Метод частотного разделения каналов. Многоканальная телефонная связь и методы разделения каналов

Принципы многоканальной передачи Используемые методы разделения каналов (РК) можно классифицировать на линейные и нелинейные (комбинационные). В большинстве случаев разделения каналов каждому источнику сообщения выделяется специальный сигнал, называемый канальным. Промодулированные сообщениями канальные сигналы объединяются, в результате чего образуется групповой сигнал (ГС). Если операция объединения линейна, то получившийся сигнал называют линейным групповым сигналом. За стандартный канал принимают канал тональной частоты (канал ТЧ), обеспечивающий передачу сообщений с эффективно передаваемой полосой частот 300… 3400 Гц, соответствующей основному спектру телефонного сигнала.

Многоканальные системы образуются путем объединения каналов ТЧ в группы, обычно кратные 12 каналам. В свою очередь, часто используют «вторичное уплотнение» каналов ТЧ телеграфными каналами передачи данных. Обобщённая структурная схема системы многоканальной связи

Канальные передатчики вместе с суммирующим устройством образуют аппаратуру объединения. Групповой передатчик М, линия связи ЛС и групповой приемник П составляют групповой канал связи (тракт передачи), который вместе с аппаратурой объединения и индивидуальными приемниками составляет систему многоканальной связи. Иначе говоря, на приемной стороне должна быть предусмотрена аппаратура разделения.

Чтобы разделяющие устройства были в состоянии различать сигналы отдельных каналов, должны существовать определенные признаки, присущие только данному сигналу. Такими признаками в общем случае могут быть параметры переносчика, например амплитуда, частота или фаза в случае непрерывной модуляции гармонического переносчика. При дискретных видах модуляции различающим признаком может служить и форма сигналов. Соответственно различаются и способы разделения сигналов: частотный, временной, фазовый и другие.

Таким образом, на выходе четырёхполюсника наряду с частотами входных сигналов (ω, Ω) появились: постоянная составляющая вторые гармоники входных сигналов составляющие суммарной (ω + Ω) и разностной (ω – Ω) частот. (2ω, 2Ω); Информация будет иметь место и в сигналах с частотами (ωн + Ω) и (ωн – Ω), которые расположены зеркально по отношению к ω и называются верхней (ω + Ω) и нижней (ω – Ω) боковыми частотами. Если на модулятор подать сигнал несущей частоты U 1(t) = Um∙Cosωнt и сигнал тональной частоты в полосе Ωн … Ωв (где Ωн = 0. 3 к. Гц, Ωв = 3. 4 к. Гц), то спектр сигнала на выходе четырёхполюсника будет иметь вид:

Спектр сигнала на выходе четырехполюсника Полезными продуктами преобразования (модуляции) являются верхняя и нижняя боковые полосы. Для восстановления сигнала на приёме на вход демодулятора достаточно подать несущую частоту (ωн) и одну из боковых частот.

В МСП-ЧРК по каналу передаётся только сигнал одной боковой полосы, а несущая частота берётся от местного генератора. На выходе каждого канального модулятора включается полосовой фильтр с полосой пропускания ∆ω = Ωв – Ωн = 3. 1 к. Гц. С целью уменьшения влияния соседних каналов (переходных помех), обусловленного неидеальностью АЧХ фильтров, между спектрами сигнальных сообщений вводятся защитные интервалы. Для каналов ТЧ они равны 0. 9 к. Гц. Спектр группового сигнала с защитными интервалами

Принципы построения аппаратуры ЧРК В системах ЧРК с числом каналов 12 и более реализуется принцип многократного преобразования частоты Вначале каждый из каналов ТЧ «привязывается» к той или иной 12 -канальной группе, называемой первичной группой (ПГ). Оконечное оборудование (включающее АОК и АРК) строится с таким расчётом, чтобы на каждом этапе преобразования частоты формировались всё более и более укрупнённые группы каналов ТЧ. Причём в любой группе число каналов кратно 12.

Каждый канал содержит следующие индивидуальные устройства: на передаче ограничитель амплитуд ОА, модулятор М и полосовой фильтр ПФ; на приёме полосовой фильтр ПФ, демодулятор ДМ, фильтр нижних частот ФНЧ и усилитель низкой частоты УНЧ. Для преобразования исходного сигнала на модуляторы и демодуляторы каждого канала подаются несущие частоты, кратные 4 к. Гц. При организации телефонной связи можно использовать либо двухполосную двухпроводную, либо однополосную четырёхпроводную систему передачи. Схема, изображённая на рисунке, относится ко второму варианту.

