Емкостные экраны в телефонах. Что такое резистивный экран

Сенсорный экран вашего телефона: резистивный, емкостный или проекционно-емкостный

Сенсорные экраны сегодня являются неотъемлемым атрибутом современного мобильного телефона, хотя массовое распространение они получили сравнительно недавно - в 2007 году. А если вы соберетесь покупать смартфон, то вряд ли найдете среди новых моделей такие, которые бы не были оснащены сенсорным экраном. Несмотря на то что приверженцы обычных аппаратных клавиатур с трудом переходят на сенсорное управление, именно сенсорных аппаратов выпускают все больше и больше. А для тех, кто ценит удобный набор текста, выпускают сенсорные телефоны в классическом формфакторе или в формфакторе бокового слайдера, которые дополнительно оснащены аппаратными QWERTY-клавиатурами.

Сенсорные телефоны и смартфоны в разных формфакторах

Часто словосочетание «сенсорный экран» заменяют другим - «тачскрин», которое представляет собой связку двух английских слов (touch - трогать, касаться и screen - экран). Мы так привыкли к сенсорным экранам, что часто не задумываемся о том, что на самом деле они могут быть разных видов. В этой статье пойдет речь о сенсорных экранах, которые используются в мобильных телефонах и смартфонах, поэтому и их классификацию мы будем рассматривать применительно к этой технике. На практике же сенсорные экраны часто используются в других мультимедийных устройствах (планшетах, мониторах и т. п.), а также в медицинском и инженерном оборудовании.

Итак, в поле нашего зрения попадают резистивные, емкостные и проекционно-емкостные экраны. Рассмотрим их достоинства и недостатки, чтобы определиться, какой же тип экрана максимально подойдет конкретно вам.

Резистивные сенсорные экраны

Экраны этого типа состоят из двух основных слоев - гибкого верхнего (преимущественно из пластика) и жесткого нижнего (из стекла). У верхнего слоя есть еще одна функция - защитная. Она оберегает рабочую область дисплея от повреждений. К верхнему слою вы прикасаетесь в процессе работы с мобильным устройством, а на нижний передается информация о координатах касания. Внутренние стороны этих слоев покрыты специальной мембраной и материалом, проводящим ток. Прослойкой между двумя слоями служит диэлектрик.

Примеры моделей с резистивными сенсорными экранами

Главное преимущество резистивных сенсорных экранов - их невысокая стоимость. Такие экраны сегодня устанавливаются производителями на множество мобильных телефонов и смартфонов среднего ценового сегмента. Именно невысокая стоимость экрана часто позволяет снизить цену таких устройств, сделав их более доступными.

Второе их достоинство - устойчивость к загрязнениям. Это значит, что даже покрытая пылью и разводами воды поверхность экрана будет работать по-прежнему хорошо, а чувствительность к нажатиям не изменится.

Третье состоит в том, что прикасаться к такому экрану можно любым твердым предметом. Это может быть стилус, ноготь пальца, кончик карандаша, ключа или любой умеренно острый предмет, который лично для вас будет удобным в работе.

Если говорить о недостатках резистивных сенсорных экранов, то первым можно назвать его невысокую долговечность. Если перевести срок службы такого экрана в количество нажатий, то это будет 1 миллион нажатий для четырехпроводных экранов и 35 миллионов нажатий для пятипроводных экранов (две наиболее распространенные разновидности резистивных сенсорных экранов). Резистивные экраны очень плохо пропускают свет (всего около 80%). Несмотря на используемый защитный слой, работу такого экрана можно довольно просто нарушить, повредив его. Пластик легко режется острыми предметами, а поверхность его не выдерживает слишком высоких температур и может расплавиться.

Популярность резистивных сенсорных экранов до сих пор очень высока. Именно они сделали сенсорные телефоны доступными и позволили вывести на рынок множество недорогих аппаратов стоимостью до $200. Из наиболее популярных в этом сегменте аппаратов можно отметить Star, 5530 XpressMusiс.

Емкостные сенсорные экраны

Экраны этого типа основаны на способности человеческого тела проводить электрический ток. Чаще всего в основе емкостного экрана лежит стеклянная подложка, на поверхность которой нанесен резистивный материал, прикрытый токопроводящей пленкой. В момент касания к экрану пальца возникает электрический ток, а специальный контроллер вычисляет координаты касания.

