Квантовые компьютеры. Квантовый компьютер

История вычислительной техники, которую мы сейчас называем просто сервер или компьютер, началась много веков назад. С течением времени и развитием технологий совершенствовались и компьютеры. Улучшалась производительность, скорость работы и даже внешний вид. Любой компьютер в своей основе реализует определенные законы естественных наук, таких как физика и химия. Углубляясь в любую из этих наук, исследователи находят новые и новые пути совершенствования вычислительных систем. Сегодня мы будем знакомиться с исследованием, нацеленным на реализацию применения фотонов в квантовых компьютерах. Поехали.

Теоретическая основа

Словосочетание «квантовый компьютер» уже перестало быть шокирующим, хоть и звучит как научная фантастика. Однако ничего фантастического в нем нет, по крайней мере с литературной точки зрения. Квантовый компьютер эксплуатирует квантовую суперпозицию и квантовую запутанность. Простыми словами говоря, квантовая суперпозиция это явление, когда квантовые состояния системы взаимоисключаются. Если говорить не о частицах, о чем-то «покрупнее», то можно упомянуть кота Шредингера.

Немного про кота Шредингера

Данный теоретический эксперимент был описан самим Шрёдингером довольно подробно и сложно, в какой-то степени. Упрощенный вариант звучит так:

Есть стальная коробка. В коробке кот и механизм. Механизм - счетчик Гейгера с очень малым количеством радиоактивного вещества. Данное вещество так мало, что за 1 час может распасться 1 атом (а может и не распасться). Если это происходит, то считывающая трубка счетчика разряжается и срабатывает реле, освобождающее молоток, который висит над колбой с ядом. Колба разбивается, и яд убивает кота.


Иллюстрация эксперимента

Теперь пояснение. Мы не видим что происходит в коробке, мы не можем повлиять на процесс даже своими наблюдениями. Пока мы не откроем коробку, мы не знаем жив кот или мертв. Таким образом, утрируя, можно сказать, что для нас кот в коробке находится в двух состояниях одновременно: он и жив, и мертв.

Очень интересный эксперимент, раздвигающий границы квантовой физики.

Еще более необычным можно считать парадокс Вигнера. К всем вышеуказанным переменным эксперимента добавляются некие друзья лаборанта, что проводит данный эксперимент. Когда он открывает коробку и узнает точное состояние кота, его товарищ, находясь в другом месте, этого состояния не знает. Первый должен сообщить второму, что кот жив или мертв. Таким образом, пока все во Вселенной не будут знать точного состояния бедного животного, оно будет считаться и мертвым, и живым одновременно.


Что касается квантовой запутанности, то тут состояния двух или более частиц зависят друг от друга. То есть, говоря о тех же фотонах, если изменение спина одной частицы приводит к тому, что она становится положительной, то вторая автоматически становится отрицательной, и наоборот. При этом измерив состояние первой частицы, мы мгновенно лишаем вторую частицу состояния квантовой запутанности.

Оперирует квантовый компьютер не битами, а кубитами, отличающихся от первых тем, что одновременно могут находиться в двух состояниях - 0 и 1. Это позволяет обрабатывать информацию значительно быстрее.

С фотонами все чуть проще. Фотон это «частичка света», если говорить очень утрировано. Более научное определение это элементарная частица электромагнитного излучения, способная переносить электромагнитное взаимодействие.

Обратная сторона медали

Фотоны являются отличными переносчиками квантовой информации, однако отсутствие детерминистской* взаимосвязи фотон-фотон ограничивает их применение в квантовых компьютерах и сетях.

Детерминистские системы* это системы, процессы в которых взаимосвязаны таким образом, что можно отследить причинно-следственную последовательность. Другими словами, это системы, где входящие данные (к примеру задачи) полностью соответствуют исходящим данным (результат решения).
Данное исследование возможно и не состоялось бы вовсе, если бы не недавние открытия в области взаимодействия свет-материя посредством нейтральных захваченных атомов, которые позволили использовать оптические нелинейности* в однофотонном режиме.
Оптическая нелинейность* объясняется нелинейной реакцией вектора поляризации на вектор напряженности электрического поля световой волны. Наблюдать подобное можно при использовании лазеров, так как они могут генерировать луч высокой интенсивностью света.


Оптическая нелинейность на примере генерация второй оптической гармоники (second harmonic wave)
Данная техника сопряжена с проблемами реализации устройств в компактном виде, поскольку для ее реализации требуются весьма габаритные и крайне сложные в настройке лазерные ловушки. К тому же нейтральные атомы работают с низкой пропускной способностью.

Другой вариант, который также пока отложен в долгий ящик, это системы на базе нелинейной квантовой электродинамики. Поскольку такие системы работают исключительно в микроволновом режиме, а перевести их в оптический режим крайне проблематично.

Другие же исследователи решили копнуть еще глубже, практически буквально. Использование нанофотонных систем, в которых фотоны взаимодействуют с нанометровыми элементами (в данном случае с квантовыми эмиттерами) является весьма привлекательным способов реализации однофотонной нелинейности в компактных твердотельных устройствах. Однако пока что в подобных экспериментах используются эмиттеры, представленные двухуровневой атомной системой, ограниченной компромиссом между пропускной способностью и задержкой, что делает реализацию однотонных переключателей невозможной.

Как вывод, все предыдущие исследования имели определенные положительные результаты, которые, к сожалению, были сопряжены с теми или иными проблемами реализации или же взаимодействия систем.

Основы исследования

В данном же исследовании продемонстрирован однофотонный переключатель и транзистор, реализованные посредством сопряжения твердотельного квантового кубита и нанофотонного резонатора.

Одним из основных элементов эксперимента является спиновый кубит, состоящий из единственного электрона в заряженной квантовой точке* .

Квантовая точка* (или «искусственный атом») - частица полупроводника. Из-за крайне малого размера ее оптические и электронные свойства сильно отличаются от подобных у более крупных частиц.

Изображение №1а

На изображении продемонстрирована структура уровня квантовой точки, включающая два основных состояния* с противоположными спинами, что формирует стабильную квантовую память. Эти состояния помечены так: |⟩ и |↓⟩ .

Основное состояние* - в квантовой механике это стационарное состояние, когда уровень энергии и другие величины не изменяются, с наименьшей энергией.
Также на изображении отмечены и состояния возбуждения* , которые содержат пару электронов и одну дырку* с противоположными спинами. Обозначаются так: |↓,⇑⟩ и |↓, ⇓⟩ .
Возбуждение* - обозначает переход системы из основного состояния в состояние с более высокой энергией.
Дырка* - квазичастица, носитель положительного заряда, равного элементарному заряду, в полупроводниках.


Изображение №1b

Изображение 1b это снимок изготовленного нанофотонного резонатора, сделанный сканирующим электронным микроскопом. Посредством эксплуатации эффекта Фогта* было получено спин-зависимое соединение за счет применения магнитного поля (5.5 Тл) по плоскости устройства.

Фогта эффект* - возникновение двойного лучепреломления электромагнитной волны во время ее распространения в твердых телах.
За счет измерений кросс-поляризованной отражательной способности удалось также определить силу соединения (g ), скорость распада энергии нанофотонного резонатора (к ) и декогерентного дипольного перехода (y ):
  • g /2π=10.7±0.2 ГГц
  • к /2π=35.5±0.6 ГГц
  • y /2π=3.5±0.3 ГГц
При этом g>к/4 - условие, определяющее что устройство перешло в режим сильной и стабильной связи.


Изображение №1с

На изображении (сверху слева) графически продемонстрированы принципы работы однофотонного переключателя и транзистора. Как мы видим, если затворный импульс не содержит фотонов, то спин остается в положении «вниз». Если же присутствует один фотон, то спин переходит в положение «вверх». Как следствие спиновое состояние контролирует коэффициент отражения нанофотонного резонатора, тем самым изменяя поляризацию фотонов отраженного сигнала.

