Что нужно знать о Ni-MH аккумуляторах

Купил на Али кучку держателей для аккумуляторов (или просто батареек) формата АА… Вещь бывает нужна в хозяйстве, тем более, если собираешь или ремонтируешь какие-либо электронные приборы или гаджеты. Собственно больше то и писать о них было бы нечего (ну только оценить сопротивление контактов, померить длину проводков и оценить на зуб и глаз пластмассу - что будет в обзоре), но наткнулся на одну статью в интернете и родилась идея проверить, можно ли восстановить емкость отработавших свой срок NiCd и NiMh аккумуляторов, которых накопилось в хозяйстве, и выбросить их просто на свалку рука не поднимается, т.к такие элементы нужно сдавать на утилизацию… Что из этого получилось, и вообще получилось ли… Можно узнать прочитав обзор…
Внимание - много фото, трафик!!!

Вот собственно, сама статья, которую я упоминал в оглавлении обзора…


Начал искать еще информацию про восстановление утративших емкость NiCd и NiMh АКБ и поиск привел меня на занимательную статью на английском, которую вы сможете прочитать пройдя по ссылке: Не знающие английский могут воспользоваться возможностями автоматического перевода на русский системой Google. Из статьи я вынес главное, что элементы NiCd и NiMh имеют память (у NiCd это очень выражено, у NiMh менее выражено, но все же эффект имеет место), и что бы продлить жизнь им, необходимо разряжать, до определенного напряжения перед зарядкой.


Наверное многие знают об этом, что производитель рекомендует разряжать аккумуляторы до остаточного напряжения 0.9-1В, а только потом ставить на зарядку. Но часто это игнорируется и со временем элементы теряют емкость, в них образуются кристаллы солей кадмия и никеля. И что бы их, хотя бы частично, разбить, нужно разряжать аккумуляторы небольшим током до остаточного напряжения 0.4-0.5В…

Кстати, немного о том, как устроен аккумулятор: Основу любого аккумулятора составляют положительный и отрицательный электроды. Разберем на основе NiCd аккумулятора. Положительный электрод (катод) содержит гидрооксид никеля NiOOH с графитовым порошком (5-8%), а отрицательный (анод) - металлический кадмий Cd в виде порошка.


Аккумуляторы этого типа часто называют рулонными, так как электроды скатаны в цилиндр (рулон) вместе с разделяющим слоем, помещены в металлический корпус и залиты электролитом. Разделитель (сепаратор), увлажненный электролитом, изолирует пластины друг от друга. Он изготавливается из нетканого материала, который должен быть устойчив к воздействию щелочи. Электролитом чаще всего выступает гидрооксид калия KOH с добавкой гидроксида лития LiOH, способствующего образованию никелатов лития и увеличения емкости на 20%.

Никель-металлогидридные аккумуляторы по своей конструкции являются аналогами никель-кадмиевых аккумуляторов, а по электрохимическим процессам - никель-водородных аккумуляторов. Удельная энергия Ni-MH-аккумулятора значительно выше удельной энергии Ni-Cd- и Ni-Н2-аккумуляторов
Аккумулятор NiMh (Никель-металлогидридный), устроен почти так же как NiCd:


Положительный и отрицательный электроды, разделенные сепаратором, свернуты в виде рулона, который вставлен в корпус и закрыт герметизирующей крышкой с прокладкой. Крышка имеет предохранительный клапан, срабатывающий при давлении 2-4 МПа в случае сбоя при эксплуатации аккумулятора.

Вооружившись знаниями, я решил попробовать собрать нечто подобное как в статье «Автоматическая разряжалка», и на практике проверить поможет это или нет, восстановить, хотя бы частично, утратившие емкость аккумуляторы… Собрал такое тестовое устройство по схеме приведенной в статье. В статье в качестве индикации была применена лампочка на 1В 75мА, уж не знаю где автор нашел такую. Так же в статье было предложено использовать светодиод, но эта идея не пройдет, поскольку все светодиоды при 1-1.5В не светят… Потому в качестве индикатора был применен амперметр…

Начальный ток разрядки свежезаряженной АКБ составляет 250мА, и постепенно падает. При остаточном напряжении в 1В, ток разряда снижается до 30-40мА, как раз примерно такой ток и нужен, что бы попытаться разбить кристаллы «шлака» в аккумуляторе…
Провел небольшое тестирования «убитого» радиотелефоном Ni-Mh аккумулятора формата ААА, всего было проведено 4 цикла заряда-разряда. Тестирование проводилось таким образом: Аккумулятор был разряжен до рекомендуемого производителем напряжения в 1В и был полностью заряжен при помощи автоматического Зарядного устройства Soshine (спасибо китайцам)

Зарядное устройство считает количество «закаченного» в АКБ заряда, конечно это неправильный способ оценки емкости, т.к нужно измерять емкость АКБ при разряде, а не заряде (в дальнейшем будем измерять емкость правильно), но косвенно можно судить, изменяется или нет емкость «убитого» аккумулятора…

Лирическое отступление

Кстати, на Муське, многие авторы этим «грешат», измеряя емкость аккумуляторов при помощи всеми любимого, «белого доктора»… Измерив «вдуваемый» в аккумулятор заряд, с важным видом рассуждают о емкости батареи, не учитывая, что не всё «вдутое» можно «выдуть» назад, а так же многочисленные потери энергии на саморазряд, нагрев батареи и т.п. Любой обзор девайса имеющего USB порт, считается не полным, если в нем нет фотографии «белого доктора». Китайцы вероятно обогатились на продажах этих супер-устройств для тестирования...))))


Полностью заряженный аккумулятор взял 480мА/ч «заряда» и был поставлен на разрядку в изготовленное разрядное устройство… Отсечка разрядки произошла при остаточном напряжении АКБ при 0.5В… Это значение зависит от параметров транзисторов, использованных в разрядном устройстве… Цикл Заряда-Разряда повторяли 4 раза… Результаты предварительного тестирования привожу ниже:

1- заряд - 680мА/ч

2- заряд - 726мА/ч

3- заряд - 737мА/ч

4- заряд - 814мА/ч

Что ж мы видим положительную динамику… По крайней мере, в аккумулятор входит все больше «заряда», но к сожалению это только косвенная оценка емкости, а что бы оценить точно, нужно разряжать аккумулятор измеряя емкость…
Чем мы и займемся далее))))
Для правильной оценки емкости аккумуляторов было заказано новое Зарядно-разрядное устройство ВМ200 в у китайцев… Оно способно разряжать АКБ и измерять емкость, это будет намного точнее…

Поскольку можно сразу же тестировать 4 АКБ, было решено переделать разряжалку, и сделать её тоже 4-х канальной. Зарядно-разрядное устройство ВМ200 конечно способно самостоятельно разряжать АКБ, но делает она это до остаточного напряжения 0.9В, а это мало, мне необходимо разрядить каждый элемент до 0.4В, потому была найдена схема другого разряжающего устройства в интернете