По точности определения координат емкостные экраны ни в чем не уступают резистивным, но при этом лучше пропускают свет (90% и более вместо 80%). Долговечность таких экранов на порядок выше - они способны выдержать до 200 миллионов нажатий. Воздействие окружающей среды на емкостные экраны меньше - в идеале они способны работать без нареканий в знойную жару и в сильный холод.

Примеры моделей с емкостными сенсорными экранами

Главным недостатком такого типа экранов является возможность их работы только под воздействием токопроводящего предмета. То есть, если вы захотите воспользоваться обычным стилусом или любым другим твердым предметом, экран на ваше касание никак не отреагирует.

Особенно сильно эта проблема проявляется зимой, когда в морозный день при ответе на важный звонок нет возможности (или желания) снять перчатку и нажать соответствующую кнопку на экране. Правда, некоторые владельцы таких телефонов уже нашли довольно оригинальный выход из этой ситуации - вместо пальцев для нажатия этой кнопки они используют... свой нос! Надо сказать, что в некоторых случаях возможно и управление рукой в перчатке - это будет зависеть от качества экрана и его чувствительности, а также материала, из которой пошита перчатка.

Еще один недостаток емкостных сенсорных экранов состоит в их высокой восприимчивости к загрязнению поверхности. Чувствительность и точность нажатий при этом могут существенно уменьшаться.

Справедливости ради стоит отметить, что уже созданы стилусы с электрической емкостью (например, такая модель есть у производителя ), но особого распространения они не получили из-за высокой стоимости (около $30).

Проекционно-емкостные сенсорные экраны

Этот тип экранов отличается от классических емкостных экранов только одним - поддерживает технологию Multitouch. Также немного усложнено их устройство, но принцип работы остался прежним. Такие экраны способны отслеживать и обрабатывать несколько нажатий одновременно, что широко используется в мобильных браузерах и игровых приложениях. Например, сделав поворот двумя пальцами, вы сможете развернуть изображение на 90 градусов, а движение нескольких пальцев упростит прокрутку содержимого экрана. Правда, стоимость экранов, выполненных по этой технологии, пока еще традиционно высока, поэтому устанавливают их на смартфоны, цена которых находится выше отметки в $300.

Работа Multitouch в действии

Преимуществ у проекционно-емкостных сенсорных экранов много - помимо поддержки Multitouch, они долговечны (около 200 миллионов касаний), устойчивы к повреждениям (в защитных целях можно использовать закаленное стекло или специальный пластик толщиной до 18 мм), выдерживают работу при очень низких температурах (до -40 °C), способны хорошо пропускать свет (свыше 90%). Недостаток у проекционно-емкостных экранов только один - управлять ими можно только с помощью токопроводящих предметов (как и в случае с обычными емкостными экранами).

Наиболее известные смартфоны с проекционно-емкостными экранами производит компания Apple, она же стала пионером в этой области. Также работающий Multitouch есть на таких моделях, как , Galaxy S II, HTC Desire S.

На чем остановить свой выбор

Если перед вами стоит вопрос выбора мобильного устройства в зависимости от типа сенсорного экрана, можете предварительно определиться с тем, какую сумму вы готовы потратить на покупку телефона или смартфона, каковы будут условия эксплуатации аппарата, согласитесь ли вы пользоваться для управления только пальцами. Если вы согласны заплатить внушительную сумму за поддержку Multitouch и нуждаетесь в современном высокопроизводительном смартфоне, выбирайте модель с проекционно-емкостным экраном. Если же вы впервые совершаете покупку телефона с сенсорным экраном и хотите сэкономить - вам подойдет резистивный экран. Он же будет лучшим решением, если вас смущает необходимость управления им исключительно пальцами или же вы часто работаете в не слишком стерильных условиях, а на поверхность экрана регулярно попадают частички грязи и пыли.