Если канал используется для телефонной связи, то двухпроводный участок цепи от абонента соединяется с четырёхпроводным каналом через дифференциальную систему (ДС). В случае передачи других сигналов (телеграфных, данных, звукового вещания и т. д.), для которых необходим один или несколько односторонних каналов, ДС отключается. Амплитудные ограничители предотвращают перегрузку групповых усилителей (а, следовательно, уменьшают вероятность возникновения нелинейных помех) в моменты появления пиковых значений напряжений нескольких речевых сигналов.

Одинаковые полосы частот пяти ПГ разносятся по частоте в полосе 312 … 552 к. Гц и образуют 60 -канальную (вторичную) группу (ВГ). С помощью полосовых фильтров ПФ 1 – ПФ 5, подключенных к выходам групповых преобразователей, образуются сигналы вида ОБП с полосой частот 48 к. Гц каждый. В результате сложения этих неперекрывающихся по спектру пяти сигналов образуется спектр ВГ с полосой частот 240 к. Гц.

Для снижения переходных влияний между сигналами ВГ, передаваемыми по смежным трактам, в спектре ВГ могут использоваться как прямые, так и инверсные спектры ПГ 2 – ПГ 5. В первом случае на ГП 2 – ГП 5 подаются несущие частоты 468, 516, 564, 612 к. Гц, а соответствующие полосовые фильтры выделяют нижние боковые полосы (как показано на рисунке выше). Во втором случае на ГП 2 – ГП 5 подаются несущие частоты 300, 348, 396, 444 к. Гц, а полосовыми фильтрами ПФ 2 – ПФ 5 выделяются верхние боковые полосы. Несущая частота для ПГ 1 в обоих случаях одинаковая (420 к. Гц), и спектр ПГ 1 не инверсируется.

Основные характеристики групповых сообщений Эти параметры определяются соответствующими частотными, информационными и энергетическими характеристиками. По рекомендации МККТТ средняя мощность сообщения в активном канале в точке с нулевым относительным уровнем устанавливается равной 88 мк. Вт0 (– 10. 6 д. Бм 0). Однако при расчёте Pср МККТТ рекомендует принимать величину P 1 = 31. 6 мк. Вт0 (– 15 д. Бм 0) Если N ≥ 240, то средняя мощность группового сообщения в точке нулевого относительного уровня Pср = 31. 6 N, мк. Вт, а соответствующий уровень средней мощности pср = – 15 + 10 lg N , д. Бм 0.

Если N

Временное разделение каналов (ВРК), аналоговые методы передачи При ВРК на передающей стороне непрерывные сигналы от абонентов передаются поочерёдно. Принцип временного разделения каналов

Для этого эти сигналы преобразуются в ряд дискретных значений, периодически повторяющихся через определённые интервалы времени Тд, которые называются периодом дискретизации. Согласно теореме В. А. Котельникова период дискретизации непрерывного, ограниченного по спектру сигнала с верхней частотой Fв >> Fн должен быть равен Tд = 1/Fд, Fд ≥ 2 Fв Интервал времени между ближайшими импульсами группового сигнала Тк называется канальным интервалом или тайм-слотом (Time Slot).

Из принципа временного объединения сигналов следует, что передача в таких системах осуществляется циклами, то есть периодически в виде групп из Nгр = N + n импульсов, где N – количество информационных сигналов, n – количество служебных сигналов (импульсов синхронизации – ИС, служебной связи, управления и вызовов). Тогда величина канального интервала ∆tк = Тд/Nгр Таким образом, при ВРК сообщения от N абонентов и дополнительных устройств передаются по общему каналу связи в виде последовательности импульсов, длительность каждого из которых τи

Групповой сигнал при ВРК с ФИМ При временном разделении каналов возможны следующие виды импульсной модуляции: АИМ – амплитудно-импульсная модуляция; ШИМ – широтно-импульсная модуляция; ФИМ – фазоимпульсная модуляция.

Каждый из перечисленных методов импульсной модуляции имеет свои достоинства и недостатки. АИМ – проста в реализации, но плохая помехоустойчивость. Используется как промежуточный вид модуляции преобразовании аналогового сигнала в цифровой При ШИМ спектр сигнала меняется в зависимости от длительности импульса. Минимальному уровню сигнала соответствует минимальная длительность импульса и, соответственно, максимальный спектр сигнала. При ограниченной полосе канала такие импульсы сильно искажаются.

