YC) практически как для композитного (разъемы - 4-конт. mini-DIN)
компонентный (YUV, RGB, VGA) коаксиальный кабель 75 Ом разъёмы BNC (в бытовой технике – RCA) или D-Sub 15 для VGA до 300 МГц (UXGA), до 70 МГц (HDTV/1080i) до 5-30 м
цифровой SDI (несжатое стандартное видео) коаксиальный кабель 75 Ом разъёмы BNC до 270 Мбит/с (стандарт), до 1300 Мбит/с (HDTV) до
50-200 м
цифровой DVI-D витая пара разъёмы DVI до 165/330 МГц до 5 м
Аудиосигнал
аналоговый небалансный экранированный кабель разъёмы RCA до 20 кГц до 10-30 м
аналоговый балансный экранированный кабель из витой пары проводов разъёмы XLR до 20 кГц до 200 м
1 Трибоэлектрический эффект – это процесс накапливания электрического заряда на диэлектрике кабеля. Обычно он бывает вызван механическим изгибом кабеля. В результате трибоэлектрического эффекта кабель начинает «шуметь».

Внешние помехи принимаются антенной вместе с полезным сигналом и создаются:

а) электромагнитными процессами, происходящими в атмосфере, ионосфере и космическом пространстве;

б) электроустановками и соседними р/станциями;

в) средствами постановки преднамеренных помех.

Внутренние помехи локализованы в различных элементах системы радиосвязи (флуктуационные шумы ламп и полупроводниковых приборов, нестабильность питающих напряжений и т.п.). Характеристики внутренних помех приемного устройства обычно пересчитываются к его входу.

Внутренние и внешние помехи являются аддитивными, когда на входе ПрУ сигнал представляется в виде:

где S(t) - передаваемый сигнал, n(t) - помеха. Аддитивные помехи: флуктуационные, импульсные и синусоидальные.

А. К Флуктуационным помехам (ФП) относятся шумы приемника и шумы среды распространения сигнала. Их спектр на входе ПУ обычно шире полосы пропускания ПУ. Плотность вероятности ФП часто является нормальной. В большинстве случаев ее принимают как аддитивный БГШ.

Б. Импульсные помехи представляют собой непериодическую последовательность одиночных радиоимпульсов и создаются атмосферными и промышленными источниками помех. (В некоторых случаях посторонними каналами связи).

В. Синусоидальные помехи (СП) - помехи, сосредоточенные по спектру (ширина их спектра мала по сравнению с полосой пропускания приемного тракта). Источники СП:

  • станции преднамеренных помех;
  • генераторы ВЧ сигналов;
  • радиостанции эталонных частот. К синусоидальным можно отнести комбинированные помехи внутри самого приемника.

Искажения сигналов в линиях связи

Искажения сигналов в ЛС обусловлены хаотическим изменением коэффициента передачи физической среды, в которой распространяется сигнал. Изменения коэффициента проявляется в флуктуациях амплитуды и фазы в точке приема. В КВ и УКВ диапазонах частот возникают искажения сигналов в виде замираний, обусловленных многолучевостью распространения сигналов. Обычно такие искажения называют мультипликативной помехой. В этом случае радиосигнал представляется в виде произведения

x(t)=m(t) * S(t),

передаваемого сигнала S(t), и помехи m(t).

В общем случае на полезный сигнал воздействуют аддитивная и мультипликативная помехи.

Речевые сообщения и методы их преобразования

Речь - непрерывный нестационарный случайный процесс, образованный следующими друг за другом звуками.

Звуки речи образуются в результате прохождения воздушного потока из легких через голосовые связки, полость рта и носа. Спектральная плотность речевого процесса S(t), определенная экспериментально, представлена на рисунке 1.

Она достигает максимального значения на частоте 500 Гц. Ширина спектра на уровне 0,5 составляет примерно 3 КГц (DF=3400-3100) для служебной связи. В радиовещании художественных программ (КВ) - 50-4500 Гц, в УКВ спектр ТЛФ КС - 30-10000 Гц.