Большинство специалистов в этой области прогнозируют постепенный уход с рынка резистивных экранов, однако ассортимент моделей с такими экранами до сих пор самый большой, да и цены приятно радуют глаз и кошелек. Одновременно появляются новые версии операционных систем, которые отлично адаптированы под управление пальцами: в них отсутствуют слишком мелкие кнопки, по которым сложно попасть, а количество действий для совершения одной операции сведено к минимуму.

Ранее автор этих строк был исключительным поклонником использования резистивных дисплеев в защищенных планшетных компьютерах и . Сегодня такая уверенность начинает сменяться сомнениями. Чтобы определиться с тем, какой экран лучше, резистивный или емкостный, соберем вместе факты - их преимущества и недостатки - и поразмышляем.

Компании, разрабатывающие профессиональное электронное оборудование для использования в промышленности, логистике, армии и полиции, чаще всего отдают предпочтение резистивным экранам. Однако в последнее время появились гаджеты с емкостными экранами, обеспеченными специальной защитой. Чтобы понять, почему так происходит, сначала требуется дать определения этим технологиям.

Особенности технологий

Резистивные сенсорные экраны

Резистивный экран позволяет управлять аппаратами путем давления на поверхность любым предметом – , пальцем (в том числе в перчатке) или карандашом. Такой дисплей состоит из двух гибких слоев с воздушной прослойкой. При давлении на верхний слой он контактирует с нижним, и регистрирует точное местоположение давления.

Емкостные сенсорные экраны

Емкостный экран позволяет управлять гаджетом благодаря проводимости кожи - путем касания пальца. Поэтому он не использует давление и более отзывчив, чем резистивный дисплей. При этом существует ограничение – емкостной экран может управляться только тем предметом, который имеет такую проводимость. Это может быть не только палец, но и специальный стилус с проводящей иглой.

Использование резистивного и емкостного экранов

Как уже говорилось, традиционно профессиональные разработчики используют резистивные экраны, которыми можно управлять в сложных погодных условиях любым предметом. Так же резистивная технология предполагает наличие большего по сравнению с емкостной технологией количества чувствительных датчиков на квадратный сантиметр, поэтому на дисплее могут отражаться даже самые маленькие значки, на которые можно нажимать иголкой.

К слову сказать, ОС Windows Mobile учитывает данную особенность, и разрабатывалась специально под резистивные экраны. Такие экраны менее чувствительны к случайным прикосновениям, в том числе к попаданию капель дождя. Но, с другой стороны, многие разработчики начинают создавать программное обеспечение исключительно под современные емкостные дисплеи. Скоро это может стать проблемой устройств с резистивными дисплеями.

Считается так же, что резистивная технология стоит дешевле емкостной. До последнего времени это было действительно так, пока емкостные экраны не стали производиться многомиллионными тиражами что, соответственно, уменьшило их стоимость.

Стоит отметить, что дисплей является наиболее уязвимой частью защищенных коммуникаторов и . В смысле надежности емкостные экраны более предпочтительны. Они характеризуются большей производительностью в любых условиях, в том время как иногда резистивные модели отказывают в случае, если их нести вниз стеклом. Они перестают реагировать на касания, в отличие от емкостных моделей, у которых нет такой проблемы.

Если емкостный дисплей сломан (например, пробит), он способен исполнять свою функцию и дальше, в то время как резистивный чаще всего полностью выходит из строя. То есть полевой работник с емкостным дисплеем сможет продолжать работу, а с резистивным – будет вынужден ее закончить.

Стоит так же упомянуть о возможности многопальцевого ввода. В отличие от емкостных моделей резистивные не поддерживают мультитач в большом объеме. В некоторых случаях это может сказаться на производительности и успешном выполнении спецзадач.

Вывод.

Если свести все указанные данные в единое целое, можно сказать, что емкостные сенсорные экраны не только более удобны в работе, но и более надежны и продуктивны. Единственное, о чем следует позаботиться разработчикам – об их укреплении (например, химическим стеклом). Кроме того, остается проблема использования в перчатках и предметами, не предназначенными для управления, так как необходимость в применении подручных средств в полевых условиях является вполне вероятной.

То есть, если вам нужна большая производительность и гарантированная работа после появления трещин и пробоев – лучше использовать емкостный дисплей. С другой стороны, в случае необходимости использовать или работать под дождем, преимущество остается за резистивным дисплеем. Кроме того, сегодня все еще большинство специализированных программ для профессиональных защищенных устройств ориентировано под Windows Embedded, хотя намечается тенденция сдвига в сторону Android.