Я перевел эту схему на современные элементы и размножил до 4-х каналов…
Получилось вот такое разрядное устройство:




Поскольку во всех 4-х каналах, я выставляю одинаковое напряжение отсечки компараторов, то обошелся одним стабилитроном и одним построечным резистором на все четыре канала…
Для желающих повторить, даю ссылку на печатную плату, на ней все элементы подписаны

Вот тут-то мы и дошли до наших держателей для АКБ или батареек… Мне нужно было 4 шт, остальные уйдут «про запас»… Как обычно ссылка уже идет в «никуда», потому я поставил в заголовке аналогичный товар у другого продавца. Под спойлером прикладываю скриншот заказа, а то не поверят, что я заказываю запчасти у китайцев…))))

Скрин заказа


Пока ко мне на всех парáх, на рикшах китайцы, в поте лица, везут мои 2 посылки, позволю себе короткое лирическое отступление… Обязательно найдутся пару читателей «муськи», которые скажут, что я занимаюсь фигней, тем более изготавливая печатные платы, и вообще надо не париться, а просто выкидывать отслужившие аккумуляторы… Возможно, это и правильно, но у каждого свой путь, кто-то водку пьет, кто-то в баню ходит, ну а мне нравится что-то созидать, пусть даже это кажется кому-то бессмысленным… Главное, что мне это нравится, ну а вам я желаю просто хорошо отдохнуть, читая мой обзор, может быть узнать что-то новое и обсудить это в комментариях, только не доводите споры до «холивара»…)))
Пока ждал посылку, сделал модуль индикации, вместо вольтметра для первого варианта платы, что на двух транзисторах…

развлекаюсь под спойлером

Это все сделано на микросхеме LM3914, практически по типовой схеме с даташита. Питание 5В от какой-то зарядки сотового телефона… На плате есть перемычка, которой можно переключать микросхему из режима «Точка», в режим «Столбик» и обратно…

обратная сторона


Когда горит один красный светодиод, напряжение на АКБ, равно 0.2В, когда горит весь столбик - значит на АКБ 1.2В. Каждый потухший светодиод сообщает, что напряжение на АКБ упало еще на 0.1В… Удобно использовать эту плату в виде вольтметра индикатора с довольно высокой точностью...

Наконец то обе посылки пришли, я не буду описывать распаковку, взвешивание, измерение размеров, ибо и так понятно, что держатели батареек формата АА, чуть больше самих батареек… Вот общий вид держателя.


Пластмасса упругая, держит аккумулятор хорошо, более того, довольно сложно пальцами вытащить батарейку, приходится поддевать каким-либо тонким предметом, отверткой, например.
Проверим сопротивление пружинного контакта. 2 миллиОма…


Длина проводов (красного и черного) около 15 см.

Настроим теперь напряжение отсечки компараторов, это можно сделать на любом канале из четырех. И проверим ток которым будут разряжаться наши аккумуляторы… Подаем на разрядное устройство 5В с какого то источника питания от сотового телефона. Видим что все светодиоды горят. Зеленый сигнализирует, что подключено питание, а красные 4 светодиода нам сообщают, что все компараторы находятся в закрытом состоянии, и разряд не происходит.

Описание процесса настройки и фотографии под спойлером

Присоединяем к первому каналу лабораторный блок питания и даем 1.2В - это напряжение полностью заряженного аккумулятора… Видим, что началась разрядка током 70мА (справа точный амперметр имеющий 4 разряда после запятой)


Обратите внимание, что светодиод первого канала потух, сигнализируя, что началась разрядка в этом канале…


При напряжении на аккумуляторе в 0.5В ток разряда составляет 40мА, в принципе как раз примерно такой ток нам и нужен для успешного разбиения образовавшихся кристаллов…


При напряжении 0.4В компаратор закрывается и разрядка на этом окончена. Обратите внимание, что ток на амперметре стал нулевой


При помощи кримпера (не дешевый, профессиональный, куплен на Али), обжимаем провода в специальные наконечники для разъемов


Получается вот такой обжатый наконечник… Приятно работать профессиональным инструментом, хотя он и не дешев, но удобство и результат стоят того.

Ну что же… все готово, отбираем кандидатов на восстановление емкости. Под номерами 1 и 2 идут NiMh аккумуляторы от электробритвы «Panasonic» изначальная емкость не известна. После 3 лет работы в электробритве полностью заряженных аккумуляторов не стало хватать на один сеанс бритья. Под номерами 3 и 4 NiCd аккумуляторы, изначальная емкость 600мА, отработали свое в электрокардиографе…
Поскольку аккумуляторы долго лежали без использования, сначало необходимо их «взбодрить», это можно сделать на Зарядном устройстве ВМ200 выбрав режим Gharge-Refresh - зарядное устройство проведет 3 цикла разрядки до 0.9В, а затем полная зарядка и так 3 раза. При этом емкость незначительно повышается. Таким образом мы исключим погрешность, незначительного повышения емкости, которая добавится после нескольких циклов «тренировки» долго лежащих без работы аккумуляторов. Тренировка была проведена, по времени заняло примерно 36 часов

Теперь можно приступить к процессу восстановления…


Вставляем все аккумуляторы в зарядное устройство, выбираем режим «Зарядка-Тест»… и ждем… После полной зарядки током 200мА, ЗУ разрядит аккумуляторы до 0.9В током 100мА и посчитает отданную емкость. Будем оперировать ей, как начальной емкостью до восстановления.


Вот под утро зарядное устройство выдало посчитанную емкость аккумуляторов, её будем использовать как начальные значения, Никель-Кадмиевые аккумуляторы потеряли половину своей начальной емкости, Никель-металлогидридные, не известно сколько имели емкости изначально, подозреваю, где-то 1200мАч, но это не важно, нам главное динамика и восстановление емкости.


Ставим все аккумуляторы в разрядное устройство, видим, что все красные светодиоды потухли, во всех четырех каналах началась разрядка аккумуляторов. При постижении остаточного напряжения 0.4В на каждом аккумуляторе, компараторы закроются, и красные светодиоды зажгутся, сигнализируя об окончании разрядки. Это может занять много времени…


Пришел с работы, на разрядном устройстве горят все 4 красных светодиода. На всякий случай замерил вольтметром остаточное напряжение на всех аккумуляторах. Примерно 0.4В на каждом…

Ну что же, начинаем повторять цикл разрядки-зарядки. Долго-нудно, день-ночь. Все тестирование заняло 4 суток. На дисплее ЗУ ВМ200 видна положительная динамика, все больше и больше заряда «входит» в аккумуляторы… Видно что метод работает...)))))