Возможные способы передачи речи делятся на:

  • непосредственную передачу речевого сигнала;
  • передача с предварительным преобразованием речевого сигнала.

Непосредственная передача речевого сообщения может осуществляться по аналоговым, импульсным и цифровым каналам. В аналоговых КС сигналом является гармоническое колебание, один из параметров которого (амплитуда, частота, фаза) изменяется по закону речевого сообщения. При передаче речевых сообщений по импульсным КС по закону речевого процесса изменяются параметры радиоимпульсов (амплитуда, длительность и время появления). В цифровых КС непрерывные речевые сообщения передаются с помощью цифровых сигналов.

Передача с предварительным преобразованием речевого сигнала осуществляется по каналам связи, имеющим физические ограничения, в частности малую полосу пропускания (скорость передачи информации). Для этого аналоговый сигнал предварительно искажается в основном двумя путями:

  • путем непосредственной компрессии (сжатия по амплитуде, частоте или длительности передачи звуков);
  • >на основе методов функционального преобразования, а затем, на приемной стороне, восстанавливается. Последний подход широко используется в современных сотовых сетях связи.

Круг вопросов, рассматриваемых при проектировании комплекса технических средств охраны (КТСО), включающего также системы видеонаблюдения, должен быть достаточно широк: от техники заземления до разновидностей защиты - от электромагнитных помех, шумов, генерируемых элементами КТСО и сопряженными система-ми, до “стыкуемости” аппаратуры; от принципов построения систем электропитания (в том числе резервного) до выбора материалов экранирующих корпусов; от технологии выполнения монтажных работ до номенклатуры кабельной продукции, комплектующих

Вся аппаратура, входящая в КТСО, должна иметь не только электромагнитную совместимость, но и стыковаться по своим электрическим параметрам. Следует подвергнуть серьезному анализу электромагнитную обстановку объекта в части определения или прогнозирования уровня электромагнитных помех от оборудования и аппаратуры смежных систем обеспечения безопасности и жизнедеятельности здания: трансформаторных подстанций, приточно-вытяжной вентиляции, систем и способов освещения помещений и территории, мощных потребителей электроэнергии, источников бесперебойного электропитания, систем оповещения и связи, мест проведения периодических работ с применением электросварки. Собственно прогнозирование уровня электромагнитной обстановки должно быть выполнено с учетом возможности возникновения аварийных ситуаций в вышеуказанных системах (узлах) и дать возможность предусмотреть спосбызащиты наиболее чувствительной аппаратуры от последствий влияния аварийных ситуаций на работоспособность и безотказность КТСО.

Источники шумов и шумы, наводимые на провода и кабельные линии

Основным примером такого вида связи являются шумы, проникающие в устройства по проводам сетевого электропитания. В случае если невозможно контролировать сеть или к сети подключают другую аппаратуру (мощный энергопотребитель) возникает необходимость в развязке проводов сети. Тогда уже стоит вопрос о резервировании электропитания систем ССТV. В этих целях используют источники бесперебойного электропитания компьютеров (типа UPS) или источники для охранно-пожарной аппаратуры. Проблемы при этом остаются прежние: различные напряжения, требуемые для электропитания составных частей системы видеонаблюдения, жесткие требования к верхним порогам выходных напряжений, условия электромагнитной совместимости и т.п. Добавляются требования обеспечения минимального времени резервирования электропитания ССТV – 0,5 часа, согласно ГОСТ Р 51558–2000, а на практике необходимо резервирование электропитания на значительно большее время.

Связь через общее сопротивление

Связь через общее сопротивление встречается там, где токи от двух различных устройств проходят через одно сопротивление. При этом падение напряжения, создаваемое каждым из устройств на конкретном участке сопротивления, является для другой системы источником помехи , и чем больше потребление, тем выше амплитуда помехи .