В аппаратуре с ВРК и аналоговыми методами модуляции наибольшее применение получила ФИМ, так как при её использовании можно уменьшить мешающее действие аддитивных шумов и помех путём двухстороннего ограничения импульсов по амплитуде, а также оптимальным образом согласовать неизменную длительность импульсов с полосой пропускания канала. Поэтому в системах передачи с ВРК используется, в основном, ФИМ. Характерной особенностью спектров сигналов при импульсной модуляции является наличие составляющих с частотами Ωн…Ωв передаваемого сообщения uк (t) Эта особенность спектра указывает на возможность демодуляции АИМ и ШИМ фильтром нижних частот (ФНЧ) с частотой среза, равной Ωв.

Демодуляция не будет сопровождаться искажениями, если в полосу пропускания ФНЧ не попадут составляющие нижней боковой полосы (ωд – Ωв) … (ωд – Ωн), а это условие будет выполняться, если выбрать Fд > 2 Fв. Обычно принимают ωд = (2. 3 … 2. 4)Ωв и при дискретизации телефонного сообщения с полосой частот 0. 3 … 3. 4 к. Гц частоту дискретизации Fд = ωд/2π выбирают равной 8 к. Гц, к. Гц а период дискретизации Тд = 1/Fд = 125 мкс При ФИМ составляющие спектра модулирующего сообщения (Ωн…Ωв) зависят от его частоты и имеют малую амплитуду, поэтому демодуляция ФИМ производится только путём преобразования в АИМ или ШИМ с последующей фильтрацией в ФНЧ.

Для обеспечения работы канальных модуляторов и дополнительных устройств, последовательности импульсов с частотой дискретизации Fд сдвинуты относительно первого канала на i·∆tк, где i – номер канала. Таким образом, моменты начала работы КМ определяются запускающими импульсами от РК, который определяет моменты подключения к общему широкополосному каналу соответствующего абонента или дополнительного устройства. Полученный групповой сигнал uгр(t) подаётся на вход регенератора (Р), который придаёт дискретным сигналам различных каналов одинаковые характеристики, например одинаковую форму импульса.

Все устройства, предназначенные для образования сигнала uгр(t): КМ 1 … КМN, РК, ГИС, ДУВ, ДСС, Р – входят в аппаратуру объединения сигналов (АО). Для обеспечения правильного разделения каналов РК′ АР должен работать синхронно и синфазно с РК АО, что осуществляется с помощью импульсов синхронизации (ИС), выделяемых соответствующими селекторами (СИС) и блоком синхронизации (БС). Сообщения с выходов КД поступают к соответствующим абонентам через дифференциальные системы.

Помехоустойчивость систем передачи с ВРК во многом определяется точностью и надёжностью работы системы синхронизации и распределителей каналов, установленных в аппаратуре объединения и разделения каналов Для обеспечения точности работы системы синхронизации импульсы синхронизации (ИС) должны иметь параметры, позволяющие наиболее просто и надёжно выделять их из последовательности импульсов группового сигнала u*гр(t). Наиболее целесообразным при ФИМ оказалось применение сдвоенных ИС, для передачи которых выделяют один из канальных интервалов ∆tк в каждом периоде дискретизации Тд.

Определим число каналов, которое можно получить в системе с ФИМ. Тд = (2∆tмакс + tз)Nгр, где tз – защитный интервал; ∆tмакс – максимальное смещение (девиация) импульсов. При этом полагаем, что длительность импульсов мала по сравнению с tз и tмакс. , Максимальная девиация импульсов при заданном количестве каналов Принимаем, поэтому

Учитывая, что при телефонной передаче Тд = 125 мкс, получим: при Nгр = 6 ∆tмакс = 8 мкс, при Nгр = 12 ∆tмакс = 3 мкс, при Nгр = 24 ∆tмакс = 1. 5 мкс. Помехоустойчивость системы с ФИМ тем выше, чем больше ∆tмакс. При передаче сигналов с ФИМ по радиоканалам на второй ступени (в радиопередатчике) может использоваться амплитудная (АМ) или частотная (ЧМ) модуляция. В системах с ФИМ – АМ обычно ограничиваются 24 каналами, а в более помехоустойчивой системе ФИМ – ЧМ – 48 каналами.

Рассмотрим особенности структуры трактов передачи и приема сигналов и последовательность преобразования сигналов в системах ЧРК-ЧМ. С этой целью обратимся к рис. 2.1 и 2.3 и выясним, что представляет собой показанные на них элементы применительно к системам с ЧРК-ЧМ.