Но точки над i расставит заключительное тестирование емкости аккумуляторов при разряде.
5 циклов зарядки-разрядки прошли… Ставим аккумуляторы на определение емкости, это режим «Gharge-Test»… Ну и вот окончательный результат - вердикт…


Как мы видим, емкость какой была, такой и осталась… Чуда не произошло, хотя все говорило, что аккумуляторы восстанавливаются, т.к. растет «закачиваемая» емкость… Но увы…
На этом месте Муськовчане, имеющие гуманитарное образование, опечалено закрыли обзор и поставили мне жирный минус… Муськовчане, имеющие инженерное образование, похихикали и подумали, что законы физики, химии, старость и старуху с косой никто еще не обманул… И они об этом заранее знали… Но… Есть одно небольшое НО…
Как вы помните, я ранее писал про восстановление аккумуляторов формата ААА от радио телефона, в начале статьи… Аккумуляторы отработали 2 года, и перестали держать заряд. Если снять телефон с зарядки, через 10-15 минут на экране мигал значок разряженной батарейки, и требовал поставить телефон на зарядку. Если его требование игнорировалось, то телефон просто отключался. Это было примерно год назад. После 4-х циклов разряда-заряда, я опять поставил аккумуляторы в телефон, и они уже год как работают в нем, пусть ставить на зарядку телефон приходится немного чаще, чем с новыми аккумуляторами, НО!!! Телефон нормально работает год с восстановленными аккумуляторами!!! Почему и как, я не знаю… Но факт остается фактом…
Теперь вернем заряженные аккумуляторы в бритву «Panasonic»… До восстановления аккумуляторов хватало примерно на 4-5 минут после полной зарядки… Потом бритва неизбежно «умирала»… Ну что же, проверим, поставил аккумуляторы на место… Я побрился… потом еще 25 минут держал бритву включенной… Жужжит, как имеющая новые аккумуляторы… Дальше не стал мучить двигатель… выключил… Чувствую, что мне еще хватит этих аккумуляторов на некоторое время…
Выводы я делать не буду, каждый может сделать их самостоятельно… Спасибо всем, кто дочитал мой обзор до конца…
В завершение обзора, по традиции животное… Животному понравилась пластмасса и сопротивление пружинного контакта, но крайне не понравилась длина проводков… Длинее надо… и шуршун должен быть на конце проводков…

  • Ni-MH аккумуляторы (никель-металлогидридные) входят в группу щелочных. Представляют собой источники тока химического типа, где в качестве катода выступает оксид никеля, анода - водородный металлгидридный электрод. Щелочь является электролитом. Они похожи на никель-водородные аккумуляторы, но превосходят их по энергоемкости.

    Производство Ni-MH аккумуляторов началось в середине двадцатого века. Разрабатывались они с учетом недостатков устаревших никель-кадмиевых батарей. В NiNH могут использоваться разные комбинации металлов. Для их производства были разработаны специальные сплавы и металл, работающие при комнатной температуре и низком водородном давлении.

    Промышленное производство началось в восьмидесятых годах. Изготавливаются и совершенствуются сплавы и металл для Ni-MH и сегодня. Современные устройства подобного типа могут обеспечивать до 2 тысяч циклов заряд-разряд. Подобный результат достижим по причине применения никелевых сплавов с редкоземельными металлами.

    Как используются эти устройства

    Никель-металлогидридные аппараты широко используются для питания разного вида электроники, которая функционирует в автономном режиме. Обычно они делаются в виде ААА либо АА батарей. Имеются и другие исполнения. Например, промышленные батареи. Сфера использования Ni-MH аккумуляторов немного шире, чем у никель-кадмиевых, потому что в их составе нет токсичных материалов.

    В данный момент реализуемые на отечественном рынке никель-металлогидридные батареи по емкости делятся на 2 группы - 1500-3000 мАч и 300-1000 мАч:

    1. Первая применяется в устройствах, имеющих повышенное энергопотребление за короткое время. Это всевозможные плееры, модели с радиоуправлением, фотоаппараты, видеокамеры. В общем, приборы, быстро расходующие энергию.
    2. Вторая используется при расходе энергии, который начинается после определенного интервала времени. Это игрушки, фонари, рации. На аккумуляторе работают приборы, умеренно употребляющие электроэнергию, находящиеся в автономном режиме продолжительное время.

    Зарядка Ni-MH устройств

    Зарядка бывает капельной и быстрой. Изготовители не рекомендуют первую, потому что при ней появляются сложности с точным определением прекращения подачи тока на устройство. По этой причине может возникнуть мощный перезаряд, что приведет к деградации аккумулятора. при помощи быстрого варианта. Коэффициент полезного действия тут несколько выше, чем у капельного вида зарядки. Ток выставляется - 0,5-1 С.

    Как заряжается гидридный аккумулятор:

    • определяется наличие батареи;
    • квалификация устройства;
    • предварительная зарядка;
    • быстрая зарядка;
    • дозарядка;
    • поддерживающая зарядка.

    При быстрой зарядке нужно иметь хорошее ЗУ. Оно должно контролировать окончание процесса по разным, независимым друг от друга критериям. К примеру, у Ni-Cd аппаратов достаточно контроля по дельте напряжения. А у NiMH нужно, чтобы аккумулятор следил за температурой и дельтой как минимум.

    Для правильной работы Ni-MH следует помнить «Правило трех П»: «Не перегревать», «Не перезаряжать», «Не переразряжать».

    Чтобы предупредить перезарядку батарей, используются такие методы контролирования:

    1. Прекращение заряда по скорости изменения температуры . При использовании данной методики во время зарядки температура батареи находится под постоянным контролем. Когда показатели поднимаются быстрее, чем нужно, зарядка прекращается.
    2. Метод прекращения заряда по максимальному его времени .
    3. Прекращение заряда по абсолютной температуре . Тут температура аккумуляторной батареи контролируется в процессе заряда. При достижении максимального значения быстрый заряд прекращается.
    4. Метод прекращения по отрицательной дельте напряжения . Перед завершением зарядки батареи при осуществлении кислородного цикла повышается температура NiMH устройства, что приводит к понижению напряжения.
    5. Максимальное напряжение . Метод используется для отключения заряда устройств с повышенным внутренним сопротивлением. Последнее появляется в конце срока службы батареи по причине недостатка электролита.
    6. Максимальное давление . Метод применяется для призматических аккумуляторов большой емкости. Уровень разрешенного давления в таком устройстве зависит от его размера и конструкции и находится в интервале 0,05-0,8 МПа.

    Для уточнения времени зарядки Ni-MH аккумулятора с учетом всех характеристик можно применить формулу: время зарядки (ч) = емкость (мАч) / сила тока зарядного устройства (мА). Например, имеется аккумулятор с емкостью 2000 миллиамперчасов. Ток заряда в ЗУ - 500 мА. Емкость делится на ток и получается 4. То есть батарея будет заряжаться 4 часа.