Электромагнитные поля

Еще один вид связи представляет собой излучение электромагнитных полей. Эффективность экранирования зависит от: частоты излучения, конфигурации экрана, положения внутри экрана измерительной точки, вида ослабляемого поля, вектора его распространения и поляризации. Опуская прикладные и промежуточные теоретические выкладки, можно сделать выводы, определяющие эффективность экранирования:

  • для электрических полей и плоских волн потери при их отражении очень велики;
  • для низкочастотных магнитных полей потери при их отражении очень малы;
  • экран толщиной, равной глубине скин-слоя, обеспечивает потери на поглощение примерно 9 дБ;
  • магнитные поля труднее поддаются экранированию, чем электрические;
  • для защиты от низкочастотных магнитных полей следует применять магнитные материалы;
  • для защиты от электрических полей, плоских волн и высокочастотных магнитных полей следует применять экран из качественного проводника;
  • реальная эффективность экранирования, достигаемая на практике, обычно определяется утечками в швах и соединениях, а не собственно эффективностью применяемого материала;
  • величину утечки определяет максимальный линейный размер отверстия, а не его площадь;
  • утечка через большое количество маленьких отверстий меньше, чем через одно отверстие той же площади;
  • наличие на рынке услуг аппаратуры, которая не создает помехи , столь же необходимо, как и наличие аппаратуры, защищающей от помех;
  • подавлением шумов следует заниматься на возможно более ранней стадии проектирования КТСО;
  • шумы возникают в следующих случаях: при наличии наводки по проводам, при осуществлении связи через общее сопротивление, а также при наличии электромагнитного излучения;
  • металлы, используемые в сигнальных цепях и контактирующие друг с другом, должны быть гальванически совместимыми;
  • универсальный метод решения большинства проблем борьбы с электромагнитными помехами и шумами существует далеко не всегда, обычно используются несколько способов одновременно.

Заземление

Заземление – один из основных способов уменьшения нежелательных шумов и наводок, приводящих к сбоям в работе видеосистемы или выходу из строя аппаратуры. Грамотное заземление и экранирование может решить значительную часть проблем шумопо
давления. Надежно заземленная система (комплекс) должна быть спроектирована таким образом, чтобы она работала как единая цель.

Проектирование систем с качественным заземлением преследует две основные цели: первая - минимизировать напряжение шумов, возникающих при прохождении токов от двух или более единиц аппаратуры через общее сопротивление земли; вторая - исключить образование контуров заземления, чувствительных к магнитным полям и разностям потенциалов “земли”. Надо помнить, однако, что неправильно выполненное заземление само может стать основной причиной возникающих шумов и помех.

Защитное заземление

Из соображений без опасности корпус аппаратуры, так же как и вся система, должен быть заземлен. При возникновении пробоя (аварийная ситуация) ток через шину заземления проходит, можно сказать, молниеносна, что приводит к разрыванию цепи защитными устройствами. Поскольку через защитное заземление ток нагрузки не течет, на нем не возникает падение напряжения и подключенные к нему корпуса аппаратуры всегда находятся под потенциалом земли. При этом нейтраль и шину защитного заземления следует соединять только в одной точке. Эту точку следует выбирать таким образом, чтобы она была как можно ближе к распределительному щитку.

Сигнальные “земли”

Сигнальные “земли” делятся, в основном, на два класса: заземление в одной или нескольких точках.

При более глубоком рассмотрении методов заземления необходимо помнить о следующем:

  • все проводники имеют конечный импеданс, состоящий обычно из сопротивления и индуктивности;
  • разнесенные в пространстве точки заземления редко имеют одинаковый потенциал.

Силовая “земля” практически не годится для организации или в качестве сигнальной “земли”. Напряжение, измеряемое между двумя точками земли, в типичных случаях составляет сотни милливольт, а иногда и единицы вольт. Это напряжение достаточно велико для цепей с сигналами низкого уровня. С точки зрения шумов наиболее нежелательным является заземление с общей шиной или общим проводом. При использовании такой схемы наиболее критичное устройство (с наибольшим потреблением тока) следует подключать как можно ближе к точке первичного заземления.