Устройство ввода информации, представляющее собой экран, реагирующий на прикосновения к нему. Существует множество разных типов сенсорных экранов, которые работают на разных физических принципах. Но мы рассмотрим лишь те которые встречаются в мобильных телефонах и другой переносной технике.

Принцип работы резистивных сенсорных экранов

Резистивные сенсорные экраны бывают двух видов, четырехпроводные и пятипроводные. Рассмотрим принцип работы каждого из типов в отдельности.

Четырёхпроводной резистривный экран

Принцип действия 4-проводного резистивного сенсорного экрана

Резистивный сенсорный экран состоит из стеклянной панели и гибкой пластиковой мембраны. И на панель, и на мембрану нанесено резистивное покрытие. Пространство между стеклом и мембраной заполнено микроизоляторами, которые равномерно распределены по активной области экрана и надёжно изолируют проводящие поверхности. Когда на экран нажимают, панель и мембрана замыкаются, и контроллер с помощью аналогово-цифрового преобразователя регистрирует изменение сопротивления и преобразует его в координаты прикосновения (X и Y). В общих чертах алгоритм считывания таков:

  1. На верхний электрод подаётся напряжение +5В, нижний заземляется. Левый с правым соединяются накоротко и проверяется напряжение на них. Это напряжение соответствует Y-координате экрана.
  2. Аналогично на левый и правый электрод подаётся +5В и «земля», с верхнего и нижнего считывается X-координата.

Пятипроводной резистивный экран

Пятипроводной экран более надёжен за счёт того, что резистивное покрытие на мембране заменено проводящим (5-проводной экран продолжает работать даже с прорезанной мембраной). На заднем стекле нанесено резистивное покрытие с четырьмя электродами по углам.

Принцип действия 5-проводного резистивного сенсорного экрана

Изначально все четыре электрода заземлены, а мембрана «подтянута» резистором к +5В. Уровень напряжения на мембране постоянно отслеживается аналогово-цифровым преобразователем . Когда ничто не касается сенсорного экрана, напряжение равно 5 В.

Как только на экран нажимают, микропроцессор улавливает изменение напряжения мембраны и начинает вычислять координаты касания следующим образом:

  1. На два правых электрода подаётся напряжение +5В, левые заземляются. Напряжение на экране соответствует X-координате.
  2. Y-координата считывается подключением к +5В обоих верхних электродов и к «земле» обоих нижних.

Принцип работы емкостных сенсорных экранов

Ёмкостный (или поверхностно-ёмкостный) экран использует тот факт, что предмет большой ёмкости проводит переменный ток.

Принцип действия ёмкостного сенсорного экрана

Ёмкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом (обычно применяется сплав оксида индия и оксида олова ). Электроды, расположенные по углам экрана, подают на проводящий слой небольшое переменное напряжение (одинаковое для всех углов). При касании экрана пальцем или другим проводящим предметом появляется утечка тока. При этом чем ближе палец к электроду, тем меньше сопротивление экрана, а значит, сила тока больше. Ток во всех четырёх углах регистрируется датчиками и передаётся в контроллер, вычисляющий координаты точки касания.

В более ранних моделях ёмкостных экранов применялся постоянный ток - это упрощало конструкцию, но при плохом контакте пользователя с землёй приводило к сбоям.

Ёмкостные сенсорные экраны надёжны, порядка 200 млн нажатий (около 6 с половиной лет нажатий с промежутком в одну секунду), не пропускают жидкости и отлично терпят не проводящие загрязнения. Прозрачность на уровне 90 %. Впрочем, проводящее покрытие всё ещё уязвимо. Поэтому ёмкостные экраны широко применяются в автоматах, установленных в охраняемом помещении. Не реагируют на руку в перчатке.

Принцип работы проекционно-емкостных сенсорных экранов

На внутренней стороне экрана нанесена сетка электродов. Электрод вместе с телом человека образует конденсатор ; электроника измеряет ёмкость этого конденсатора (подаёт импульс тока и измеряет напряжение).