    Обязательные правила, которых нужно придерживаться для правильного функционирования никель-металлогидридного устройства:

    1. Эти аккумуляторы гораздо чувствительнее к нагреву, нежели никель-кадмиевые, перегружать их нельзя . Перегрузка отрицательно скажется на токоотдаче (способности держать и выдавать накопленный заряд).
    2. Металлогидридные аккумуляторы после приобретения можно «потренировать» . Сделать 3-5 циклов зарядки/разрядки, что позволит достигнуть придела емкости, потерянной при перевозке и хранении устройства после выхода с конвейера.
    3. Хранить нужно аккумуляторы с небольшим количеством заряда , примерно 20-40% от номинальной емкости.
    4. После разрядки либо зарядки следует дать устройству остыть .
    5. Если в электронном устройстве используется одинаковая сборка аккумуляторов в режиме дозаряда , то время от времени нужно разряжать каждый из них до напряжения 0,98, а потом полностью заряжать. Эту процедуру циклирования рекомендуется выполнять один раз на 7-8 циклов дозарядки аккумуляторов.
    6. Если нужно разрядить NiMH, то следует придерживаться минимального показателя 0,98 . Если напряжение упадет ниже 0,98, то он может перестать заряжаться.

    Восстановление Ni-MH аккумуляторов

    Из-за «эффекта памяти» данные устройства иногда теряют некоторые характеристики и большую часть емкости. Это происходит при многократных циклах неполной разрядки и последующей зарядке. В результате такой работы устройство «запоминает» меньшую границу разрядки, по этой причине понижается его емкость.

    Чтобы избавиться от данной проблемы, нужно постоянно выполнять тренировку и восстановление. Лампочкой либо зарядным устройством разряжается до 0,801 вольта, далее батарея полностью заряжается. Если долгое время аккумулятор не проходил процесс восстановления, то желательно произвести 2-3 подобных цикла. Тренировать его желательно раз в 20-30 дней.

    Изготовители аккумуляторов Ni-MH утверждают, что «эффект памяти» отнимает примерно 5% емкости. Восстановить ее можно с помощью тренировок. Важным моментом при восстановлении Ni-MH является наличие у ЗУ функции разрядки с контролем минимального напряжения. Что нужно для недопущения сильного разряда устройства при восстановлении. Это незаменимо, когда неизвестна начальная степень заряда, и предположить ориентировочное время разряда невозможно.

    Если неизвестна степень заряженности батареи, разряжать ее следует под полным контролем напряжения, иначе подобное восстановление приведет к глубокой разрядке. При восстановлении целой батареи сначала рекомендуется провести полную зарядку, чтобы выровнять степень заряда.

    Если аккумулятор отработал несколько лет, то восстановление зарядом и разрядом может быть бесполезным. Полезно оно для профилактики в процессе работы устройства. При эксплуатации NiMH вместе с появлением «эффекта памяти» происходит изменения объема и состава электролита. Стоит помнить, что разумнее восстанавливать элементы аккумулятора по отдельности, чем всю батарею целиком. Срок годности аккумуляторов - от одного года до пяти (зависит от конкретной модели).

    Достоинства и недостатки

    Значительное повышение энергетических параметров никель-металлогидридных аккумуляторов не является единственным их достоинством перед кадмиевыми. Отказавшись от использования кадмия, производители начали использовать более экологически чистый металл. Гораздо легче решаются вопросы с .

    Благодаря этим достоинствам и тому, что в изготовлении используется металл - никель, производство Ni-MH устройств резко выросло, если сравнивать с никель-кадмиевыми аккумуляторами. Удобны они и тем, что для уменьшения разрядного напряжения при длительных перезарядках проводить полную разрядку (до 1 вольта) надо раз в 20-30 дней.

    Немного о недостатках:

    1. Изготовители ограничили Ni-MH батареи десятью элементами , потому что с увеличением циклов заряд-разряд и срока службы появляется опасность перегрева и переполюсовки.
    2. Эти аккумуляторы работают в более узком температурном диапазоне, нежели никель-кадмиевые . Уже при -10 и +40°С они теряют свою работоспособность.
    3. При зарядке Ni-MH аккумулятора выделяют много тепла , поэтому нуждаются в предохранителях либо температурных реле.
    4. Повышенный самозаряд , наличие которого обусловлено реакцией оксидно-никелевого электрода с водородом из электролита.

    Деградация Ni-MH батарей определяется понижением сорбирующей способности отрицательного электрода при циклировании. В цикле разрядки-зарядки происходит изменение объема кристаллической решетки, что способствует образованию ржавчины, трещин во время реакции с электролитом. Появление коррозии происходит при поглощении батареей водорода и кислорода. Это приводит к уменьшению количества электролита и повышению внутреннего сопротивления.

    Нужно учитывать, что характеристики батарей зависят от технологии обработки сплава отрицательного электрода, его структуры и состава. Металл для сплавов тоже имеет значение. Все это заставляет производителей очень внимательно выбирать поставщиков сплавов, а потребителей - завод-изготовитель.

    Из опыта эксплуатации

    NiMH элементы широко рекламируются, как элементы с высокой энергоемкостью, не боящиеся холода и не имеющие памяти. Купив цифровую фотокамеру Canon PowerShot A 610 , я естественно снабдил ее емкой памятью на 500 снимков высшего качества, а для увеличения продолжительности съемок купил 4 NiMH элемента емкостью 2500 ма* час фирмы Duracell .

    Сравним характеристики выпускаемых промышленностью элементов:

    Параметры

    Ионно-литиевые
    Li-ion

    Никель-кадмиевые NiCd

    Никель-
    металл-гидридные NiMH

    Свинцово-кислотные
    Pb

    Длительность службы, циклов зарядки/разрядки

    1-1,5 года

    500-1000

    3 00-5000

    Энергетическая емкость, Вт*ч/кг
    Ток разряда, мA*емкость аккумулятора
    Напряжение одного элемента, В
    Скорость саморазряда

    2-5% в месяц

    10% за первые сутки,
    10% за каждый последующий месяц

    в 2 раз выше
    NiCd

    40% в год

    Диапазон допустимых температур, градусы Цельсия зарядки
    разрядки -20... +65
    Диапазон допустимых напряжений, В

    2,5-4,3 (коксовые) , 3,0-4,3 (графитовые)

    5,25-6,85 (для батарей 6 В),

    10,5-13,7 (для батарей 12 В)

    Таблица 1.

    Из таблицы видим NiMH элементы обладают высокой энергетической емкостью, что делает их предпочтительными при выборе.

    Для ихзарядки было куплено интеллектуальное зарядное устройство DESAY Full-Power Harger обеспечивающее зарядку NiMH элементов с их тренировкой. Элементы оно заряжались качественно, но... Однако на шестой зарядке оно приказало долго жить. Выгорела электроника.

    После замены зарядного устройства и нескольких циклов заряд-разряд, аккумуляторы стали садиться на втором - третьем десятке снимков.

    Оказалось, что не смотря на заверения, NiMH элементы тоже обладают памятью.

    А большинство современных портативных устройств их использующих, имеют встроенную защиту, отключающую питание при достижении некоторого минимального напряжения. Это не позволяет выполнить полную разрядку аккумулятора. Тут и начинает играть свою роль память элементов. Не полностью разряженные элементы получают неполный заряд и их емкость падает с каждой перезарядкой.