Система заземления в нескольких точках

Для минимизации импеданса земли на высоких частотах применяются многоточечные схемы заземления (рис. 2). В этой схеме устройства подключаются, по возможности, к ближайшей заземленной шине с малым импедансом, при этом сопротивления R1ER3 и индуктивности L1EL3 должны быть как можно меньше. Увеличение толщины заземляющего проводника (поверхности) не влияет на высокочастотный импеданс, поскольку вследствие скин-эффекта ток течет только по его поверхности.

Практические системы заземления

Большинство практических схем заземления представляют собой комбинацию последовательного и параллельного заземления в одной точке. Такая комбинация обычно диктуется компромиссным решением между необходимостью выполнения критериев по электрическим шумам (наводкам) и задачей избежать увеличения сложности проводного монтажа сверх необходимой. Ключ к успешному совмещению этих факторов лежит в выборочной группировке заземляющих проводов, такой, чтобы схемы с достаточно различающимися уровнями потребляемой мощности не имели общего возвратного провода земли. Таким образом, группы слаботочных устройств могут иметь общий возвратный провод “земли”, тогда как другие группы устройств подключаются к “земле” другим возвратным проводником.

В большинстве интегрированных комплексах необходимо как минимум четыре возвратных проводника “земли” (рис. 3), исключая нейтраль и провод защитного заземления.

Использование такой конфигурации схемы заземления интегрированного комплекса безопасности и систем жизнеобеспечения здания (объекта) может значительно уменьшить проблемы неустойчивости работы отдельных подсистем.

Кроме двух перечисленных методов борьбы с помехами (экранирование и заземление) существуют такие, как:

  • балансировка;
  • фильтрация;
  • изоляция;
  • разнесение и ориентация;
  • регулировка величины полного сопротивления;
  • выбор номенклатуры кабельной продукции;
  • снижение амплитуды пускового тока;
  • минимизация энергопотребления;
  • программно-аппаратный метод.

Рассмотренные методы шумоподавления применимы как к аналоговым, так и к цифровым системам, в том числе в системам видеонаблюдения.

Активные помехи могут быть смодулированными и модулированными. Первые характеризуются неизменной амплитудой, частотой и фазой излучаемых колебаний, вторые - изменяемыми параметрами излучения.

Смодулированные помехи для акустических технических средств разведки создаются как непрерывные квазигармонические (близкие к ним) колебания, излучаемые на частотах, расположенных выше полосы переда чи речевого сигнала и воздействующие на элементы входного тракта технического средства перехвата речевой информации (например, телефонные радиозакладки) таким образом, что спектр перехваченного конфиденциального сигнала "размывается", уменьшается или полностью предотвращается возможность несанкционированного перехвата информации. Направленность таких помех определяется в данном случае проводными (телефонными) линиями передачи.

Ультразвуковые устройства подавления акустических средств разведки обеспечивают воздействие на приемный тракт ТСР через микрофоны этих приемных устройств.

Направленность помех определяется расположением ультразвуковых излучателей в помещении с определенным ТТТ на подавитель объемом.

Подобные устройства обеспечивают подавление ТСР в защищаемых помещениях.

Модулированные помехи создаются изменением одного или нескольких параметров несущего колебания, создаваемого передатчиком помех.

Непрерывные помехи представляют собой колебания, модулированные по амплитуде, частоте (фазе) или одновременно по амплитуде и частоте (фазе).

В соответствии с видом модуляции различают амплитудно-модулиро-ванные (АМ), частотно-модулированные (ЧМ) или амплитудно-частотно-модулированные помехи. Если в качестве модулирующего напряжения используется шум - шумовые помехи.

Амплитудно-модулированные помехи формируются в простейшем случае модуляцией амплитуды несущего колебания средства создания помех гармоническими колебаниями или полосовым шумом.

Частотно-модулированные помехи формируются изменением во времени несущей частоты средства создания помех в соответствии с законом изменения частоты модулирующего колебания.

Наиболее широко используемые шумовые помехи представляют собой непрерывные акустические колебания с хаотическим изменением по случайному закону амплитуды, частоты, фазы. Поэтому их часто называют флюктуационными.

Напряжение шумовой помехи на входе акустического ТСР представляет собой случайный процесс, имеющий нормальный закон распределения мгновенных значений и равномерный частотный спектр в пределах полосы пропускания ТСР.