Принцип действия проекционно-ёмкостного сенсорного экрана

Прозрачность таких экранов до 90 %, температурный диапазон чрезвычайно широк. Очень долговечны (узкое место - сложная электроника, обрабатывающая нажатия). На ПЁЭ может применяться стекло толщиной вплоть до 18 мм, что приводит к крайней вандалоустойчивости. На непроводящие загрязнения не реагируют, проводящие легко подавляются программными методами. Поэтому проекционно-ёмкостные сенсорные экраны применяются в автоматах, устанавливаемых на улице. Многие модели реагируют на руку в перчатке. В современных моделях конструкторы добились очень высокой точности - правда, вандалоустойчивые исполнения менее точны.

ПЁЭ реагируют даже на приближение руки - порог срабатывания устанавливается программно. Отличают нажатие рукой от нажатия проводящим пером. В некоторых моделях поддерживается мультитач . Поэтому такая технология применяется в тачпадах и мультитач-экранах.

Стоит заметить, что из-за различий в терминологии часто путают поверхностно- и проекционно-ёмкостные экраны. По классификации, применённой в данной статье, экран iPhone является проекционно-ёмкостным.

Заключение

Каждый из видов сенсорных экранов имеет свои преимущества и недостатки, для наглядности рассмотрим таблицу.

Резистивный 4-х проводной Резистивный 5-ти проводной Емкостной Проекционно-емкостной
Функциональность
Рука в перчатке Да Да Нет Да
Твёрдый проводящий предмет Да Да Да Да
Твёрдый непроводящий предмет Да Да Нет Нет
Мультитач Нет Да Да Да
Измерение силы нажатия Нет Нет Нет Да
Предельная прозрачность, % 75 85 90 90
Точность Выс Выс Выс Выс
Надёжность
Срок жизни, млн. нажатий 10 35 200
Защита от грязи и жидкостей Да Да Да Да
Устойчивость к вандализму Нет Нет Нет Да

Статья написана по материалам сайта

Экраны современных устройств могут не только выводить изображение, но и позволяют взаимодействовать с устройством посредством сенсоров.

Изначально сенсорные экраны применялись в некоторых карманных компьютерах, а на сегодняшний день сенсорные экраны находят широкое применение в мобильных устройствах, плеерах, фото и видеокамерах, информационных киосках и так далее. При этом в каждом из перечисленных устройств может применяться тот или иной тип сенсорного экрана. В настоящее время разработано несколько типов сенсорных панелей, и, соответственно, каждая из них обладает своими достоинствами и недостатками. В данной статье мы как раз и рассмотрим, какие же бывают типы сенсорных экранов, их достоинства и недостатки, какой тип сенсорного экрана лучше.

Существует четыре основных типа сенсорных экранов: резистивные, емкостные, с определением поверхностно-акустических волн и инфракрасные . В мобильных же устройствах наибольшее распространение получили только два: резистивные и емкостные . Основным их отличием является тот факт, что резистивные экраны распознают нажатие, а емкостные – касание.

Резистивные сенсорные экраны

Данная технология получила наибольшее распространение среди мобильных устройств, что объясняется простотой технологии и низкой себестоимостью производства. Резистивный экран представляет собой LCD дисплей, на который наложены две прозрачные пластины, разделенные слоем диэлектрика. Верхняя пластина гибкая, так как на нее нажимает пользователь, нижняя же жестко закреплена на экране. На обращенные друг другу поверхности нанесены проводники.

Резистивный сенсорный экран

Микроконтроллер подает напряжение последовательно на электроды верхней и нижней пластины. При нажатии на экран гибкий верхний слой прогибается, и его внутренняя проводящая поверхность касается нижнего проводящего слоя, изменяя тем самым сопротивление всей системы. Изменение сопротивления фиксируется микроконтроллером и таким образом определяются координаты точки касания.

Из плюсов резистивных экранов можно отметить простоту и малую стоимость, неплохую чувствительность, а также возможность нажимать на экран как пальцем, так и любым предметом. Из минусов необходимо отметить плохое светопропускание (в результате приходится использовать более яркую подсветку), плохая поддержка множественных нажатий (multi-touch), не могут определять силу нажатия, а также довольно быстрый механический износ, хотя в сравнении со временем жизни телефона, этот недостаток не так уж и важен, так как обычно быстрее телефон выходит из строя, чем сенсорный экран.