Вся последовательность импульсов показана на изображении (снизу). Теперь давайте чуть подробнее о каждом шаге.

  • В начале имеется квантовая точки в суперпозиции ее основного спинового состояния. Вычисляется с помощью формулы (|⟩ + |↓⟩)/√2 . Достигается это путем применения импульса инициализации для оптической накачки спина, что переводит его в состояние «вниз».
  • Далее применяется оптический ротационный импульс, создающий спиновое вращение π/2.
  • В течение некоторого времени (τ ) система свободно развивается.

    Если это время установить как целое число + половина периода процессии спина, тогда при отсутствии затворного фотона спин будет переходить в состояние (|⟩ - |↓⟩)/√2 , а второй ротационный импульс переведет спин обратно в состояние «вниз». Если же затворный фотон отражается от резонатора, то он формирует относительный π-фазовый сдвиг между состояниями «вверх» и «вниз», который отражает спин вдоль оси (x ) сферы Блоха* . Таким образом второй ротационный импульс будет переводить спин в состояние «вверх».

  • Применяется еще один ротационный импульс, идентичный первому.
  • Между этими двумя импульсами внедряется затворный импульс.

Сфера Блоха* - в квантовой механике используется как способ геометрического представления пространства состояния кубита.
  • В конце процесса поле сигнала отражается от резонатора и подвергается вращению поляризации, которое напрямую зависит от состояния спина.


Изображение №2а

На графике выше продемонстрирован коэффициент пропускания сигнального поля, проходящего через поляризатор, в виде функции (τ) при отсутствии затворного импульса.

Контрастность пропускания определяется формулой: δ = Т up - T down

Где Т up и T down - коэффициенты пропускания поля сигнала в моменты перехода спина в состояние «вверх» (up ) и «вниз» (down ) с применением двух ротационных импульсов, соответствующих максимальному и минимальному значению коэффициента пропускания в колебании.

Константное значение δ = 0.24 ± 0.01. Оно сильно отличается от идеального из-за неточного состояния спина F = 0.78 ± 0.01 и из-за ограниченной кооперативности С = 2g 2 / ky = 1.96 ± 0.19.


Изображение №2b

График 2b демонстрирует случай, когда применяется 63-ps импульс, содержащий примерно 0.21 фотонов на 1 импульс, связанных с резонатором. Дабы убедиться в том, что один фотон регулирует коэффициент пропускания, были проведены измерения двухфотонного совпадения между затворным и сигнальным фотонами.

Зеленые точки - измеренный коэффициент пропускания сигнала, обусловленный обнаружением отраженного затворного фотона как функции (τ ).

Зеленая линия - числовое соответствие модели, отображаемой на графике .

Вертикальная линия (а) на графиках и 2b это обозначение состояния, когда спин подвергается полуцелому числу вращений вокруг сферы Блоха во время периода свободного развития. В такой ситуации затворный фотон приводит к тому, что поляризация сигнального поля начинает вращаться и перенаправляться через поляризатор.

Вертикальная линия (b) на графиках и 2b это отображение второго рабочего состояния, при котором возможно выполнение операций переключения. В данном варианте наблюдается поведение обратного переключения, когда затворный фотон предотвращает вращение сигнального поля, тем самым уменьшая коэффициент пропускания.

В обоих случаях затворный импульс вызывает изменения коэффициента пропускания сигнала на 0.21 ± 0.02. Чтобы считать затворный фотон идеальным, этот показатель должен быть равен 0.24, как было определено в вычислениях, продемонстрированы на графике . В случае с реальным экспериментом показатели хуже ввиду использования аттенуированного (с затухающим колебанием) лазера для создания затворного импульса, который, хоть и маловероятно, но может содержать несколько фотонов.


Изображение №2с

График выше отображает коэффициент пропускания в виде функции времени задержки (τ ), когда среднее значение сигнальных фотонов на 1 импульс выставлено на 4.4 ± 0.5 (вверху), 10.9 ± 1.2 (посередине), 23.0 ± 2.5 (снизу).

Зеленые точки - коэффициент пропускания, обусловленный обнаружением затворного фотона.

Оранжевые квадраты - коэффициент пропускания без затворного импульса.

Зеленые и оранжевые линии - числовое соответствие теоретическим моделям из графиков и 2b .

Во всех случаях отчетливо наблюдается поведение переключения.

Подсчеты контраста переключения (ξ ) дали следующие результаты: 0.22 ± 0.03, 0.17 ± 0.02 и 0.12 ± 0.02, в соответствии с каждым графиком.

Основная проблема, связанная с контрастом переключения, это его снижение при увеличении числа сигнальных фотонов. Это обусловлено тем, что каждый сигнальный фотон может обратным образом воздействовать на спин через комбинационное рассеяние света (эффект Рамана* ). Это приводит к сбросу состояния внутренней квантовой памяти.

Эффект Рамана* - неупругое рассеяние оптического излучения, когда частицы сталкиваются, что приводит к изменению их состояния, формированию новых частиц, превращением в другие или рождением новых частиц.


Изображение №3

На графике синие точки показывают измеренный контраст пропускания, когда затворного импульса нет, в виде функции среднего числа фотонов в сигнальном поле. Это показатель степени самостоятельного переключения, спровоцированного сигналом без затвора. Синими линиями обозначается численное соответствие данных экспоненциальной функции вида exp (-N s / N avg ) , где N avg это среднее число сигнальных фотонов, необходимых для изменения положения спина. Подсчеты показали, что N avg = 27.7 ± 8.3.

Еще одним важным свойством транзисторов является коэффициент передачи (G ). График 2b (синие точки) демонстрирует рост данного показателя. Исследователям удалось достичь G = 3.3 ± 0.4 при количестве фотонов N s = 29.2 ± 3.2.

Мир на пороге очередной квантовой революции. Первый квантовый компьютер будет мгновенно решать задачи, на которые самое мощное современное устройство сейчас тратит годы. Какие это задачи? Кому выгодно, а кому угрожает массовое использование квантовых алгоритмов? Что такое суперпозиция кубитов, как люди научились находить оптимальное решение, не перебирая триллионы вариантов? Отвечаем на эти вопросы в рамках рубрики «Просто о сложном».

До квантовой в ходу была классическая теория электромагнитного излучения. В 1900 году немецкий ученый Макс Планк, который сам в кванты не верил, считал их вымышленной и чисто теоретической конструкцией, был вынужден признать, что энергия нагретого тела излучается порциями - квантами; таким образом, предположения теории совпали с экспериментальными наблюдениями. А пять лет спустя великий Альберт Эйнштейн прибегнул к этому же подходу при объяснении фотоэффекта: при облучении светом в металлах возникал электрический ток! Вряд ли Планк с Эйнштейном могли предположить, что своими работами закладывают основы новой науки - квантовой механики, которой будет суждено до неузнаваемости преобразить наш мир, и что в XXI веке ученые вплотную приблизятся к созданию квантового компьютера.

Вначале квантовая механика позволила объяснить структуру атома и помогла понять происходящие внутри него процессы. По большому счету сбылась давняя мечта алхимиков о превращении атомов одних элементов в атомы других (да, даже в золото). А знаменитая формула Эйнштейна E=mc2 привела к появлению атомной энергетики и, как следствие, атомной бомбы.

Квантовый процессор на пяти кубитах от IBM

Дальше - больше. Благодаря работам Эйнштейна и английского физика Поля Дирака во второй половине XX века был создан лазер - тоже квантовый источник сверхчистого света, собранного в узкий пучок. Исследования лазеров принесли Нобелевскую премию не одному десятку ученых, а сами лазеры нашли свое применение почти во всех сферах человеческой деятельности - от промышленных резаков и лазерных пушек до сканеров штрихкодов и коррекции зрения. Примерно в то же время шли активные исследования полупроводников - материалов, с помощью которых можно легко управлять протеканием электрического тока. На их основе были созданы первые транзисторы - они в дальнейшем стали главными строительными элементами современной электроники, без которой сейчас мы уже не представляем свою жизнь.