Шум, параметры которого сохраняются примерно постоянными в широком диапазоне частот (гладкий шум), называют белым ввиду сходства его частотного спектра со спектром белого света, который в видимой его части является сплошным и равномерным.

В зависимости от принципа генерирования различают прямошумовые помехи и модулированные помехи в виде несущей, модулированной шумовым напряжением (модулированная шумовая помеха).

Прямошумовые помехи, как правило, образуются в результате усиления собственных шумов, возникающих в электронных приборах (полупроводниковые диоды, транзисторы и т.п.). Такие помехи позволяют при сравнительно высокой спектральной плотности мощности перекрыть достаточно широкую полосу частот. Однако из-за сравнительно низкой мощности источника первичного шума и необходимости его последующего многоступенчатого усиления (для создания требуемого по мощности источника помехи) прямошумовые помехи не получили широкого применения.

Более широкое распространение получили шумовые модулированные помехи. Подобные помехи создаются модуляцией несущей источника помех по амплитуде, фазе или частоте флюктуационным шумовым напряжением. На практике часто используют комбинированную амплитудно-частотную или амплитудно-фазовую модуляцию.

Импульсные помехи представляют собой серию смодулированных или модулированных импульсов. Параметры импульсной помехи необходимо подбирать применительно к виду защищаемого сигнала (работа принтера, пишущей машинки и т.п.). Модуляцией по амплитуде, частоте следования, длительности импульсов помех или по нескольким параметрам одновременно возможно повысить эффективность зашумления акустического сигнала.

В последнее время в системах акустической и виброакустической маскировки используются шумовые, речеподобные и комбинированные помехи.

Наиболее широко используются;

- "белый" шум - шум с постоянной спектральной плотностью в речевом диапазоне частот (рис.4.1а);

- "розовый" шум - шум со спадом спектральной плотности на 3 с1В на октаву в сторону высоких частот (рис.4.16);

- "коричневый" шум со спадом 6 ёВ спектральной плотности на октаву в сторону высоких частот (рис.4.1в);

Шумовая "речеподобная" помеха - шум с огибающей амплитудного спектра,подобной речевому сигналу (рис. 4.1г).

"Речеподобные" помехи формируются из наложения определенного количества речевых сигналов.

Характерным представителем помех, формируемых из речевых фрагментов, некоррелированных со скрываемым сигналом, является помеха типа «речевой хор». Такая помеха формируется путем смешения фрагментов речи нескольких человек (дикторов).

При этом в качестве подобного сигнала возможно использовать сам скрываемый сигнал с помощью синтезатора речеподобных помех - фонемного клонера. Формирование помеховых сигналов проходит в два этапа-на первом этапе с помощью компьютера и специального программного обеспечения из записи голоса одного или нескольких человек путем клонирования основных фонемных составляющих их речи синтезируется "псев доречь", представляющая некоторую последовательность сигналов. На втором этапе синтезатор помехи, в памяти которого содержится "псевдоречь", по случайному закону берет из этой последовательности сигналов случайные куски, которые и поступают на вход тракта помехового канала.

Среди помех, формируемых из скрываемого сигнала, можно выделить два типа: «речеподобную» реверберационную и «речеподобную» инверсионную. «Речеподобная» реверберационная помеха формируется из фрагментов скрываемого речевого сигнала путем многократного их наложения с различными уровнями. «Речеподобная» инверсионная помеха формируется из скрываемого речевого сигнала путем сложной инверсии его спектра.

Комбинированные помехи формируются путем смешения различного вида помех, например помех типа «речевой хор» и «белый» шум, «речеподобных» реверберационной и инверсионной помех и т.п.

Оценка эффективности «речеподобных» помех, и особенно формируемых из скрываемого речевого сигнала, осуществляется методом артикуляционных испытаний (измерений).

На рис 4.2 (Л.113) представлены зависимости словесной разборчивости XV от интегрального отношения сигнал/шум ц в полосе частот 180-5600 Гц при различном виде шумовых помех.