Применение : сотовые телефоны, КПК, смартфоны, коммуникаторы, POS-терминалы, TabletPC, медицинское оборудование.

Емкостные сенсорные экраны

Емкостные сенсорные экраны делятся на два типа: поверхностно-емкостные и проекционно-емкостные . Поверхностно-емкостные сенсорные экраны представляют собой стекло, на поверхность которого нанесено тонкое прозрачное проводящее покрытие, поверх которого нанесено защитное покрытие. По краям стекла расположены печатные электроды, которые подают на проводящее покрытие низковольтное переменное напряжение.

Поверхностно-емкостной сенсорный экран

При касании экрана образуется импульс тока в точке контакта, величина которого пропорциональна расстоянию из каждого угла экрана до точки касания, таким образом, вычислить координаты места касания контроллеру достаточно просто, сравнить эти токи. Из достоинств поверхностно-емкостных экранов можно отметить: хорошее светопропускание, малое время отклика и большой ресурс касаний. Из недостатков: размещенные по бокам электроды плохо подходят для мобильных устройств, требовательны к внешней температуре, не поддерживают multi-touch, касаться можно пальцами или специальным стилусом, не могут определять силу нажатия.

Применение : информационные киоски в охраняемых помещениях, в некоторых банкоматах.

Проекционно-емкостные сенсорные экраны представляют собой стекло с нанесенными на него горизонтальными ведущими линиями проводящего материала и вертикальными определяющими линиями проводящего материала, разделенные слоем диэлектрика.

Проекционно-емкостной сенсорный экран

Работает такой экран следующим образом: на каждый из электродов в проводящем материале микроконтроллером последовательно подается напряжение и измеряется амплитуда возникающего в результате импульса тока. По мере приближения пальца к экрану емкость электродов, находящихся под пальцем, изменяется, и таким образом контроллер определяет место касания, то есть координаты касания – это пересекающиеся электроды с возросшей емкостью.

Достоинством проекционно-емкостных сенсорных экранов является быстрая скорость отклика на касание, поддержка multi-touch, более точное определение координат по сравнению с резистивными экранами и определение силы нажатия. Поэтому эти экраны в большей степени используются в таких устройствах, как iPhone и iPad. Также стоит отметить большую надежность этих экранов и, как следствие, больший срок работы. Из недостатков можно отметить, что на таких экранах касаться можно только пальцами (рисовать или писать от руки пальцами очень неудобно) или специальным стилусом.

Применение : платежные терминалы, банкоматы, электронные киоски на улицах, touchpads ноутбуков, iPhone, iPad, коммуникаторы и так далее.

Сенсорные экраны ПАВ (поверхностно-акустические волны)

Состав и принцип работы данного типа экранов следующий: по углам экрана размещены пьезоэлементы, которые преобразуют подаваемый на них электрический сигнал в ультразвуковые волны и направляют эти волны вдоль поверхности экрана. Вдоль краев одной стороны экрана распределены отражатели, которые распределяют ультразвуковые волны по всему экрану. На противоположных от отражателей краях экрана расположены сенсоры, которые фокусируют ультразвуковые волны и передают их далее на преобразователь, который в свою очередь преобразует ультразвуковую волну обратно в электрический сигнал. Таким образом, для контроллера экран представляется в виде цифровой матрицы, каждое значение которой соответствует определенной точке поверхности экрана. При касании пальцем экрана в любой точке происходит поглощение волн, и в результате общая картина распространения ультразвуковых волн изменяется и в результате преобразователь выдает более слабый электрический сигнал, который сравнивается с хранящейся в памяти цифровой матрицей экрана, и таким образом вычисляются координаты касания экрана.

Сенсорный экран ПАВ

Из достоинств можно отметить высокую прозрачность, так как экран не содержит проводящих поверхностей, долговечность (до 50 млн. касаний), а также сенсорные экраны ПАВ позволяют определять не только координаты нажатия, но и силу нажатия.