Быстро и эффективно решать многие задачи позволило развитие электронных вычислительных машин - компьютеров. А постепенное уменьшение их размеров и стоимости (в связи с массовым производством) проложило компьютерам дорогу в каждый дом. С появлением интернета наша зависимость от компьютерных систем, в том числе и для коммуникации, стала еще сильнее.

Ричард Фейнман

Зависимость растет, постоянно растут вычислительные мощности, но настала пора признать, что, несмотря на свои впечатляющие возможности, компьютеры оказались не в состоянии решить все задачи, которые мы готовы перед ними ставить. Одним из первых об этом начал говорить знаменитый физик Ричард Фейнман: еще в 1981 году на конференции он заявил, что на обычных компьютерах принципиально невозможно точно рассчитать реальную физическую систему. Все дело в ее квантовой природе! Эффекты микромасштаба легко объясняются квантовой механикой и из рук вон плохо - привычной нам классической механикой: она описывает поведение больших объектов. Тогда-то в качестве альтернативы Фейнман предложил использовать для расчетов физических систем квантовые компьютеры.

Что же такое квантовый компьютер и в чем его отличие от компьютеров, к которым мы привыкли? Все дело в том, как мы представляем себе информацию.

Если в обычных компьютерах за эту функцию отвечают биты - нули и единички, - то в квантовых компьютерах им на смену приходят квантовые биты (сокращенно - кубиты). Сам кубит - вещь довольно простая. У него по-прежнему два основных значения (или состояния, как любят говорить в квантовой механике), которые он может принимать: 0 и 1. Однако благодаря свойству квантовых объектов под названием «суперпозиция» кубит может принимать все значения, которые являются комбинацией основных. При этом его квантовая природа позволяет ему находиться во всех этих состояниях одновременно.

В этом и заключается параллельность квантовых вычислений с кубитами. Все случается сразу - уже не нужно перебирать все возможные варианты состояний системы, а это именно то, чем занимается обычный компьютер. Поиск по большим базам данных, составление оптимального маршрута, разработка новых лекарств - лишь несколько примеров задач, решение которых способны ускорить во множество раз квантовые алгоритмы. Это те задачи, где для поиска правильного ответа нужно перебрать огромное количество вариантов.

Кроме того, для описания точного состояния системы теперь не нужны огромные вычислительные мощности и объемы оперативной памяти, ведь для расчета системы из 100 частиц достаточно 100 кубитов, а не триллионов триллионов бит. Более того, с ростом числа частиц (как в реальных сложных системах) эта разница становится еще существеннее.

Одна из переборных задач выделялась своей кажущейся бесполезностью - разложение больших чисел на простые множители (то есть делящиеся нацело только на самих себя и единицу). Это называется «факторизация». Дело в том, что обычные компьютеры умеют довольно быстро перемножать числа, пусть даже и весьма большие. Однако с обратной задачей разложения большого числа, получившегося в результате перемножения двух простых чисел, на исходные множители обычные компьютеры справляются очень плохо. Например, чтобы разложить на два сомножителя число из 256 цифр, даже самому мощному компьютеру понадобится не один десяток лет. А вот квантовый алгоритм, который может решить эту задачу за несколько минут, придумал в 1997 году английский математик Питер Шор.

С появлением алгоритма Шора перед научным сообществом встала серьезная проблема. Еще в конце 1970-х годов, основываясь на сложности задачи факторизации, ученые-криптографы создали алгоритм шифрования данных, получивший повсеместное распространение. В частности, с помощью этого алгоритма стали защищать данные в интернете - пароли, личную переписку, банковские и финансовые транзакции. И после многолетнего успешного использования вдруг оказалось, что зашифрованная таким способом информация становится легкой мишенью для алгоритма Шора, запущенного на квантовом компьютере. Дешифровка с его помощью становится минутным делом. Радовало одно: квантовый компьютер, на котором можно было бы запустить смертоносный алгоритм, еще не был создан.

Тем временем по всему миру десятки научных групп и лабораторий стали заниматься экспериментальными исследованиями кубитов и возможностями создания из них квантового компьютера. Ведь одно дело - теоретически придумать кубит, и совсем другое - воплотить его в реальность. Для этого было необходимо найти подходящую физическую систему с двумя квантовыми уровнями, которые можно использовать в качестве базовых состояний кубита - нуля и единицы. Сам Фейнман в своей пионерской статье предлагал использовать для этих целей закрученные в разные стороны фотоны, но первыми экспериментально созданными кубитами стали в 1995 году захваченные в специальные ловушки ионы. За ионами последовали многие другие физические реализации: ядра атомов, электроны, фотоны, дефекты в кристаллах, сверхпроводящие цепи - все они отвечали поставленным требованиям.

Такое разнообразие имело свои достоинства. Подгоняемые острой конкуренцией, различные научные группы создавали все более совершенные кубиты и строили из них все более сложные схемы. Основных соревновательных параметров у кубитов было два: время их жизни и количество кубитов, которые можно было заставить работать сообща.

Сотрудники лаборатории искусственных квантовых систем

Время жизни кубитов задавало то, как долго в них хранилось хрупкое квантовое состояние. Это, в свою очередь, определяло, сколько вычислительных операций можно было выполнить с кубитом, пока он не «умер».

Для эффективной работы квантовых алгоритмов нужен был не один кубит, а хотя бы сотня, причем работающая вместе. Проблема заключалась в том, что кубиты не очень любили соседствовать друг с другом и выражали протест драматическим уменьшением своего времени жизни. Чтобы обойти эту неуживчивость кубитов, ученым приходилось идти на всяческие ухищрения. И все же на сегодняшний день ученым удалось заставить работать вместе максимум один-два десятка кубитов.

Так что, на радость криптографам, квантовый компьютер - все еще дело будущего. Хотя уже совсем не такого далекого, как могло когда-то казаться, ведь к его созданию активно подключаются как крупнейшие корпорации вроде Intel, IBM и Google, так и отдельные государства, для которых создание квантового компьютера - вопрос стратегической важности.

Не пропустите лекцию:

Квантовый компьютер - вычислительное устройство, которое использует явления квантовой суперпозиции и квантовой запутанности для передачи и обработки данных. Полноценный универсальный квантовый компьютер является пока гипотетическим устройством, сама возможность построения которого связана с серьёзным развитием квантовой теории в области многих частиц и сложных экспериментов; разработки в данной области связаны с новейшими открытиями и достижениями современной физики. На настоящий момент были практически реализованы лишь единичные экспериментальные системы, исполняющие фиксированный алгоритм небольшой сложности.

Как пишет редакция издания Science Alert, группа специалистов из Университета Вены смогла разработать первый в истории квантовый роутер и даже провела первые испытания нового устройства. Это первое устройство, которое может не только принимать запутанные фотоны, но и передавать их. Кроме того, схема, используемая в роутере, может стать основой для создания квантового интернета.

Еще пять лет назад о квантовых компьютерах знали разве что специалисты в области квантовой физики. Однако в последние годы количество публикаций в Интернете и в специализированных изданиях, посвященных квантовым вычислениям, возрастало лавинообразно. Тема квантовых вычислений стала популярной и вызвала множество различных мнений, далеко не всегда соответствующих действительности.
В настоящей статье мы постараемся как можно более доступно рассказать о том, что же такое квантовый компьютер и на какой стадии находятся современные разработки в этой области.

Ограниченные возможности современных компьютеров

О квантовых компьютерах и квантовых вычислениях часто говорят как об альтернативе кремниевым технологиям создания микропроцессоров, что, в общем-то, не совсем верно. Собственно, почему вообще приходится искать альтернативу современным компьютерным технологиям? Как показывает вся история существования компьютерной индустрии, вычислительная мощность процессоров возрастает экспоненциально. Ни одна другая индустрия не развивается столь бурными темпами. Как правило, когда говорят о темпах роста вычислительной мощности процессоров, вспоминают так называемый закон Гордона Мура, выведенный в апреле 1965 года, то есть всего через шесть лет после изобретения первой интегральной схемы (ИС).