Аппаратура уплотнения (АУ) построена по принципу частотного разделении каналов (ЧРК) или, другими словами по принципу частотного уплотнения (ЧУ), широко применяемому для уплотнения кабельных линий связи. Принцип ЧУ состоит в том (рис.3.2 и 3.3), что в трактате передачи спектры ТЧ индивидуальных сообщений с помощью индивидуальных преобразователей передачи (ИПП) и далее групповых преобразователей передачи (ГПП) транспортируются в область более высоких частот, причем групповое преобразование может иметь несколько этапов.

Перенос спектра осуществляют методом однополосной модуляции, в связи с чем системы с ЧРК-ЧМ иногда называют с ОБ-ЧМ, ОБП-ЧМ (одна боковая полоса), а групповой сигнал именуют групповым или линейным однополосным сигналом (на рис.3.2.):

Индивидуальный преобразователь передачи ИПП (а также и групповой преобразователь передачи ГПП) представляет собой кольцевой модулятор на который с одной стороны поступает спектр частот преобразуемого сигнала (сигнала ТЧ), а с другой гармоническое колебание несущей частоты. После кольцевого преобразователя включен полосовой фильтр (ПФ), который выделяет одну из боковых полос, верхнюю или нижнюю, и подавляет остаток несущей и вторую боковую полосу. Выбором значения и полосы частот фильтра ПФ определяется транспонированное положение и ширина полосы частот сигнала дальнего канала на оси частот группового (линейного) сигнала. На стороне приема преобразование спектра происходит в обратном порядке в групповых преобразователях приема (ГППр) и в индивидуальных преобразователях приема (ИППр). При индивидуальном преобразовании спектров сигналов стандартных каналов ТЧ, лежащих в пределах поднесущие частоты кратные 4 кГц. При этом между соседними каналами обеспечиваются защитные полосы = 0,9 кГц., необходимые для надежной расфильтровки спектров соседних каналов. В результате индивидуального преобразования формируются первичные группы каналов (ПГ), обычно включающие в себя 3,6 или 12 каналов. Так, для полевых малоканальных военных систем чаще всего применяется 3-х канальные первичные группы, занимающие спектр частот 12,3 - 23,4 кГц - так называемые 3- канальные ШК, образованные с помощью поднесущих 12,16,20 кГц с выделение верхних боковых. Для формирования линейного спектра использованы три ступени преобразования. В индивидуальном оборудовании применяется преобразование низкочастотных сигналов с

помощью несущих частот 12, 16 и 20 кГц. для первого второго и третьего каналов соответственно с использованием верхних боковых полос от 12,3 до 15,4 кГц, от 16,3 до 19,4 кГц, от 20,3 до 23,4 кГц. Аналогичному образованию подвергаются сигналы четвертого, пятого и шестого каналов.

На второй ступени преобразования осуществляется перенос спектров двух трехканальных групп 12,3-12,4 кГц в диапазон частот от 68 до 96 кГц с помощью несущих частот 92 и 108 кГц. Используемые полосы частот от 68 до 80 кГц (первая группа) и от 84 до 96 кГц (вторая группа) с помощью третьей ступени преобразования, групповой, на несущей частоте 64 кГц. переносятся в линейный спектр частот 4-32 кГц.

Кроме полученного спектра частот в линию передаются сигналы канала служебной связи и контрольная частота 18 кГц.

В тракте приема преобразование сигналов линейного спектра в спектры тональной частоты осуществляется в обратном порядке. В малоканальных станциях с ЧРК-ЧМ работающих в основном в диапазоне метровых волн частотно-модулированный сигнал (ЧМ) формируется непосредственно на радиочастоте (рис.3.6) в частотно-модулируемом генераторе (ЧМГ), не стабилизированным кварцем. Колебания ЧГМ далее усиливаются в усилителе высокой частоты (УВЧ) на выходе которого формируется многоканальный частотно-модулированный сигнал (МК ЧСМ), либо предварительно еще умножаются по частоте (обычно не более чем в 2-4 раза т.е. fпер=fчмг или fпер=nfчмг. Модуляция колебания ЧМГ осуществляется с помощью варикапа или другого реактивного элемента, включенного в колебательный контур ЧМГ. Модулирующий групповой сигнал (ГС) поступает с выхода передающего тракта АУ (рис.3.6.) и подается на реактивный элемент ЧМГ, предварительно пройдя групповой усилитель (ГУ) и предискажающий контур. Последний способствует выравниванию качества каналов по шумам. Для того чтобы обеспечить высокую стабильность частоты ЧМГ, его частота стабилизируется по колебанию соответствующей опорной частоты из набора частот вырабатываемых синтезатором опорных частот (СОЧ). Подстройка частоты осуществляется путем сравнивания частоты ЧМГ (fЧМГ)с опорной частотой (fОЧ)в системе (СМ). При точной настройке ЧМГ промежуточная частота (fПЧ), получаемая как разность fОЧ=fЧМГ-fОЧ равна своему номиналу и кольцо АПЧ, включающее усилитель промежуточной частоты (УПЧ) и частотный детектор (ЧД),