Из недостатков можно отметить более низкую точность определения координат, чем у емкостных, то есть рисовать на таких экранах не получится. Большим недостатком являются сбои в работе при воздействии акустических шумов, вибраций или при загрязнении экрана, т.е. любая грязь на экране блокирует его работу. Также данные экраны корректно работают только с предметами, поглощающими акустические волны.

Применение : сенсорные экраны ПАВ в основном в охраняемых информационных киосках, в образовательных учреждениях, в игровых автоматах и так далее.

Инфракрасные сенсорные экраны

Устройство и принцип работы инфракрасных сенсорных экранов довольно простой. Вдоль двух прилегающих друг к другу сторон сенсорного экрана расположены светодиоды, излучающие инфракрасные лучи. А на противоположной стороне экрана расположены фототранзисторы, которые принимают инфракрасные лучи. Таким образом, весь экран покрыт невидимой сеткой пересекающихся инфракрасных лучей, и если коснуться экрана пальцем, то лучи перекрываются и не попадают на фототранзисторы, что немедленно регистрируется контроллером, и таким образом определяются координаты касания.

Инфракрасный сенсорный экран

Применение : инфракрасные сенсорные экраны используются в основном в информационных киосках, торговых автоматах, в медицинском оборудовании и т.д.

Из достоинств можно отметить высокую прозрачность экрана, долговечность, простоту и ремонтопригодность схемы. Из недостатков: боятся грязи (поэтому используются только в помещении), не могут определять силу нажатия, средняя точность определения координат.

P.S. Итак, мы рассмотрели основные типы наиболее распространенных сенсорных технологий (хотя есть еще и менее распространенные, такие, как оптические, тензометрические, индукционные и так далее). Из всех этих технологий наибольшее распространение в мобильных устройствах получили резистивные и емкостные, так как обладают высокой точностью определения точки касания. Из них наилучшими характеристиками обладают проекционно-емкостные сенсорные экраны.

Текст подготовлен по материалам из открытых источников методистами по Технологии Карабиным А.С., Л.В. Гаврик, С.В. Усачёвым

18.01.2011

Чем отличаются ёмкостные экраны, используемые в iPhone и других современных мобильных устройствах, от других видов сенсорных дисплеев? И за ними ли будущее?

Неоднократно убеждался в том, что обычные пользователи решительно не подозревают о существовании разных типов сенсорных экранов и с неподдельным изумлением узнают, что отсутствие реакции дисплея свежекупленного коммуникатора на привычные тыканья карандашом вовсе не есть признак неисправности. Просто это другой экран, построенный на другой технологии. Даже некоторые продавцы путаются в показаниях, приписывая дисплеям одного типа свойства других. Так что сначала мы проведём краткий ликбез, после которого вы сможете отличать экраны разных типов буквально на ощупь. А потом поговорим о том, за которым из них будущее.

В современных мобильных устройствах - смартфонах, коммуникаторах, плеерах - используются сенсорные экраны двух типов: резистивные и ёмкостные . При этом более 90% всех сенсорных дисплеев сегодня относятся к резистивному типу, хотя уже явно наметилась тенденция к увеличению доли ёмкостных экранов.

Чтобы перестать путаться, достаточно запомнить: резистивные экраны чувствительны к нажатию, а ёмкостные - к касанию. Эта разница обусловлена конструкцией дисплеев, и приучить, например, ёмкостной экран к распознаванию нажатий карандашом невозможно в принципе.

Резистивный экран представляет собой стеклянный жидкокристаллический дисплей, на который наложена гибкая мембрана. На соприкасающиеся стороны нанесён резистивный состав, а пространство между плоскостями разделено диэлектриком. По краям пластин закреплены электроды (четыре или восемь, пять или шесть и семь). Несложно догадаться, что при нажатии экран и мембрана соприкасаются в месте нажатия, координаты которого вычисляются путём последовательной подачи тока на верхнюю и нижнюю пластины и замеров напряжения в точке касания пластин. Именно поэтому на такой экран можно нажимать любым твёрдым предметом - от ногтя и стилуса до карандаша или спички, и он сработает.