По просьбе журнала «Электроникс» (“Electronics”) Гордон Мур написал статью, приуроченную к 35-й годовщине издания. Он сделал прогноз относительно того, как будут развиваться полупроводниковые устройства в течение ближайших десяти лет. Проанализировав темпы развития полупроводниковых устройств и экономические факторы за прошедшие шесть лет, то есть начиная с 1959 года, Гордон Мур предположил, что к 1975 году количество транзисторов в одной интегральной микросхеме составит 65 тыс.

Фактически по прогнозу Мура количество транзисторов в одной микросхеме за десять лет должно было увеличиться более чем в тысячу раз. В то же время это означало, что каждый год количество транзисторов в одной микросхеме должно удваиваться.

Впоследствии в закон Мура были внесены коррективы (дабы соотнести его с реальностью), но смысл от этого не поменялся: количество транзисторов в микросхемах увеличивается экспоненциально. Естественно, увеличение плотности размещения транзисторов на кристалле возможно лишь за счет сокращения размеров самих транзисторов. В связи с этим уместен вопрос: до какой степени можно уменьшать размеры транзисторов? Уже сейчас размеры отдельных элементов транзисторов в процессорах сопоставимы с атомарными, например ширина диоксидного слоя, отделяющего диэлектрик затвора от канала переноса заряда, составляет всего несколько десятков атомарных слоев. Понятно, что существует чисто физический предел, делающий невозможным дальнейшее уменьшение размеров транзисторов. Даже если предположить, что в будущем они будут иметь несколько иную геометрию и архитектуру, теоретически невозможно создать транзистор или подобный ему элемент с размером менее 10 -8 см (диаметр атома водорода) и рабочей частотой более 10 15 Гц (частота атомных переходов). А потому, хотим мы того или нет, неизбежен тот день, когда закон Мура придется сдать в архив (если, конечно, его в очередной раз не подкорректируют).

Ограниченные возможности по наращиванию вычислительной мощности процессоров за счет сокращения размеров транзисторов - это лишь одно из узких мест классических кремниевых процессоров.

Как мы увидим в дальнейшем, квантовые компьютеры никоим образом не представляют собой попытку решения проблемы миниатюризации базовых элементов процессоров.

Решение проблемы миниатюризации транзисторов, поиск новых материалов для создания элементной базы микроэлектроники, поиск новых физических принципов для приборов с характерными размерами, сравнимыми с длиной волны Де-Бройля, имеющей величину порядка 20 нм, - эти вопросы стоят на повестке дня уже почти два десятилетия. В результате их решения была разработана нанотехнология. Серьезной проблемой, с которой пришлось столкнуться при переходе в область наноэлектронных устройств, является уменьшение рассеиваемой энергии в процессе вычислительных операций. Мысль о возможности «логически обратимых» операций, не сопровождающихся рассеянием энергии, впервые высказал Р.Ландауер еще в 1961 году. Существенный шаг в решении данной задачи был сделан в 1982 году Ч.Беннеттом, который теоретически доказал, что универсальный цифровой компьютер может быть построен на логически и термодинамически обратимых вентилях таким образом, что энергия будет рассеиваться только за счет необратимых периферийных процессов ввода информации в машину (приготовление исходного состояния) и соответственно вывода из нее (считывание результата). К типичным обратимым универсальным вентилям относятся вентили Фредкина и Тоффоли.

Другая проблема, связанная с классическими компьютерами, кроется в самой фон-неймановской архитектуре и двоичной логике всех современных процессоров. Все компьютеры, начиная с аналитической машины Чарльза Бэббиджа и заканчивая современными суперкомпьютерами, основаны на одних и тех же принципах (фон-неймановская архитектура), которые были разработаны еще в 40-х годах прошлого столетия.

Любой компьютер на программном уровне оперирует битами (переменными, принимающими значение 0 или 1). С применением логических элементов-вентилей над битами выполняются логические операции, что позволяет получить определенное конечное состояние на выходе. Изменение состояния переменных производится с помощью программы, которая определяет последовательность операций, каждая из которых использует небольшое число бит.

Традиционные процессоры выполняют программы последовательно. Несмотря на существование многопроцессорных систем, многоядерных процессоров и различных технологий, направленных на повышение уровня параллелизма, все компьютеры, построенные на основе фон-неймановской архитектуры, являются устройствами с последовательным режимом выполнения команд. Все современные процессоры реализуют следующий алгоритм обработки команд и данных: выборка команд и данных из памяти и исполнение инструкций над выбранными данными. Этот цикл повторяется многократно и с огромной скоростью.

Однако фон-неймановская архитектура ограничивает возможность увеличения вычислительной мощности современных ПК. Типичный пример задачи, которая оказывается не по силам современным ПК, - это разложение целого числа на простые множители (простым называется множитель, который делится без остатка только на себя и на 1).

Если требуется разложить на простые множители число х , имеющее n знаков в двоичной записи, то очевидный способ решения этой задачи заключается в том, чтобы попробовать последовательно разделить его на числа от 2 до Для этого придется перебрать 2 n/2 вариантов. К примеру, если рассматривается число, у которого 100 000 знаков (в двоичной записи), то потребуется перебрать 3x10 15 051 вариантов. Если предположить, что для одного перебора требуется один процессорный такт, то при скорости в 3 ГГц для перебора всех чисел будет нужно время, превышающее возраст нашей планеты. Существует, правда, хитроумный алгоритм, решающий ту же задачу за exp(n 1/3) шагов, но даже в этом случае с задачей разложения на простые множители числа, имеющего миллион знаков, не справится ни один современный суперкомпьютер.

Задача разложения числа на простые множители относится к классу задач, которые, как говорят, не решаются за полиномиальное время (NP-полная задача - Nondeterministic polynomial-time complete). Такие задачи входят в класс невычисляемых в том смысле, что они не могут быть решены на классических компьютерах за время, полиномиально зависящее от числа битов n , представляющих задачу. Если говорить о разложении числа на простые множители, то по мере увеличения разрядности числа время, необходимое для решения задачи, возрастает экспоненциально, а не полиномиально.

Забегая вперед, отметим, что с квантовыми вычислениями связывают перспективы решения NP-полных задач за полиномиальное время.

Квантовая физика

Конечно, квантовая физика слабо связана с тем, что называют элементной базой современных компьютеров. Однако, говоря о квантовом компьютере, избежать упоминания некоторых специфических терминов квантовой физики просто невозможно. Мы понимаем, что далеко не все изучали легендарный третий том «Теоретической физики» Л.Д.Ландау и Е.М.Лифшица и для многих такие понятия, как волновая функция и уравнение Шредингера, - это что-то из потустороннего мира. Что же касается специфического математического аппарата квантовой механики, то это сплошные формулы и малопонятные слова. Поэтому мы постараемся придерживаться общедоступного уровня изложения, избегая по возможности тензорного анализа и прочей специфики квантовой механики.

Для подавляющего большинства людей квантовая механика находится за гранью понимания. Дело даже не столько в сложном математическом аппарате, сколько в том, что законы квантовой механики нелогичны и не имеют подсознательной ассоциации - их невозможно себе представить. Впрочем, анализ нелогичности квантовой механики и парадоксального рождения из этой нелогичности стройной логики - это удел философов, мы же коснемся аспектов квантовой механики лишь в той мере, в какой это необходимо для понимания сути квантовых вычислений.

История квантовой физики началась 14 декабря 1900 года. Именно в этот день немецкий физик и будущий нобелевский лауреат Макс Планк доложил на заседании Берлинского физического общества о фундаментальном открытии квантовых свойств теплового излучения. Так в физике появилось понятие кванта энергии, а среди других фундаментальных постоянных - постоянная Планка.