Рис.4.2. Зависимость словесной разборчивости \¥ от интегрального отношения сигнал/шум я в полосе частот 180-5600 Гц 1 - «белый» шум; 2 - «розовый» шум; 3 - шум со спадом спектральной плотности 6 дБ на октаву в сторону высоких частот; 4 - шумовая «речеподобная» помеха.

В таблице 4.2 (Л. 113) приведены значения отношений сигнал/шум в октавных полосах q l , при которых словесная разборчивость составляет \У = 0,2; 0,3 и 0,4.

Таблица 4.2

Значения отношений сигнал/шум, при которых обеспечивается требуемая эффективность защиты акустической (речевой) информации

Виды Словесная разборчивость W,%

Отношение с/ш q. в октавных полосах

Отношение с/ш в полосе
Помехи 250 500 1000 2000 4000 частот 1800-5600 Гц
«Белый» шум 20 +0,8 -2,2 -10,7 -18,2 -24,7 -10,0
30 +3,1 +0,1 -В,4 -15,9 -22,4 -7,7
40 +5,1 +2,1 -6,4 -13,9 -20,4 -5,7
«Розовый» 20 -5,9 -5,9 -11,4 -15,9 -19,4 -8,8
шум 30 -3,7 -3,7 -9,2 -13,7 -17,2 -6,7
40 -1,9 -1,9 -7,4 -11,9 -15,4 -4,9
Шум 20 -14,1 -11,1 -3.6 -15,1 -15,6 -13,0
со спадом 30 -12,0 -9,0 -11,5 -13,0 -13,5 -10,8
спектральной плотности на 6 дБ на октаву 40 -10,0 -7,2 -9,7 -11,2 -11,7 -9,0
Шумовая 20 -3,9 -7.9 -12,9 -15,9 -16,9 -9,0
«речеподобная» 30 -5,7 -10,7 -13,7 -14,7 -6,8
помеха 40 +0,1 -3,9 -8.9 -11,9 -12,9 -5,0

Анализ, приведенных в таблице 4.2 соотношений показывает, что:

1. наиболее эффективными являются помехи типа «розовый» шум и шумовая «речеподобная» помеха. При их использовании для скрытия смыслового содержания ведущегося разговора (\У = 0,4) необходимо обеспечить превышение уровня помех над уровнем скрываемого сигнала в точке возможного размещения датчика средства акустической разведки на 4,9-5,0 дБ, а для скрытия тематики разговора (\¥ = 0,2) - на 8,8-9,0 дБ;

2. помеха типа «белого» шума по сравнению с помехами типа «розовый» шум и шумовая «речеподобная» обладает несколько худшими маскирующими свойствами, проигрывая по энергетике 0,8-1,2 дБ;

3. более низкими маскирующими свойствами обладает шумовая помеха со спадом спектральной плотности 6дБ на октаву в сторону высших частот. По сравнению с помехами типа «розовый» шум и шумовая «речеподобная» она проигрывает по энергетике 4,1 -4,2 дБ, а при равной мощности приводит к повышению разборчивости более чем в полтора раза.

Действующие нормативные документы устанавливают требуемые значения превышения помехи над информативным сигналом для шумовых помех при защите речевой информации от утечки по акустическому и виб-роакустическому каналам. Нормы определены для октавных полос частот в пределах спектра речевых сигналов.

Номенклатура предлагаемых на рынке средств защиты информации виброакустических (акустических) генераторов помех насчитывает не менее 20 - 30 типов.

В системах акустической и виброакустической маскировки используются помехи как «белого» и «розового» шумов, так и "речеподобные" помехи. В комплексах защиты применяют для маскировки речи помехи похожие по своей структуре на маскируемую речь. Это могут быть помехи от внешнего источника или помехи, создаваемые синтезатором речеподобных помех фонемным клонером. Помехи, создаваемые подобным синтезатором являются не просто речеподобными, фонемный клонер обеспечивает формирование таких помех, которые в максимальной степени соответствуют звукам речи конкретного лица или группы лиц, чьи переговоры защищаются от подслушивания.