    Качественные зарядные устройства позволяют выполнять зарядку без потери емкости. Но что-то я не смог найти в продаже такого для элементов емкостью 2500маh . Остается периодически проводить их тренировку.

    Тренировка NiMH элементов

    Все написанное ниже не относится к элементам аккумуляторной батареи имеющим сильный саморазряд . Их можно только выбросить, опыт показывает, тренировке они не поддаются.

    Тренировка NiMH элементов заключается в нескольких (1-3) циклах разрядки - зарядки.

    Разрядка выполняется до снижения напряжения на аккумуляторном элементе до 1В. Желательно разряжать элементы индивидуально. Причина в том, что способность принимать заряд может быть различна. И она усиливается при зарядке без тренировки. Поэтому происходит к преждевременное срабатывание защиты по напряжению вашего устройства (плеера, фотоаппарата, ...) и последующей зарядке неразряженного элемента. Результат этого нарастающая потеря емкости.

    Разрядку необходимо выполнять в специальном устройстве (Рис.3), которое позволяет выполнять ее индивидуально для каждого элемента. Если нет контроля напряжения, то разрядка выполнялась до заметного снижения яркости лампочки.

    А если Вы засечете время горения лампочки вы сможете определить емкость аккумулятора, она вычисляется по формуле:

    Емкость = Ток разрядки х Время разрядки = I х t (А * час)

    Аккумулятор емкостью 2500 ма час способен отдавать в нагрузку ток 0,75 А в течении 3,3 часа, если полученное в результате разрядки время меньше, соответственно и меньше остаточная емкость. И при уменьшении емкости Вам необходимой надо продолжить тренировку аккумулятора.

    Сейчас для разрядки элементов аккумуляторов я применяю устройство изготовленное по схеме показанной на рис.3.

    Оно изготовлено из старого зарядного устройства и выглядит так:

    Только теперь лампочек 4 штуки, как в рис.3. О лампочках надо сказать отдельно. Если лампочка имеет ток разрядки равный номинальному для данного аккумулятора или несколько меньший ее можно использовать как нагрузку и индикатор, иначе лампочка только индикатор. Тогда резистор должен иметь такую величину, чтобы суммарное сопротивление El 1-4 и параллельного ей резистора R 1-4 было порядка 1,6 Ом.Замена лампочки на светодиод недопустима.

    Пример лампочки которая может быть использована в качестве нагрузки - это криптоновая лампочка для карманного фонаря на 2,4 В.

    Особый случай.

    Внимание! Производители не гарантируют нормальную работу аккумуляторов при зарядных токах превышающих ток ускоренной зарядки I зар должен быть меньше емкости аккумулятора. Так для аккумуляторов емкостью 2500ма*час он должен быть ниже 2,5А.

    Бывает, что NiMH элементы после разрядки имеют напряжение менее 1,1 В. В этом случае необходимо применить прием описанный в приведенной выше статье в журнале МИР ПК. Элемент или последовательная группа элементов подключается к источнику питания через автомобильную лампочку 21 Вт.

    Еще раз обращаю Ваше внимание! У таких элементов обязательно надо проверить саморазряд! В большинстве случаев именно элементы с пониженным напряжением имеют повышенный саморазряд. Эти элементы проще выкинуть.

    Зарядка предпочтительна индивидуальная для каждого элемента.

    Для двух элементов напряжением 1,2 В зарядное напряжение не должно превышать 5-6В. При форсированной зарядке лампочка одновременно является индикатором. При снижении яркости лампочки можно проверить напряжение на NiMH элементе. Оно будет больше 1,1 В. Обычно, эта начальная, форсированная зарядка занимает от 1 до 10 минут.

    Если NiMH элемент, при форсированной зарядке в течении нескольких минут не увеличивает напряжение, греется - это повод снять его с зарядки и отбраковать.

    Рекомендую применять зарядные устройства только с возможностью тренировки (регенерации) элементов при перезарядке. Если нет таких, то через 5-6 рабочих циклов в аппаратуре, не дожидаясь полной потери емкости, производить их тренировку и отбраковывать элементы имеющие сильный саморазряд.

    И они Вас не подведут.

    В одном из форумов прокомментировали эту статью " написано тупо, но больше ничего нет ". Так Вот это не"тупо", а просто и доступно для выполнения на кухне каждому кто нуждается в помощи. Т.е. максимально просто. Продвинутые могут поставить контроллер, подключить компьютер, ...... , но это уже другая история.

    Чтобы не казалось тупо

    Существуют "умные" зарядники для NiMH элементов.

    Такой зарядник работает с каждым аккумулятор отдельно.

    Он умеет:

    1. индивидуально работать с каждым аккумулятором в разных режимах,
    2. заряжать аккумуляторы в быстром и медленном режиме,
    3. индивидуальный ЖК дисплей для каздого аккумуляторного отсека,
    4. независимо заряжать каждый из аккумуляторов,
    5. заряжать от одного до четырех аккумуляторов разной емкости и типоразмера (АА или ААА),
    6. защищать аккумулятор от перегрева,
    7. защищать каждый аккумулятор от перезарядки,
    8. определение окончание зарядки по падению напряжения,
    9. определять неисправные аккумуляторы,
    10. предварительно разряжать аккумулятор до остаточного напряжения,
    11. восстанавливать старые аккумуляторы (тренировка заряд-разряд),
    12. проверять емкость аккумуляторов,
    13. отображать на ЖК дисплее: - ток заряда, напряжение, отражать текущую емкость.

    Самое главное, ПОДЧЕРКИВАЮ , данного типа устройства позволяют работать индивидуально с каждым аккумулятором.

    По отзывам пользователей такое зарядное устройство позволяет восстановить большинство запущенных аккумуляторов, а исправные эксплуатировать весь гарантированный срок эксплуатации.

    К сожалению я таким зарядником не пользовался, поскольку в провинции его купить просто невозможно, но в форумах Вы можете найти много отзывов.

    Главное не заряжайте на больших токах, не смотря на заявленный режим с токами 0,7 - 1А, это все же малогабаритное устройство и может рассеять мощность 2-5 Вт.

    Заключение

    Любое восстановление NiMh аккумуляторов строго индивидуальная (с каждым отдельным элементом) работа. С постоянным контролем и отбраковкой элементов не принимающих зарядку.

    И лучше всего заниматься их восстановлением с помощью интеллектуальных зарядных устройств, которые позволяют индивидуально выполнять отбраковку и цикл заряд - разряд с каждым элементом. А поскольку таких устройств автоматически работающих с аккумуляторами любой емкости не существует, то они предназначены для элементов строго определенной емкости или должны иметь управляемые токи зарядки, разрядки!