не оказывают влияния на частоту ЧМГ (система в состоянии равновесия). При расстройке ЧМГ значение отличается от номинала и система АПЧ подстраивает частоту ЧМГ доводя его остаточную расстройку до некоторой малой допустимой величины. Фильтр нижних частот (НФЧ) резко ограничивает полосу частот практически выделяя только постоянную составляющую.

В радиорелейных станциях с ЧРК-ЧМ, работающих в диапазоне СВЧ, передающая часть группового тракта и радио-тракта строится, как правило, в соответствии с принципом, показанным на рис.3.6. Здесь fПЕР =f1 ± fПЧ, причем f1 = fГЕТ ± fСДВ, где fСДВ - частота сдвига между частотами передатчика fПЕР и приемника fПР данного полукомплекта станции. Частота сдвига обычно постоянная, а частота гетеродина fГЕТ, вырабатываемая в синтезаторе частот (СЧ), при перестройке станции

изменяет свое назначение, вследствие чего изменяется f1 , а значит и fПЕР. Промежуточная частота при отсутствии модуляции всегда постоянна. В процессе модуляции групповым сигналом величина fПЧ изменяется пропорционально напряжению и в соответствии со знаком напряжения группового сигнала.

На промежуточной ретрансляционной станции при ретрансляции по ВЧ (ВЧ транзит) групповой тракт отключается и на вход смесителя сигнал промежуточной частоты поступает от приемника другого направления связи. Сигнал канала служебной связи (КСС) при этом вводится в частотный или фазовый модулятор, содержащийся в генераторе сдвига (Гсдв).

Структура тракта приема в принципе поясняется с помощью рис.3.7. Приемник супергетеродинного типа строится как приемник ЧМ сигнала. В малоканальных РРС, работающих в диапазонах метровых волн, обычно применяют двойное преобразование частоты. В системах СЧ используют однократное преобразование частоты. В этом случае при ретрансляции по ВЧ многоканальный частотно-модулированный сигнал промежуточной частоты в режиме транзита (ВЧТр) без демодуляции в передатчик другого направления связи. Поскольку гетеродин в этом режиме используется одновременно как для работы передатчика, так и для работы приемника (различных направлений связи). Величина нестабильности частоты гетеродина исключается из ретранслированного сигнала, причем,где соответственно частота передачи и частота приема противоположных направлений связи на данной промежуточной РРС.

При работе в оконечном режиме (Ок) сигнал промежуточной частоты после ограничения по амплитуде в ограничителе (Огр) демодулируется частотным детектором. Далее групповой сигнал усиливается групповым усилителем и после выравнивающего контура (ВК) поступает в аппаратуру уплотнения.

Достоинства метода ЧРК-ЧМ:

– возможность сопряжения с проводными линиями многоканальной электросвязи по групповому тракту и по трактам стандартных широкополосных каналов (ШК), что позволяет легко получать составные радиорелейно-кабельные линии связи и обеспечить совместную работу таких средств связи с минимальным числом транзитов по ТЧ;

– возможность применения метода внешнего уплотнения, позволяющего, при необходимости, размещать РРС на значительном удалении от узла связи (до 14-16 км);

– отсутствие необходимости применения системы синхронизации;

– универсальность широкополосных групповых и радио-трактов в принципе пригодных для передачи не только многоканальных сигналов, объединяющих ляд сигналов стандартных каналов ТЧ, но для передачи высокоскоростных потоков бинарной информации, телевизионных сигналов и т.п.

Недостатки метода ЧРК-ЧМ:

– громоздкость аппаратуры уплотнения при числе каналов, равном десяткам и более; применительно к военным подвижным РРЛ это приводит к необходимости выделения дополнительных транспортных единиц для размещения АУ;

– невозможность выделения любых номеров каналов ТЧ без демодуляции до ТЧ всех или части каналов, необходимость выделения каналов только группами (тройками, шестерками и т.д. На рис.3.8.г показан принцип импульсной передачи непрерывного сигнала.);

– необходимость обслуживания отдельных аппаратных уплотнения своими экипажами;

– относительная дороговизна АУ и РРС в целом.