Открытие Планка и появившаяся затем, в 1905 году, теория фотоэлектрического эффекта Альберта Эйнштейна, а также создание в 1913 году Нильсом Бором первой квантовой теории атомных спектров стимулировали создание и дальнейшее бурное развитие квантовой теории и экспериментальных исследований квантовых явлений.

Уже в 1926 году Эрвин Шредингер сформулировал свое знаменитое волновое уравнение, а Энрико Ферми и Поль Дирак получили квантово-статистическое распределение для электронного газа, учитывающее заполнение отдельных квантовых состояний.

В 1928 году Феликс Блох произвел анализ квантово-механической задачи о движении электрона во внешнем периодическом поле кристаллической решетки и показал, что электронный энергетический спектр в кристаллическом твердом теле имеет зонную структуру. Фактически это стало началом нового направления в физике - теории твердого тела.

Весь XX век - это период интенсивного развития квантовой физики и всех тех разделов физики, для которых квантовая теория стала прародителем.

Появление квантовых вычислений

Идея использования квантовых вычислений впервые была высказана советским математиком Ю.И. Маниным в 1980 году в его знаменитой монографии «Вычислимое и невычислимое». Правда, интерес к его труду возник лишь два года спустя, в 1982 году, после опубликования статьи на ту же тему американского физика-теоретика нобелевского лауреата Ричарда Фейнмана. Он заметил, что определенные квантово-механические операции нельзя в точности переносить на классический компьютер. Это наблюдение привело его к мысли, что подобные вычисления могут быть более эффективными, если их осуществлять при помощи квантовых операций.

Рассмотрим, к примеру, квантово-механическую задачу об изменении состояния квантовой системы, состоящей из n спинов, за определенный промежуток времени. Не вникая в подробности математического аппарата квантовой теории, отметим, что общее состояние системы из n спинов описывается вектором в 2 n -мерном комплексном пространстве, а изменение ее состояния - унитарной матрицей размером 2 n x2 n . Если рассматриваемый промежуток времени очень мал, то матрица устроена очень просто и каждый из ее элементов легко вычислить, зная взаимодействие между спинами. Если же необходимо узнать изменение состояния системы за большой промежуток времени, то нужно перемножать такие матрицы, причем для этого требуется экспоненциально большое количество операций. Опять мы сталкиваемся с PN-полной задачей, нерешаемой за полиномиальное время на классических компьютерах. В настоящее время способа упростить данное вычисление не существует, и, скорее всего, моделирование квантовой механики является экспоненциально сложной математической задачей. Но если классические компьютеры не способны решать квантовые задачи, то, возможно, для этого целесообразно использовать саму квантовую систему? И если это действительно возможно, то подходят ли квантовые системы для решения других вычислительных задач? Подобные вопросы как раз и рассматривались Фейнманом и Маниным.

Уже в 1985 году Дэвид Дойч предложил конкретную математическую модель квантовой машины.

Однако вплоть до середины 90-х годов направление квантовых вычислений развивалось довольно вяло. Практическая реализация квантовых компьютеров оказалась весьма сложной. К тому же в научном сообществе с пессимизмом относились к тому, что квантовые операции способны ускорить решение определенных вычислительных задач. Так продолжалось вплоть до 1994 года, когда американский математик Питер Шор предложил для квантового компьютера алгоритм разложения n -значного числа на простые множители за время, полиномиально зависящее от n (квантовый алгоритм факторизации). Квантовый алгоритм факторизации Шора стал одним из основных факторов, приведших к интенсивному развитию квантовых методов вычислений и появлению алгоритмов, позволяющих решать некоторые NP-проблемы.

Естественно, возникает вопрос: почему, собственно, предложенный Шором квантовый алгоритм факторизации привел к таким последствиям? Дело в том, что задача разложения числа на простые множители имеет прямое отношение к криптографии, в частности к популярным системам шифрования RSA. Благодаря возможности разложения числа на простые множители за полиномиальное время квантовый компьютер теоретически позволяет расшифровывать сообщения, закодированные при помощи многих популярных криптографических алгоритмов, таких как RSA. До сих пор этот алгоритм считался сравнительно надежным, так как эффективный способ разложения чисел на простые множители для классического компьютера в настоящее время неизвестен. Шор придумал квантовый алгоритм, позволяющий разложить на простые множители n -значное число за n 3 (log n ) k шагов (k = const ). Естественно, практическая реализация такого алгоритма могла иметь скорее негативные, чем позитивные последствия, поскольку позволяла подбирать ключи к шифрам, подделывать электронные подписи и т.п. Впрочем, до практической реализации настоящего квантового компьютера еще далеко, а потому в течение ближайших десяти лет можно не опасаться, что шифры могут быть взломаны с помощью квантовых компьютеров.

Идея квантовых вычислений

Итак, после краткого описания истории квантовых вычислений можно перейти к рассмотрению самой их сути. Идея (но не ее реализация) квантовых вычислений достаточно проста и интересна. Но даже для ее поверхностного понимания необходимо ознакомиться с некоторыми специфическими понятиями квантовой физики.

Прежде чем рассматривать обобщенные квантовые понятия вектора состояния и принципа суперпозиции, разберем простой пример поляризованного фотона. Поляризованный фотон - это пример двухуровневой квантовой системы. Состояние поляризации фотона можно задать вектором состояния, определяющим направление поляризации. Поляризация фотона может быть направлена вверх или вниз, поэтому говорят о двух основных, или базисных, состояниях, которые обозначают как |1 и |0.

Данные обозначения (бра/кэт-обозначения) были введены Дираком и имеют строго математическое определение (векторы базисных состояний), которое обусловливает правила работы с ними, однако, дабы не углубляться в математические дебри, мы не станем детально рассматривать эти тонкости.

Возвращаясь к поляризованному фотону, отметим, что в качестве базисных состояний можно было бы выбрать не только горизонтальное и вертикальное, но и любые взаимно ортогональные направления поляризации. Смысл базисных состояний заключается в том, что любая произвольная поляризация может быть выражена как линейная комбинация базисных состояний, то есть a|1+b|0. Поскольку нас интересует только направление поляризации (величина поляризации не важна), то вектор состояния можно считать единичным, то есть |a| 2 +|b| 2 = 1.

Теперь обобщим пример с поляризацией фотона на любую двухуровневую квантовую систему.

Предположим, имеется произвольная двухуровневая квантовая система, которая характеризуется базисными ортогональными состояниями |1 и |0. Согласно законам (постулатам) квантовой механики (принцип суперпозиции) возможными состояниями квантовой системы будут также суперпозиции y = a|1+b|0, где a и b - комплексные числа, называемые амплитудами. Отметим, что аналога состояния суперпозиции в классической физике не существует.

Один из фундаментальных постулатов квантовой механики утверждает, что для того, чтобы измерить состояние квантовой системы, нужно ее разрушить. То есть любой процесс измерения в квантовой физике нарушает первоначальное состояние системы и переводит ее в новое состояние. Понять это утверждение не так-то просто, а потому остановимся на нем более подробное.

Вообще, понятие измерения в квантовой физике играет особую роль, и не стоит рассматривать его как измерение в классическом понимании. Измерение квантовой системы происходит всякий раз, когда она приходит во взаимодействие с «классическим» объектом, то есть с объектом, подчиняющимся законам классической физики. В результате такого взаимодействия состояние квантовой системы изменяется, причем характер и величина этого изменения зависят от состояния квантовой системы и потому могут служить его количественной характеристикой.

В связи с этим классический объект обычно называют прибором, а о его процессе взаимодействия с квантовой системой говорят как об измерении. Необходимо подчеркнуть, что при этом отнюдь не имеется в виду процесс измерения, в котором участвует наблюдатель. Под измерением в квантовой физике подразумевается всякий процесс взаимодействия между классическим и квантовым объектами, происходящий помимо и независимо от какого-либо наблюдателя. Выяснение роли измерения в квантовой физике принадлежит Нильсу Бору.