Наличие различных видов шумовых помех дает возможность защищающему акустику помещения нейтрализовать такой, достаточно широко используемый злоумышленником, способ снятия информации сразу с нескольких разнесенных в пространстве датчиков с последующим вычитанием полученных сигналов для компенсации помеховой составляющей. Поэтому в современных комплексах акустической защиты используют несколько видов помех и независимых каналов помех.

Например в комплексе "Барон-2" использованы помехи типов:

- "белый" шум;

- "речеподобная" помеха фонемного клонера;

Смесь сигналов трех радиовещательных станций;

Помеха от внешнего источника;

Смесь шумовой помехи,сигналов радиовещательных станций и помехи от внешнего источника.

В системе постановки виброакустических и акустических помех "Шорох-1" используются три независимых канала генерации шумов.

«Речеподобная» комбинированная (реверборационная и инверсионная) помеха используется в системе акустической маскировки «Эхо». Помеха формируется путем многократного наложения смещенных на различное время задержек разноуровневых сигналов, получаемых путем умножения и деления частотных составляющих срываемого речевого сигнала (Л. 60).

Наряду с использованием в современных системах виброзашумления различных видов помех обеспечивается возможность регулировки амплитудно-частотных характеристик каналов зашумления. Благодаря этому возможно учитывать большое разнообразие виброакустических свойств зашумляемых строительных и инженерных конструкций, а также обеспечить в элементах зашумляемых конструкций выполнение требований по уровню помехового сигнала в различных участках частотного диапазона. Последнее связано с тем,что для выполнения требований по уровню помехового сигнала в области низких частот приходится устанавливать более высокий уровень помехового сигнала,чем это необходимо для выполнения требований в области высоких частот,а это приводит к возрастанию шума в помещении из-за побочных шумов вибропреобразователей. Решение задачи может быть достигнуто введением в тракт зашумления эквалайзеров.

В ряде средств виброзашумления предусмотрена возможность коррекции спектральных параметров помехи с помощью встроенных эквалайзеров (к данным средствам относятся виброгенераторы типа «Кабинет», «Барон 1 и 2», "Шорох" и т.п.). В комплексе «Барон-2» возможна независимая регулировка уровня помехового сигнала в пяти частотных диапазонах (поддиапазоны: 60-350Гц, 350-700Гц,700-1400Гц,1400-2800Гц, 2800-16000 Гц). Система «Шорох-1» позволяет регулировать форму генерируемой помехи пятиполосным октавным эквалайзером,с глубиной регулировки по полосам - 20 дБ.

В ряде систем виброакустической маскировки возможна регулировка уровня помехового сигнала. Например, в системах «Кабинет» и ANG -2000 осуществляется ручная плавная регулировка уровня помехового сигнала, а в системе «Заслон-2М» - автоматическая (в зависимости от уровня маскируемого речевого сигнала).

В ряде средств, наряду с шумовой, имеется возможность формирования и «речеподобной» помехи в виде смеси сигналов радиовещательных станций. Подобная помеха, содержащая доминирующий сигнал и «зашумленную» смесь речевых сигналов, обладает лучшими маскирующими свойствами. Она обеспечивает энергетический выигрыш на 2-4 дБ, а при равной энергетике приводит к относительному снижению коэффициента разборчивости речи на 25-40 %.

Разработаны системы цифрового виброакустического шума (SEL SP 51/А), в которых диапазон частот шумового сигнала равен 0,09-11,2 кГц.

По мнению большинства специалистов наиболее эффективным способом активной защиты речевой информации является способ формирования коррелированной по уровню, спектру и времени излучения со скрываемым сигналом «речеподобной» помехи, заключающийся в специальном преобразовании скрываемого речевого сигнала за счет сложной инверсии спектра и акустической псевдореверберации путем умножения и деления его частотных составляющих и многократного наложения принимаемых переотраженных акустических сигналов.

Хотя формирование таких помех представляет технически сложную задачу, связанную с обработкой и преобразованием защищаемых сигналов в реальном масштабе времени, подобные системы уже разработаны.




Top