В предыдущих разделах мы рассмотрели основные способы разделения элементов сложных сигналов, а также возможные варианты схем построения систем управления и контроля, использующих тот или иной метод.

В тех случаях, когда имеются ограничения на время передачи сообщений при временном разделении элементов сигналов или ограничено количество частотных каналов при частотном разделении можно использовать комбинированную систему с частотно-временным разделением сигналов (рис. 2.21).

В каждой временной позиции распределителя происходит одновременная передача сигналов по всем частотным каналам. Если число каналов – j, одновременно передается j бит информации. Общее число элементарных двоичных сообщений, передаваемое за один цикл (с момента выявления новизны в состоянии контролируемых объектов или окончания ввода команды до окончания передачи) в системе, работающей по такому принципу, равно произведению количества позиций распределителя на количество частотных каналов.

В приведенной на рис. 2.21 схеме организовано два частотных канала с несущими частотами f1 и f2 для передачи контрольной информации.

Рисунок 2.21 Частотно-временное разделение сигналов

При изменении состояния какого либо контролируемого объекта схема выявления новизны, подключенная к регистру состояний, растормаживает распределитель пункта А и включает оба модулятора М1 и М2, начиная очередной цикл передачи информации. Появление в линии связи активных или пассивных частот по каждому из частотных каналов приводит к запуску распределителя пункта Б (элемент ИЛИ открывает ключ &.к). Распределители, переключаясь синхронно и синфазно по позициям, обеспечивают выбор режима работы генераторов (М1, М2) в зависимости от состояния элементов памяти регистра состояний в пункте передачи и выбор соответствующих ячеек памяти приемного регистра для записи информации в пункте приема. После окончания информационной части сигнала и переключения обоих распределителей в n+1-ю позицию в пункте А сбрасывается признак наличия новизны (в схеме выявления новизны), что приводит к закрытию ключа &.к, сбросу и остановке распределителя, выключению модуляторов. В пункте Б в это же время формируется сигнал разрешения дешифрации. После выключения модуляторов М1 и М2 на передающей стороне на всех выходах демодуляторов в пункте приема устанавливаются сигналы «нулевого» уровня, закрывающие элемент ИЛИ, ключ &.к и блокирующие распределитель.

Кодовое разделение сигналов

Под кодовым разделением сигналов понимают способ разделения сообщений при котором каждому исходному сообщению N ставится в соответствие определенная n-разрядная двоичная комбинация, передаваемая устройствами с частотным, временным или частотно-временным разделением элементов этой комбинации. Приведенные на рис. 2.19 и 2.20 схемы устройств ТУ как раз и реализуют кодовый принцип разделения команд, адресованных различным объектам управления. По такому же принципу могут быть построены и системы, предназначенные для передачи контрольной информации.

При временном разделении каналов (ВРК) сигналы каждого канала дискретизируются и их мгновенные значения передаются последовательно во времени. Таким образом, каждое сообщение передается короткими импульсами - дискретами. По одной линии связи за определенный промежуток времени - период повторения, который отводится для передачи, можно передать соответствую­щее число таких сообщений.

Структурная схема системы передачи информации с ВРК. На рис. 4.3 представлена упрощенная структурная схема системы с ВРК. Сообщение, например, при телефонной связи в виде зву­ковых сигналов, поступает во П вх, где звуковые колебания пре­образуются в электрические. Распределители передающей Р1 и приемной Р2 сторон должны работать синхронно и синфазно. Пе­реключение распределителей осуществляется от импульсов, посту­пающих от ГТИ. В конце каждого цикла в линию связи поступает фазирующий импульс для обеспечения синфазности работы обоих распределителей. Синхронность их работы обеспечивается стабиль­ностью частоты ГТИ передающей и приемной сторон.

Распределитель последовательно подключает цепи для переда­чи сообщений по соответствующему каналу. Поскольку для передачи сообщений отводится незначительное время, то по линии связи будут следовать короткие импульсы, длительность которых определяется временем подключения распределителем данной цепи. На приемной стороне вследствие синхронной и синфазной работы распределителей, короткие импульсы поступают на П ВЫ х, где происходит обратное преобразование электрических сигналов в звуковые.