Итак, чтобы измерить квантовую систему, необходимо каким-то образом подействовать на нее классическим объектом, после чего ее первоначальное состояние будет нарушено. Кроме того, можно утверждать, что в результате измерения квантовая система будет переведена в одно из своих базисных состояний. К примеру, для измерения двухуровневой квантовой системы требуется как минимум двухуровневый классический объект, то есть классический объект, который может принимать два возможных значения: 0 и 1. В процессе измерения состояние квантовой системы будет преобразовано в один из базисных векторов, причем если при измерении классический объект принимает значение равное 0, то квантовый объект преобразуется к состоянию |0, а в случае если классический объект принимает значение равное 1, то квантовый объект преобразуется к состоянию |1.

Таким образом, хотя квантовая двухуровневая система может находиться в бесчисленном множестве состояний суперпозиции, но в результате измерения она принимает только одно из двух возможных базисных состояний. Квадрат модуля амплитуды |a| 2 определяет вероятность обнаружения (измерения) системы в базисном состоянии |1, а квадрат модуля амплитуды |b| 2 - в базисном состоянии |0.

Однако вернемся к нашему примеру с поляризованным фотоном. Для измерения состояния фотона (его поляризации) нам потребуется некоторое классическое устройство с классическим базисом {1,0}. Тогда состояние поляризации фотона a|1+b|0 будет определено как 1 (горизонтальная поляризация) с вероятностью |a| 2 и как 0 (вертикальная поляризация) с вероятностью |b| 2 .

Поскольку измерение квантовой системы приводит ее к одному из базисных состояний и, следовательно, разрушает суперпозицию (к примеру, при измерении получается значение равное |1), то это означает, что в результате измерения квантовая система переходит в новое квантовое состояние и при следующем измерении мы получим значение |1 со стопроцентной вероятностью.

Вектор состояния двухуровневой квантовой системы называется также волновой функцией квантовых состояний y двухуровневой системы, или, в интерпретации квантовых вычислений, кубитом (quantum bit, qubit). В отличие от классического бита, который может принимать только два логических значения, кубит - это квантовый объект, и число его состояний, определяемых суперпозицией, неограниченно. Однако еще раз подчеркнем, что результат измерения кубита всегда приводит нас к одному из двух возможных значений.

Теперь рассмотрим систему из двух кубитов. Измерение каждого из них может дать значение классического объекта 0 или 1. Поэтому у системы двух кубитов имеется четыре классических состояния: 00, 01, 10 и 11. Аналогичные им базисные квантовые состояния: |00, |01, |10 и |11. Соответствующий вектор квантового состояния записывается в виде a |00+ b |01+ c |10+ d |11, где |a | 2 - вероятность при измерении получить значение 00, |b | 2 - вероятность получить значение 01 и т.д.

В общем случае если квантовая система состоит из L кубитов, то у нее имеется 2 L возможных классических состояний, каждое из которых может быть измерено с некоторой вероятностью. Функция состояния такой квантовой системы запишется в виде:

где |n - базисные квантовые состояния (например, состояние |001101, а |c n | 2 - вероятность нахождения в базисном состоянии |n .

Для того чтобы изменить состояние суперпозиции квантовой системы, необходимо реализовать селективное внешнее воздействие на каждый кубит. С математической точки зрения такое преобразование представляется унитарными матрицами размера 2 L x2 L . В результате будет получено новое квантовое состояние суперпозиции.

Структура квантового компьютера

Рассмотренное нами преобразование состояния суперпозиции квантовой системы, состоящей из L кубитов, по сути, представляет собой модель квантового компьютера. Рассмотрим, к примеру, более простой пример реализации квантовых вычислений. Допустим, имеется система из L кубитов, каждый из которых идеально изолирован от внешнего мира. В каждый момент времени мы можем выбрать произвольные два кубита и подействовать на них унитарной матрицей размером 4x4. Последовательность таких воздействий - это своего рода программа для квантового компьютера.

Чтобы использовать квантовую схему для вычисления, нужно уметь вводить входные данные, проделывать вычисления и считывать результат. Поэтому принципиальная схема любого квантового компьютера (см. рисунок) должна включать следующие функциональные блоки: квантовый регистр для ввода данных, квантовый процессор для преобразования данных и устройство для считывания данных.

Квантовый регистр представляет собой совокупность некоторого числа L кубитов. До ввода информации в компьютер все кубиты квантового регистра должны быть приведены в базисные состояния |0. Эта операция называется подготовкой, или инициализацией. Далее определенные кубиты (не все) подвергаются селективному внешнему воздействию (например, с помощью импульсов внешнего электромагнитного поля, управляемых классическим компьютером), которое изменяет значение кубитов, то есть из состояния |0 они переходят в состояние |1. При этом состояние всего квантового регистра перейдет в суперпозицию базисных состояний |n с, то есть состояние квантового регистра в начальный момент времени будет определяться функцией:

Понятно, что данное состояние суперпозиции можно использовать для бинарного (двоичного) представления числа n .

В квантовом процессоре введенные данные подвергаются последовательности квантовых логических операций, которые с математической точки зрения описываются унитарным преобразованием , действующим на состояние всего регистра. В результате через некоторое количество тактов работы квантового процессора исходное квантовое состояние системы становится новой суперпозицией вида:

Говоря о квантовом процессоре, нужно сделать одно важное замечание. Оказывается, для построения любого вычисления достаточно всего двух базовых логических булевых операций. С помощью базовых квантовых операций можно имитировать работу обычных логических элементов, из которых сделаны компьютеры. Поскольку законы квантовой физики на микроскопическом уровне являются линейными и обратимыми, то и соответствующие квантовые логические устройства, производящие операции с квантовыми состояниями отдельных кубитов (квантовые вентили), оказываются логически и термодинамически обратимыми. Квантовые вентили аналогичны соответствующим обратимым классическим вентилям, но, в отличие от них, способны совершать унитарные операции над суперпозициями состояний. Выполнение унитарных логических операций над кубитами предполагается осуществлять с помощью соответствующих внешних воздействий, которыми управляют классические компьютеры.

Схематическая структура квантового компьютера

После реализации преобразований в квантовом компьютере новая функция суперпозиции представляет собой результат вычислений в квантовом процессоре. Остается лишь считать полученные значения, для чего производится измерение значения квантовой системы. В итоге образуется последовательность нулей и единиц, причем, в силу вероятностного характера измерений, она может быть любой. Таким образом, квантовый компьютер может с некоторой вероятностью дать любой ответ. При этом квантовая схема вычислений считается правильной, если правильный ответ получается с вероятностью, достаточно близкой к единице. Повторив вычисления несколько раз и выбрав тот ответ, который встречается наиболее часто, можно снизить вероятность ошибки до сколь угодно малой величины.

Для того чтобы понять, чем различаются в работе классический и квантовый компьютеры, давайте вспомним, что классический компьютер хранит в памяти L бит, которые за каждый такт работы процессора подвергаются изменению. В квантовом компьютере в памяти (регистр состояния) хранятся значения L кубитов, однако квантовая система находится в состоянии, являющемся суперпозицией всех базовых 2L состояний, и изменение квантового состояния системы, производимое квантовым процессором, касается всех 2L базовых состояний одновременно. Соответственно в квантовом компьютере вычислительная мощность достигается за счет реализации параллельных вычислений, причем теоретически квантовый компьютер может работать в экспоненциальное число раз быстрее, чем классическая схема.