    Сфера применения электрических аккумуляторов довольно-таки широка. Небольшими батареями комплектуются привычные для всех бытовые приборы, АКБ слегка больших размеров оснащаются автомобили, ну а уж очень крупные и ёмкостные аккумуляторы монтируют в нагруженные работой промышленные станции. Казалось бы, что помимо пользовательского назначения у разных видов АКБ может быть общего? Однако на самом деле сходств у подобных батарей более чем достаточно. Пожалуй, одним из основных среди возможных сходств аккумуляторов является принцип организации их работы. В сегодняшнем материале наш ресурс решил рассмотреть именно один из таковых. Если быть точнее, то ниже речь пойдет о функционировании и правилах эксплуатации никель-металлогидридных батарей.

    История появления никель-металлогидридных АКБ

    Создание никель-металлогидридных аккумуляторов начало вызывать немалый интерес у представителей инженерии более 60 лет назад, то есть в 50-х годах 20 века. Ученые, специализирующиеся на изучение физико-химических свойств АКБ, всерьёз задумались над тем, как преодолеть недостатки популярных на то время никель-кадмиевых батарей. Пожалуй, одной из основных целей ученых было создание такого аккумулятора, который мог бы ускорить и упростить процесс протекания всех реакций, связанных с электролитической передачей водорода.

    В итоге, специалистам лишь к концу 70-х годов удалось сначала спроектировать, а затем создать и полноценно испытать более-менее качественные никель-металлогидридные батареи. Главное отличие нового типа АКБ от предшественников заключалось в том, что он имел строго определённые места для скопления основной массы водорода. Говоря точнее, скопление вещества происходило в сплавах нескольких металлов, находящихся на электродах аккумулятора. Состав сплавов имел такую структуру, что один или несколько металлов накапливали водород (иногда в несколько тысяч раз превышающих их объём), а другие металлы выступали в роли катализаторов электролитических реакций, обеспечивая переход водородного вещества в металлическую решётку электродов.

    Сделанный аккумулятор, имеющий водородно-металлогидридный анод и никелевый катод, получил аббревиатуру «Ni-MH» (от названия токопроводящих, накапливающих веществ). Работают подобные АКБ на щелочном электролите и обеспечивают отличный цикл «заряд-разряд» — до 2 000 тысяч для одной полноценной батареи. Несмотря на это, путь к проектировке аккумуляторов Ni-MH был нелёгок, а существующие на данный момент образцы до сих пор модернизируются. Основной вектор модернизации направлен на увеличение энергетической плотности батарей.

    Отметим, что сегодня никель-металлогидридные АКБ в большинстве своём производятся на основе сплава металлов «LaNi5». Первый образец подобных аккумуляторов был запатентован в 1975 году и стал активно использоваться в широкой промышленности. Современные никель-металлогидридные батареи имеют высокую энергетическую плотность и состоят из совершенно нетоксичного сырья, что упрощает их утилизацию. Пожалуй, именно из-за данных преимуществ они стали очень популярны во многих сферах, где требуется долгое хранение электрического заряда.

    Устройство и принцип работы никель-металлогидридной батареи

    Никель-металлогидридные аккумуляторы всех размерностей, ёмкостей и предназначений выпускают в двух основных типах форм – призматической и цилиндрической. Вне зависимости от формы, подобные АКБ состоят из следующих обязательных элементов:

    • металлогидридных и никелевых электродов (катодов и анодов), образующих гальванический элемент сеточной структуры, который отвечает за движение и накопление электрического заряда;
    • сепараторных областей, разделяющих электроды и также участвующих в процессе электролитических реакций;
    • выводных контактов, отдающих во внешнюю среду накопленный заряд;
    • крышки с вмонтированным в неё клапаном, необходимой для сброса излишнего давления из полостей аккумулятора (давления свыше 2-4 мегапаскаль);
    • термозащитного и крепкого корпуса, вмещающего описанные выше элементы батареи.

    Конструкция никель-металлогидридных аккумуляторов, как и многих других типов данного устройства, довольно-таки проста и особых сложностей в рассмотрении не представляет. Наглядно это показано на следующих конструктивных схемах АКБ:

    Принципы работы рассматриваемых АКБ, в отличие от их общей конструктивной схемы, выглядят слегка сложнее. Для понимания их сути давайте обратим внимание на поэтапное функционирование никель-металлогидридных аккумуляторов. В типовом варианте этапы работы у данных батарей следующие:

    1. Положительный электрод – анод, осуществляет окислительную реакцию с абсорбцией водорода;
    2. Отрицательный электрод – катод, реализует восстановительную реакцию в дисабсорбицией водорода.

    Говоря простым языком, электродная сетка организует упорядоченное движение частиц (электродов и ионов) посредством конкретных химических реакций. При этом непосредственно электролит в основной реакции выделения электричества не участвует, а включается в работу лишь при определённых обстоятельствах функционирования аккумуляторов Ni-MH (например, при перезарядке, реализуя реакцию циркуляции кислорода). Более подробно рассматривать принципы работы никель-металлогидридных АКБ не будем, так как для этого требуются специальные химические знания, которых у многих читателей нашего ресурса нет. При желании узнать о принципах работы батарей в больших подробностях стоит обратиться к технической литературе, которая максимально подробно освещает течение каждой реакции на концах электродах как при заряде батарей, так и при их разряде.

    Характеристики стандартного АКБ Ni-MH можно увидеть в следующей таблице (столбец посередине):

    Правила эксплуатации

    Любой аккумулятор – относительно неприхотливое в обслуживании и эксплуатации устройство. Несмотря на это, его стоимость зачастую высока, поэтому каждый владелец той или иной батареи заинтересован в увеличении её срока службы. Относительно АКБ формации «Ni-MH» продлить эксплуатационный период не столь сложно. Для этого достаточно:

    • Во-первых, соблюдать правила зарядки аккумулятора;
    • Во-вторых, правильно его эксплуатировать и хранить при простое.

    О первом аспекте обслуживания АКБ поговорим чуть позже, ну а сейчас обратим внимание на основной перечень правил эксплуатации никель-металлогидридных батарей. Шаблонный список данных правил таков:

    • Хранение никель-металлогидридных аккумуляторов должно осуществляться только в их заряженном состоянии на уровне 30-50 %;
    • Строго запрещается перегревать АКБ Ni-MH, так как по сравнению с теми же никель-кадмиевыми батареями, рассматриваемые нами намного чувствительней к нагреву. Перегруженность работой отрицательно сказывается на всех процессах, протекающих в полостях и на выходах аккумулятора. Особенно страдает токоотдача;
    • Никогда не перезаряжайте никель-металлогидридные батареи. Всегда придерживайтесь правил зарядки, описанных в настоящей статье или отражённых в технической документации к аккумулятору;
    • В процессе слабой эксплуатации или длительном хранении «тренируйте» АКБ. Зачастую хватает периодически проводимого цикла «заряд-разряд» (порядка 3-6 раз). Также подобной «тренировке» желательно подвергать новые батареи Ni-MH;
    • Хранить аккумуляторы никель-металлогидридной формации требуется в комнатном температурном режиме. Оптимальная температура – 15-23 градусов по Цельсию;
    • Старайтесь не разряжать аккумулятор до минимальных пределов – напряжение, меньшее 0,9 Вольт для каждой пары «катод-анод». Восстановлению никель-металлогидридные АКБ, конечно, поддаются, но желательно их не доводить до «мёртвого» состояния (о том, как восстановить батарею, также поговорим ниже);
    • Следите за конструктивным качеством батареи. Не допускается наличие серьёзных дефектов, недостаток электролита и тому подобные вещи. Рекомендуемая периодичность проверки АКБ равняется 2-4 неделям;
    • В случае с использованием больших, стационарных батарей также важно придерживаться правил:
      • их текущего ремонта (не менее раза в год):
      • капитального восстановления (не менее раза в 3 года);
      • надёжного крепления АКБ в месте использования;
      • наличия освещения;
      • использования правильных зарядных устройств;
      • и соблюдения техники безопасности использования подобных аккумуляторов.