В силу конструкции резистивные экраны и, особенно, их токопроводящий слой подвержены постепенному износу, из-за чего и возникает необходимость в периодической калибровке экрана. Самые простые и дешёвые четырёхэлектродные экраны выдерживают всего 3 миллиона нажатий в одну точку. В несколько раз надёжнее - до 35 миллионов нажатий - пятипроводные, где четыре электрода расположены на экране пластине, а пятый - на мембране, покрытой токопроводящим составом и выступающей в одной только функции своего рода "щупа". Кроме того, пятипроводные и его модификации 6-ти и 7-проводный экраны продолжают работать даже при повреждении части мембраны.

К недостаткам резистивных экранов относится также низкое светопропускание - не более 70-85%, из-за чего требуется повышенная яркость подсветки. Зато эти экраны предельно дёшевы в производстве, чем и объясняется их широкое распространение.

Ёмкостный сенсорный экран в общем случае представляет собой стеклянную панель, на которую нанесён слой прозрачного резистивного материала. По углам панели установлены электроды, подающие на проводящий слой низковольтное переменное напряжение. Поскольку тело человека способно проводить электрический ток и обладает некоторой ёмкостью, при касании экрана в системе появляется утечка. Место этой утечки, то есть точку касания, определяет простейший контроллер на основе данных с электродов по углам панели.

На экране нет никаких гибких мембран, что обеспечивает высокую надёжность и позволяет снизить яркость подсветки. К сожалению, в них нельзя тыкать стилусом или ногтем, поскольку команда просто не будет распознана. Только пальцем. Отрицательных температур такой экран тоже не любит: в лучшем случае падает точность определения координат, в худшем он просто перестаёт реагировать.

К сожалению, на простейшем ёмкостном экране, который сейчас ставят в самые дешёвые "сенсорные" телефоны, невозможно организовать модный "многопальцевый" интерфейс мультитач - четыре электрода по углам способны фиксировать только одно нажатие в каждый момент времени. От этого недостатка свободны проекционно-ёмкостные дисплеи, в которых на обратную сторону экрана нанесена целая сетка проводников (или ряды электродов), на которые подаётся слабый ток, а место касания определяется по точкам с повышенной ёмкостью. К слову, такие экраны способны реагировать даже на приближение руки (а значит, и на руку в перчатках) - всё зависит от настроек чувствительности.

Многие специалисты не без оснований считают, что резистивные экраны - это вчерашний день, а будущее за ёмкостными. И действительно, один только переход от системы механико-электрического ввода к чисто электрической - это, безусловно, прогресс. Выросла надёжность, точность определения координат, пропала необходимость в калибровке, появился "многопальцевый" интерфейс.

Отказ от резистивных дисплеев стимулировал развитие действительно удобных пользовательских интерфейсов, оптимизированных для управления при помощи пальцев. В современных коммуникаторах уже не надо целиться щепкой в микроскопические элементы интерфейса, перешедшие по наследству от "больших" операционных систем. Обратите внимание, новейшая Windows Phone 7 абсолютно ничем не похожа на всё остальное семейство "мобильных окошек" предыдущих поколений, в которых без крохотного пера делать было нечего.

Скептики заметят, что на ёмкостном экране уже не порисуешь обычным пластмассовым стилусом или каким-то случайным предметом, не запишешь памятку от руки. Для этого придётся покупать специальный стилус, обладающий электрической ёмкостью. HTC даже запатентовала такой ёмкостный стилус и просит за него порядка 30 долларов. Но часто ли мы рисуем на телефоне или пользуемся рукописным вводом? Как принято выражаться в определённых кругах, чуть реже, чем никогда. А в сенсорных планшетах для рисования используются совсем другие технологии, и они никуда не денутся.

Единственная причина, по которой резистивные экраны до сих пор занимают львиную долю рынка, заключается в их исключительной дешевизне. К тому же за несколько лет все крупнейшие вендоры умудрились навыпускать такое количество самых разнообразных и совсем не дешёвых трубок с резистивными дисплеями, что для них было бы смерти подобно взять и разом записать их в категорию морально устаревших. В любом случае, аппаратов с ёмкостными экранами будет становиться всё больше, а с резистивными - всё меньше. Через несколько лет мы даже и не вспомним, что когда-то тыкали в экран смартфонов специальными тоненькими щепками.




Top