Считается, что для реализации полномасштабного квантового компьютера, превосходящего по производительности любой классический компьютер, на каких бы физических принципах он ни работал, следует обеспечить выполнение следующих основных требований:

  • физическая система, представляющая собой полномасштабный квантовый компьютер, должна содержать достаточно большое число L >103 хорошо различимых кубитов для выполнения соответствующих квантовых операций;
  • необходимо обеспечить максимальное подавление эффектов разрушения суперпозиции квантовых состояний, обусловленных взаимодействием системы кубитов с окружающей средой, в результате чего может стать невозможным выполнение квантовых алгоритмов. Время разрушения суперпозиции квантовых состояний (время декогерентизации) должно по крайней мере в 104 раз превышать время выполнения основных квантовых операций (время такта). Для этого система кубитов должна быть довольно слабо связана с окружением;
  • необходимо обеспечить измерение с достаточно высокой надежностью состояния квантовой системы на выходе. Измерение конечного квантового состояния является одной из основных проблем квантовых вычислений.

Практическое применение квантовых компьютеров

Для практического применения пока не создано ни одного квантового компьютера, который бы удовлетворял всем вышеперечисленным условиям. Однако во многих развитых странах разработке квантовых компьютеров уделяется пристальное внимание и в такие программы ежегодно вкладываются десятки миллионов долларов.

На данный момент наибольший квантовый компьютер составлен всего из семи кубитов. Этого достаточно, чтобы реализовать алгоритм Шора и разложить число 15 на простые множители 3 и 5.

Если же говорить о возможных моделях квантовых компьютеров, то их, в принципе, довольно много. Первый квантовый компьютер, который был создан на практике, - это импульсный ядерный магнитно-резонансный (ЯМР) спектрометр высокого разрешения, хотя он, конечно же, как квантовый компьютер не рассматривался. Лишь когда появилась концепция квантового компьютера, ученые поняли, что ЯМР-спектрометр представляет собой вариант квантового компьютера.

В ЯМР-спектрометре спины ядер исследуемой молекулы образуют кубиты. Каждое ядро имеет свою частоту резонанса в данном магнитном поле. При воздействии импульсом на ядро на его резонансной частоте оно начинает эволюционировать, остальные же ядра не испытывают никакого воздействия. Для того чтобы заставить эволюционировать другое ядро, нужно взять иную резонансную частоту и дать импульс на ней. Таким образом, импульсное воздействие на ядра на резонансной частоте представляет собой селективное воздействие на кубиты. При этом в молекуле есть прямая связь между спинами, поэтому она является идеальной заготовкой для квантового компьютера, а сам спектрометр представляет собой квантовый процессор.

Первые эксперименты на ядерных спинах двух атомов водорода в молекулах 2,3-дибромотиофена SCH:(CBr) 2:CH и на трех ядерных спинах - одном в атоме водорода H и двух в изотопах углерода 13 C в молекулах трихлорэтилена CCl 2:CHCl - были поставлены в 1997 году в Оксфорде (Великобритания).

В случае использования ЯМР-спектрометра важно, что для селективного воздействия на ядерные спины молекулы необходимо, чтобы они заметно различались по резонансным частотам. Позднее были осуществлены квантовые операции в ЯМР-спектрометре с числом кубитов 3, 5, 6 и 7.

Главным преимуществом ЯМР-спектрометра является то, что в нем можно использовать огромное количество одинаковых молекул. При этом каждая молекула (точнее, ядра атомов, из которых она состоит) представляет собой квантовую систему. Последовательности радиочастотных импульсов, выполняющие роль определенных квантовых логических вентилей, осуществляют унитарные преобразования состояний соответствующих ядерных спинов одновременно для всех молекул. То есть селективное воздействие на отдельный кубит заменяется одновременным обращением к соответствующим кубитам во всех молекулах большого ансамбля. Компьютер такого рода получил название ансамблевого (bulk-ensemble quantum computer) ЯМР квантового компьютера. Такие компьютеры могут работать при комнатной температуре, а время декогерентизации квантовых состояний ядерных спинов составляет несколько секунд.

В области ЯМР квантовых компьютеров на органических жидкостях к настоящему времени достигнуты наибольшие успехи. Они обусловлены в основном хорошо развитой импульсной техникой ЯМР-спектроскопии, обеспечивающей выполнение различных операций над когерентными суперпозициями состояний ядерных спинов, и возможностью использования для этого стандартных ЯМР-спектрометров, работающих при комнатной температуре.

Основным ограничением ЯМР квантовых компьютеров является сложность инициализации начального состояния в квантовом регистре. Дело в том, что в большом ансамбле молекул исходное состояние кубитов различно, что осложняет приведение системы к начальному состоянию.

Другое ограничение ЯМР квантовых компьютеров связано с тем, что измеряемый на выходе системы сигнал экспоненциально убывает с ростом числа кубитов L . Кроме того, число ядерных кубитов в отдельной молекуле с сильно различающимися резонансными частотами ограничено. Это приводит к тому, что ЯМР квантовые компьютеры не могут иметь больше десяти кубитов. Их следует рассматривать лишь как прототипы будущих квантовых компьютеров, полезные для отработки принципов квантовых вычислений и проверки квантовых алгоритмов.

Другой вариант квантового компьютера основан на использовании ионных ловушек, когда в роли кубитов выступает уровень энергии ионов, захваченных ионными ловушками, которые создаются в вакууме определенной конфигурацией электрического поля в условиях лазерного охлаждения их до сверхнизких температур. Первый прототип квантового компьютера, основанного на этом принципе, был предложен в 1995 году. Преимущество такого подхода состоит в сравнительно простом индивидуальном управлении отдельными кубитами. Основными недостатками квантовых компьютеров этого типа являются необходимость создания сверхнизких температур, обеспечение устойчивости состояния ионов в цепочке и ограниченность возможного числа кубитов - не более 40.

Возможны и другие схемы квантовых компьютеров, разработка которых ведется в настоящее время. Однако пройдет еще как минимум десять лет, прежде чем настоящие квантовые компьютеры наконец будут созданы.

Каждый желающий может воспользоваться квантовым компьютером May 14th, 2016

Помните недавний случай, когда Джастин Трюдо (Justin Trudeau) своей вдохновенной речью вызвал аплодисменты удивлённых журналистов и учёных во время, казалось бы, заурядной пресс-конференции.

Между тем, всё начиналось вполне безобидно: премьер выступал в Институте теоретической физики в Ватерлоо, провинция Онтарио (Perimeter Institute in Waterloo, Ontario), озвучивая намерение правительства увеличить финансирование этого научного центра.

Когда настало время вопросов из зала, один из журналистов предложил главе правительства объяснить принцип действия квантового компьютера.

Джастин начал так: «Несомненно, многие из вас умнее меня, но я точно знаю, что...

Обычные компьютеры работают по принципу нулей и единиц - бинарная (двоичная) система, в которой один бит информации содержит один разряд (1 - есть ток, 0 - нет тока), а квантовые - более комплексные машины, способные обрабатывать намного больший объём информации за один бит, чем обычные компьютеры. К тому же, квантовые компьютеры куда компактнее обычных собратьев».

Далее он подытожил: «Таким образом, в обычных компьютерах информация хранится в битах, а в квантовых - в кубитах. Кубиты могут как бы находиться одновременно в двух состояниях: содержать ноль и единицу сразу, благодаря чему в теории квантовый компьютер может работать быстрее».

После того, как он закончил свой рассказ о принципах действия квантового компьютера, зал аплодировал ему стоя.

А что мы сегодня знаем по теме квантового компьютера?

Квантовый компьютер — это вычислительное устройство, работающее по принципам квантовой механики, которую по праву можно назвать самым сложным разделом физики. Квантовая механика зародилась в начале 20-ого века, и изучает поведение квантовых систем и ее элементов. Квантовая частица может находиться в нескольких местах и состояниях одновременно, поэтому по определению квантовая механика полностью противоречит общей теории относительности. Но давайте не будем углубляться в науку, а вернемся к нашей главной теме — квантовому компьютеру.

В начале века выяснилось, что использование электрических схем для создания вычислительных устройств имеет свои границы, и все они практически были достигнуты. Сейчас же перед человечеством встают все новые и новые задачи, для решения которых классических компьютеров будет недостаточно. Самый простой пример такой задачи — это разложение больших чисел на множители. Для этой цели было построено большинство криптографических систем. Это покажется банальным но, если бы кому-то удалось быстро разложить большое число на простые множители, то для него стали доступны транзакции во всех банках мира.