    Придерживаться описанных правил важно не только потому, что подобный подход к эксплуатации никель-металлогидридных АКБ существенно продлить их срок службы. Также они гарантируют безопасное и, в целом, беспроблемное, использование батареи.

    Правила зарядки

    Раннее было отмечено, что правила эксплуатации – это далеко не единственное, что требуется для достижения максимального эксплуатационного срока никель-металлогидридных АКБ. Помимо грамотного использования, подобные батареи крайне важно грамотно заряжать. Вообще, ответить на вопрос – «Как правильно заряжать аккумулятор Ni-MH?», довольно-таки сложно. Дело в том, что каждый тип сплавов, используемый на электродах батареи, требует определённых правил данного процесса.

    Обобщив и усреднив их, можно выделить следующие фундаментальные основы зарядки никель-металлогидридных аккумуляторов:

    • Во-первых, требуется соблюдать правильное время зарядки. Для большинства АКБ Ni-MH оно составляет либо 15 часов при зарядном токе около 0,1 С, либо 1-5 часов при зарядном токе в пределах 0,1-1 С для батарей с высокоактивными электродами. Исключениями являются восстанавливаемые аккумуляторы, которые могут заряжаться более 30 часов;
    • Во-вторых, важно отслеживать температуру батареи в процессе зарядки. Многие производители не рекомендуют превышать температурный максимум в 50-60 градусов по Цельсию;
    • И в-третьих, следует учитывать непосредственно порядок проведения зарядки. Оптимальным считается такой подход, когда АКБ разряжается номинальным током до напряжения на выходах в 0,9-1 Вольт, после чего заряжается на 75-80 % от своей максимальной ёмкости. При этом важно учитывать, что при быстрой зарядке (подаваемый ток более 0,1) важно организовать предзарядку с подачей высокого тока на аккумулятор около 8-10 минут. После этого процесс зарядки стоит организовать с плавным повышением подаваемого на АКБ напряжения до 1,6-1,8 Вольт. К слову, при обычной подзарядке никель-металлогидридного аккумулятора напряжение зачастую не изменяется и в норме составляет 0,3-1 Вольт.

    Примечание! Отмеченные выше правила зарядки батарей носят усреднённый характер. Не забывайте, что для конкретной марки никель-металлогидридной АКБ они могут слегка отличаться.

    Восстановление аккумулятора

    Наряду с дороговизной и быстрым саморазрядом, у аккумуляторов Ni-MH есть ещё один недостаток – ярко выраженный «эффект памяти». Его суть заключается в том, что при систематичной зарядке не полностью разряженной батареи она как бы запоминает это и с течением времени существенно теряет в своей ёмкости. Для нейтрализации подобных рисков владельцам подобных АКБ требуется заряжать максимально разряженные батареи, а также периодически «тренировать» их путём процесса восстановления.

    Восстанавливать никель-металлогидридные аккумуляторы при «тренировке» или при их сильном разряде необходимо следующим образом:

    1. В первую очередь, необходимо подготовиться. Для восстановления потребуются:
      • качественный и, желательно, умный зарядный прибор;
      • инструменты для замера напряжения и сила тока;
      • любое устройство, способное потреблять энергию с АКБ.
    2. После подготовки можно уже задаться вопросом по поводу того, как восстановить батарею. Сначала необходимо по всем правилам зарядить аккумулятор, а затем его разрядить по напряжения на выходах батареи в 0,8-1 Вольт;
    3. Затем начинается непосредственно восстановление, которое, опять же, должно проводится в соответствии со всеми правилами зарядки никель-металлогидридных аккумуляторов. Стандартный процесс восстановления может быть проведён двумя способами:
      • Первый – если АКБ подаёт признаки «жизни» (как правило, при разряде на уровне 0,8-1 Вольт). Зарядка проходит с постоянным увеличением подаваемого напряжение с 0,3 до 1 Вольта с силой тока 0,1 С в течение 30-60 минут, после чего вольтаж остаётся неизменным, а сила тока увеличивается до 0,3-0,5 С;
      • Второй – если АКБ не подаёт признаков «жизни» (при разряде менее 0,8 Вольт). В таком случае зарядка осуществляется с 10-минутной пред-зарядкой высоким током на протяжении 10-15 минут. После этого проводятся описанные выше действия.

    Стоит понимать, что восстановление никель-металлогидридных АКБ – это процедура, которую требуется периодически проводить для абсолютно всех аккумуляторов (и «живых», и «неживых»). Только такой подход к эксплуатации данного типа батарей поможет «выжать» из них максимум.

    Пожалуй, на этом повествование по сегодняшней теме можно завершать. Надеемся, представленный выше материал был для вас полезен и дал ответы на интересующие вопросы.

    Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

    Началось все с того, что моя фотомыльница наотрез отказалась работать со свежевынутыми из зарядного устройства аккумуляторами - четырьмя NiMH размера АА. Их бы взять, как обычно, да выбросить. Но почему-то в этот раз любопытство возобладало над здравым смыслом (или это может жаба подала голос), и захотелось понять - а нельзя ли из этих батарей выдавить еще хоть чего-нибудь. Фотоаппарат весьма охоч до энергии, но ведь есть и более скромные потребители - мышки беспроводные или клавиатуры, например.

    Собственно параметров, интересных потребителю, два - емкость батареи и ее внутреннее сопротивление. Возможных манипуляций тоже немного - разрядить да зарядить. Измеряя в процессе разряда ток и время можно оценить емкость аккумулятора. По разнице напряжения аккумулятора на холостом ходу и под нагрузкой можно оценить внутреннее сопротивление. Повторив цикл разряд-заряд (т. е. выполнив «тренировку») несколько раз, можно понять имеет ли вообще это действо смысл.

    Соответственно сформировался такой план - делаем управляемые разрядник и зарядник с возможностью непрерывного измерения параметров процесса, производим над измеренными величинами простые арифметические действия, повторяем процесс нужное число раз. Сравниваем, делаем выводы, выбрасываем наконец аккумуляторы.

    Измерительный стенд
    Сплошной сборник велосипедов. Состоит из аналоговой части (на схеме ниже) и микроконтроллера. В моем случае интеллектуальной частью был ардуино, хотя это совершенно не принципиально - лишь бы был необходимый набор входов/выходов.