При ВРК между сигналами каждого канала, передаваемыми последовательно во времени по линии связи, вводится защитный временной интервал (рис. 4.4), который необходим для устра­нения взаимного влияния (перекрытия) каналов. Последнее воз­никает из-за наличия фазочастотных искажений в линии связи, чем вызывается неравномерность времени распространения сигна­лов различных частот.

Число каналов при ВРК зависит от длительности канальных импульсов и частоты их повторения, которая при передаче не­прерывных сообщений определяется теоремой Котельникова о преобразовании непрерывных сигналов в дискретные .

Таким образом, общее число каналов при ВРК

(4.1)

где Т п - период повторения;
- длительность синфазирующего импульса; - длительность защитного промежутка; - дли­тельность канального импульса.

Полоса частот, необходимая для организации п каналов при ВРК, определяется минимальной длительностью канального им­пульса
, которая зависит от числа организуемых каналов связи и характера сообщения, определяется из выражения

(4.2)

где К п - коэффициент, зависящий от формы импульса (для прямо­угольного импульса К п ~0,7).

Определим полосу частот, необходимую, например, для органи­зации 12 телефонных каналов при ВРК. Длительность импульса при организации по линии связи 12 телефонных каналов опреде­лится из следующих соображений. Период повторения Т п =1/f п, где f п - частота повторения, которая определяется выражением f п = 2f max = 2 3400 = 6800 Гц. Здесь f max = 3400 Гц - максимальная частота при передаче телефонных сообщений. Для передачи прини­мают f п = 8000 Гц. Тогда f п =1/8000=125 мкс.

Из выражения (4.1)

Подставив в последнее выражение значения Т п = 125 мкс и n=12, получим
1 мкс. Зная длительность канального импульса
и принимая K п = 0,7 из выражения (4.2), находим

Таким образом, полоса частот для организации 12 телефонных каналов при ВРК значительно превышает полосу частот, требуе­мую для организации такого же числа каналов при ЧРК, которая равна 48 кГц (12(3400 + 600) =48000 Гц, где 600 Гц -полоса ча­стот, отводимая на расфильтровку соседних каналов).

Следовательно, использование ВРК для передачи аналоговых сообщений (например, телефонных, факсимильных, телевизионных) имеет ряд ограничений. В то же время передача дискретных сообщений (телеграфных, телемеханики, передачи данных) при ВРК дает существенные преимущества. Это объясняется тем, что дискретные сигналы при данных видах сообщений имеют значи­тельную длительность, а спектр частот таких сигналов распола­гается в нижней части частотного диапазона, следовательно, дли­тельность и период повторения канальных импульсов могут быть сравнительно большими, что значительно снижает требуемую по­лосу частот.

При ВРК для согласования сообщения с каналом связи могут использоваться различные виды канальной модуляции.

К недостаткам ВРК следует отнести сравнительно широкую полосу частот, требуемую для передачи сообщений; сложность коммутационного оборудования (распределителей) при организа­ции значительного числа каналов связи и необходимость коррекции фазочастотных характеристик линии связи для устранения взаим­ного влияния каналов связи.

В основе временного разделения каналов лежит теорема В.А. Котельникова о том, что непрерывный сигнал, спектр которого ограничен максимальной частотой Fc макс полностью определяется его дискретными отсчетами, взятыми через интервалы времени

При этом в промежутках между отсчетами одного канала можно передать отсчеты сигналов других каналов. Таким образом, сигналы от разных источников подключаются к общей линии поочередно, не перекрываясь друг с другом (рисунок 3.4). Такие сигналы удовлетворяют условиям линейной независимости и ортогональности.

T Д - время дискретизации, Т к - канальное время, СИ - синхроимпульс


Рисунок 3.4 - Иллюстрация принципа временного разделения каналов

На рисунке 3.5 показана структурная схема многоканальной измерительной системы с временным разделением каналов и линией связи в виде радиолинии. Вместо радиолинии в ряде случаев может быть использована проводная линия связи.

Для образования разделяемых измерительных каналов работа устройств управления (УУ) ключевыми элементами (КУ) на передающей и приемной стороне должно быть синхронная и синфазная. Поэтому один из каналов отводится для передачи синхроимпульса, существенно отличающийся по одному из параметров от информационных импульсов (отсчетов сигналов) (СИ на рисунке 3.4 имеет амплитуду, большую, чем максимальное значение отсчета измерительного сигнала). СИ выделяется на приемной стороне селектором синхроимпульса (СС), и устанавливает счетчик каналов на приемной стороне в начальное состояние, с которого начинается счет каналов, т.е. обеспечивает синфазность УУ.