Другая не менее важная задача, с которой современные компьютеры никогда не смогут справиться — это моделирование квантовых систем и молекул ДНК. Исходя из этого, можно сделать вывод, что создание квантовых компьютеров — весьма перспективное решение, которое позволит решить эти и многие другие проблемы.


В настоящее время IBM пытается сделать что-то подобное: компания привлекает внимание обывателей к своему проекту, ведь её специалисты ведут разработку вычислительного устройства и высокоуровневого языка программирования для этого вида компьютеров. Они приглашают всех желающих поучаствовать в их работе.

Компания заявила о запуске первого облачного сервиса на основе экспериментального квантового процессора. Новая платформа называется Quantum Experience.

Предполагается, что онлайн-сервисом смогут пользоваться все желающие: студенты, энтузиасты-любители и даже серьёзные учёные. В настоящее время, чтобы получить доступ к облаку, необходимо подать заявку и получить допуск (его ещё могут и не дать!). Только получив допуск, пользователи смогут запускать алгоритмы и тесты. Словом, работать с кубитами.

Цель программы Quantum Experience - более детальное изучение возможностей платформы на базе 5-кубитного процессора и поиск новых способов применения квантовых вычислений. По сути, компания даёт в руки инструмент и возможности, а как их использовать, пользователь определяет уже сам.

«Прежде всего, это исследовательская программа, но мы не исключаем, что она может стать основой для создания действующего квантового компьютера». - Джерри Чоу (Jerry M. Chow), руководитель Группы по разработке экспериментального квантового компьютера при Исследовательском центре им. Томаса Уотсона (Experimental Quantum Computing Group at the IBM Thomas J. Watson Research Center).

В настоящее время компьютер в нью-йоркском исследовательском центре состоит из пяти кубитов, то есть квантовых битов. Однако, по словам специалистов IBM, эта «машина» ещё пока не способна заменить традиционные компьютеры.

В то же время они верят, что когда-нибудь им удастся создать 100-кубитный квантовый процессор, который будет способен обрабатывать широкий спектр алгоритмов, чтобы решать практически любые вычислительные задачи.

Элементная база квантового компьютера, созданного в IBM - вычислительные элементы (кубиты), выполненные из материала, обладающего свойством сверхпроводимости при температуре, близкой к 0°С.

Кроме того, вероятно, инженеры IBM нашли способ изолировать от внешних воздействий квантовую систему, которая используется в их устройстве, ведь необходимо, чтобы она сохраняла состояние квантовой когерентности достаточно длительное время, не меняя бесконтрольно своё квантовое состояние (когерентность - свойство компьютерных систем, в которых два или более процессора или ядра имеют доступ к общей области памяти).

Зачем всё это нужно?

У вас вполне может возникнуть резонный вопрос: для чего всё это вообще нужно? Дело в том, что, как полагают некоторые эксперты, использование квантового регистра для произведения расчётов, позволит значительно ускорить процесс обработки данных по сравнению с обычным регистром.

Таким образом, физическая реализация этой концепции, т.е построение квантового компьютера в виде реального физического прибора, является фундаментальной задачей современной физической науки.

Также необходимость в квантовом компьютере обусловлена надобностью проведения исследований методами физики сложных многочастичных систем, например, биологических.

Что касается целей IBM, то им это нужно, чтобы не потерять инициативу в борьбе с конкурентами на рынке инновационных технологий. Так, по словам представителей компании, со временем они выпустят онлайн-интерактивные пособия, чтобы помочь потенциальным заказчикам понять, чем квантовая система отличается от двоичной.


Что такое квантовый компьютер?

Одна из первых моделей квантового компьютера была предложена Ричардом Фейнманом в 1981 году.

Принцип действия квантового компьютера: вычислительное устройство использует явления квантовой суперпозиции и квантовой запутанности для передачи и обработки данных, а его регистр основан на использовании кубита (квантового бита) - наименьшего разряда или наименьшего элемента для хранения информации в квантовом компьютере.

Если классический процессор в каждый момент может находиться ровно в одном из состояний, то квантовый процессор в каждый момент находится одновременно во всех базисных состояниях. Это квантовое состояние называется «квантовой суперпозицией данных».

Квантовую суперпозицию можно проиллюстрировать, например, так: «Вообразите атом, который мог бы подвергнуться радиоактивному распаду в определённый промежуток времени или не подвергнуться. Мы можем ожидать, что у этого атома есть только два возможных состояния: «распад» и «не распад», но в квантовой механике у атома может быть некое объединённое состояние - «распада» - «не распада», то есть ни то, ни другое, а как бы между. Вот это состояние и называется суперпозицией».


Архитектура квантовых компьютеров

Любая классическая двухуровневая система, впрочем, как и квантовая, имеет основное (0) и не основное (1) базисные состояния. Примером классической двухуровневой системы является известный в микроэлектронике инвертор, осуществляющий операцию «НЕ»: в зависимости от того, заняты ли эти состояния с вероятностями, получаются логические состояния «0» или «1».

Таким образом, обычные компьютеры работают по принципу нулей и единиц - бинарная (двоичная) система, в которой один бит информации содержит один разряд (1 - есть ток, 0 - нет тока), а квантовые - более комплексные машины, способные обрабатывать намного больший объём информации за один бит, чем обычные компьютеры.

Совокупность квантовых приборов, используемых для построения квантовых информационных систем, можно назвать квантовой элементной базой, т.е. компьютером.

Отмечу, что по сравнению к квантовыми процессорами, элементная база современных информационных систем построена на лампах, транзисторах, фотоэлементах, являющихся классическими, в том смысле, что их параметры (ток, напряжение, излучение) являются классическими величинами (величины классической механики).

Классическая механика хорошо описывает системы макроскопических масштабов (то, с чем «имеют дело» обычные процессоры), но не способна описать все явления на уровне молекул, атомов, электронов и фотонов.

В то же время квантовая механика адекватно описывает основные свойства и поведение атомов, ионов, молекул, конденсированных сред и других систем с электронно-ядерным строением, «поведение» которых является «движущей силой» квантового процессора.


Исправление ошибок — основная проблема квантовых компьютеров

Ошибки в квантовых компьютерах можно разделить на два главных уровня. Ошибки первого уровня присущи всем компьютерам, в том числе и классическим. К таким ошибкам относится непроизвольная смена кубитов из-за внешнего шума (например: космических лучей или радиации). С этой проблемой недавно удалось справиться специалистам из компании Google. Для решения этой проблемы команда ученых во главе с Джулианом Келли создала особую квантовую схему из девяти кубитов, которые ищут ошибки в системе. Остальные кубиты отвечают за сохранность информации, таким образом, сохраняя ее дольше, нежели с использованием единичного кубита. Однако основная проблема никуда не делась, остается второй уровень ошибок.

Кубиты изначально по своей природе нестабильны, они мгновенно забывают информацию, которую вы хотите сохранить на квантовый компьютер. Под воздействием на кубит окружающей среды нарушается связь внутри квантовой системы (процесс декогеренции). Чтобы избавиться от этого, квантовый процессор нужно максимально изолировать от воздействия внешних факторов. Как это сделать? — пока остается загадкой. По словам экспертов, 99% мощности такого компьютера уйдет на исправления ошибок, и лишь 1% хватит для решения любых задач. Конечно, от ошибок не удастся избавиться полностью, но если минимизировать их до определенного уровня, квантовый компьютер сможет работать.

Кто ещё работает в этом направлении?

Платформа IBM не первый квантовый компьютер, доступный в сети для всех желающих. Так, меньше года назад, Google создала собственную лабораторию, которая занимается разработкой квантового компьютера на сверхпроводниках. Промежуточным результатом работы её специалистов стало создание онлайн-сервиса «Quantum Computing Playground», который является аналогом облака IBM.

источники




Top