Селектор канальных импульсов (СКИ) формирует из принимаемого группового сигнала синхронный канальный импульс, который поступает на счетный вход УУ и осуществляет переключение счетчика каналов в темпе поступления отсчетов соседних каналов.

Как видно из схемы, первичное преобразование измерительных сигналов в СВРК всегда есть преобразование непрерывных сигналов в дискретные, то есть дискретизация. Соответственно, в первой ступени модуляции осуществляется, как правило, АИМ-1.


D - датчик, КУ - ключевое устройство, УУ - устройство управления,

М - модулятор, Г - генератор, ПР - приемник, ДМ - демодулятор,

УВ - устройство восстановления, РУ - регистрирующее устройство,

СС - селектор синхроимпульсов,

СКИ - селектор канальных имульсов

Рисунок 3.5 - Структурная схема измерительной системы с временным разделением каналов

Групповой сигнал с выхода коммутатора каналов может подвергаться вторичному преобразованию. Если пропорционально модулирующему сигналу (сигналу датчика) изменяется ширина канального импульса ф К, то получаем широтно-импульсную модуляцию (ШИМ).

Если по закону изменения сигнала датчика меняется положение переднего фронта импульса относительно начала отсчета (обычно начало канального интервала), то получим время-импульсную модуляцию (ВИМ).

Сигнал с выхода коммутатора каналов может также преобразовываться в цифровой сигнал, т. е. в код. В телеметрии такой вид преобразования называют кодо-импульсной модуляцией (КИМ).

Во второй ступени модуляции последовательности импульсов, образующих сигналы с АИМ, ШИМ или ВИМ, может модулировать несущую по амплитуде (АМ), частоте (ЧМ) или фазе (ФМ).

Лекция 4. Достоинства и недостатки многоканальных измерительных систем с частотным и временным разделением каналов

Измерительные системы с частотным разделением каналов

Достоинства

  • 1) Одновременная (параллельная) передача сигналов от каждого датчика, независимо друг от друга. Благодаря этому практически отсутствует задержка получения измерительных сигналов на приемной стороне (если не учитывать время распространения сигнала в линии связи, которое увеличивается при увеличении дальности передачи).
  • 2) «Живучесть» системы, которая обеспечивается опять же независимой передачей сигналов по каждому измерительному каналу.

Недостатки

1) Ограниченное число измерительных каналов.

Нелинейностью характеристик общего тракта передачи сигналов в СЧРК вызывает ограничение максимального количества каналов, которое может быть реализовано.

Пусть нелинейность характеристики общего тракта СЧРК описывается нелинейным уравнением:

U ВЫХ - сигнал с выхода группового тракта, U - сигнал на выходе сумматора. (Нелинейным элементом, в частности может являться модулятор несущей).

Сигнал U (t ) образуется суммированием сигналов всех поднесущих в сумматоре:

Пусть для всех поднесущих амплитуды Е к =1.

Подставляя (4.2) в (4.1) получим в выходном сигнале следующие составляющие:

Проведем замену.

Таким образом, сигнал на выходе группового тракта, а соответственно на входах всех разделительных полосовых фильтров на приемной стороне, содержит не только составляющие входного сигнала, но и большой набор комбинационных частот типа. Чем больше число каналов N , тем больше комбинационных частот появляется в спектре сигнала.

При малом числе каналов (N 6) еще можно подобрать поднесущие частоты F 1 , F 2 ,…, F N так, чтобы комбинационные частоты не попадали в полосы пропускания разделительных фильтров. С увеличением числа каналов этого сделать уже не удается.

Если ограничиться тремя слагаемыми в выражении (4.1), то число комбинационных частот вида щ 1 ±щ 2 ±щ 3 равно 480 при числе каналов N =10 и 1820 при N =15. Эти комбинационные частоты попадают в полосу пропускания канальных полосовых фильтров и создают помехи, которые называют перекрестными помехами. При большом числе каналов перекрестные помехи по своему характеру приближаются к флуктуационным шумам. Поэтому и бороться с этими помехами надо теми же способами, как и при борьбе с шумами. Один их путей - применение широкополосных видов модуляции, т. е. в поднесущих надо применять не АМ, а ЧМ. Применение ЧМ позволяет снизить требования к линейности характеристик общего тракта, поэтому в СЧРК наиболее широко применяется ЧМ поднесущих.




Top