    Сделан стенд был из того, что нашлось в радиусе трех метров. Если кому-то захочется повторить, то вовсе не обязательно в точности следовать схеме. Выбор параметров элементов может быть весьма широким, далее я это немного прокомментирую.

    Блок разряда представляет собой управляемый стабилизатор тока на ОУ IC1B (LM324N) и полевом транзисторе Q1. Транзистор практически любой, лишь бы хватило допустимых напряжений, токов и рассеиваемой мощности. А они тут все небольшие. Резистор обратной связи и одновременно часть нагрузки (вместе с Q1 и R20) для аккумулятора - R1. Его максимальная величина должна быть такой, чтобы обеспечить требуемый максимальный ток разряда. Если исходить из того, что разряжать аккумулятор можно до 1 В, то для обеспечения тока разряда, например, в 500 мА резистор R1 не должен быть больше 2 Ом. Управляется стабилизатор трехбитным резистивным ЦАП (R12-R17). Тут расчет такой - напряжение на прямом входе ОУ равно напряжению на R1 (которое пропорционально току разряда). Меняем напряжение на прямом входе - меняется ток разряда. Для масштабирования выхода ЦАП к нужному диапазону имеется подстроечный резистор R3. Лучше, чтобы он был многооборотный. Номиналы R12-R17 могут быть любыми (в районе десятков килоом), главное, чтобы выполнялось соотношение их величин 1/2. Особой точности от ЦАП не требуется, поскольку ток разряда (напряжение на R1) в процессе измеряется непосредственно инструментальным усилителем IC1D. Его коэффициент усиления равен K=R11/R10=R9/R8. Выход подается на АЦП микроконтроллера (А1). Изменением номиналов R8-R11 усиление можно подогнать к желаемому. Напряжение на батарее измеряется вторым усилителем IC1C, K=R5/R4=R7/R6. Зачем управление током разряда? Дело тут в основном вот в чем. Если разряжать постоянным большим током, то ввиду большого внутреннего сопротивления у изношенных батарей минимально допустимое напряжение 1 В (а другого ориентира для прекращения разряда нет) будет достигнуто раньше, чем аккумулятор на самом деле разрядится. Если разряжать постоянным малым током, то процесс растянется слишком надолго. Поэтому разряд ведется ступенчато. Восьми ступеней мне показалось достаточно. Если охота больше/меньше, то можно изменить разрядность ЦАП. Кроме того, включая-выключая нагрузку, можно прикинуть внутреннее сопротивление аккумулятора. Думаю, что дальнейших пояснений алгоритм работы контроллера при разряде не требует. По окончании процесса Q1 оказывается заперт, батарея полностью отключается от нагрузки, а контроллер включает блок заряда.

    Блок заряда. Тоже стабилизатор тока, только неуправляемый, зато отключаемый. Ток задается источником опорного напряжения на IC2 (2.5 В, точность 1% согласно даташиту) и резистором R21. В моем случае ток заряда был классическим - 1/10 от номинальной емкости аккумулятора. Резистор обратной связи - R20. Источник опорного напряжения можно использовать любой другой - на ваш вкус и наличие деталей. Транзистор Q2 работает в более жестком режиме, чем Q1. Ввиду заметной разницы между напряжением Vcc и напряжением батареи на нем рассеивается заметная мощность. Это плата за простоту схемы. Но радиатор спасает положение. Транзистор Q3 служит для принудительного запирания Q2, т. е. для отключения блока заряда. Управляется сигналом 12 микроконтроллера. Еще один источник опорного напряжения (IC3) нужен для работы АЦП контроллера. От его параметров зависит точность измерений нашего стенда. Светодиод LED1 - для индикации состояния процесса. В моем случае он не горит в процессе разряда, горит при заряде и мигает, когда цикл закончен.
    Напряжение питания выбирается таким, чтобы обеспечить открытие транзисторов и работу их в нужных диапазонах. В данном случае у обоих транзисторов напряжение отпирания затвора довольно велико - порядка 2-4 В. Кроме того, Q2 «подперт» напряжением батареи и R20, поэтому отпирающее напряжение на затворе стартует примерно от 3,5-5,5 В. В свою очередь LM323 не может поднять напряжение на выходе выше Vcc минус 1,5 В. Поэтому Vcc должно быть достаточно велико и в моем случае равно 9 В.

    Алгоритм управления зарядом ориентировался на классический вариант контроля момента начала падения напряжения на батарее. Однако на деле оказалось все не совсем так, но об этом позже.
    Все измеряемые величины в процессе «исследований» писались в файл, потом производились расчеты и строились графики.

    Думаю, что с измерительным стендом все ясно, поэтому перейдем к результатам.

    Результаты измерений
    Итак, имеем заряженные (но неработающие) батареи, которые разряжаем и измеряем запасенную емкость, а заодно и внутреннее сопротивление. Выглядит это примерно так.

    Графики в осях время, часы (X) и мощность, Вт (Y) для лучшей и худшей из батарей. Видно, что запасенная энергия (площадь под графиками) существенно разная. В числовом выражении измеренная емкость аккумуляторов составила 1196, 739, 1237 и 1007 мА*ч. Не густо, учитывая, что номинальная емкость (которая указана на корпусе) - 2700 мА*ч. И разброс весьма велик. А что же внутреннее сопротивление? Оно составило 0.39, 0.43, 0.32 и 0.64 Ом соответственно. Ужасно. Понятно почему мыльница отказывалась работать - батареи просто не в состоянии отдать большой ток. Ну что ж, приступим к тренировке.

    Цикл первый. Опять отдаваемые мощности лучшей и худшей батареи.

    Прогресс виден невооруженным глазом! Числа это подтверждают: 1715, 1444, 1762 и 1634 мА*ч. Внутреннему сопротивлению тоже похорошело, но очень неравномерно - 0.23, 0.40, 0.1, 0.43 Ом. Казалось бы есть шанс. Но увы - дальнейшие циклы разряда/заряда ничего не дали. Значения емкости, как и внутреннего сопротивления, изменялись от цикла к циклу в пределах около 10%. Что лежит где-то недалеко от пределов точности измерений. Т.е. длительная тренировка, во всяком случае для моих аккумуляторов, ничего на дала. Но зато стало ясно, что батареи сохранили больше половины емкости и вполне еще поработают на малом токе. Хоть какая-то экономия в хозяйстве.

    Теперь хочу немножко остановиться на процессе заряда. Возможно мои наблюдения будут полезны кому-то, кто соберется конструировать интеллектуальное зарядное устройство.
    Вот типичный график заряда (слева шкала напряжения на аккумуляторе в вольтах).

    После начала заряда наблюдается провал напряжения. В разных циклах он может быть больше или меньше по глубине, немного разной длительности, иногда отсутствует. Далее в течение примерно 10 часов идет равномерный рост и затем выход почти на горизонтальное плато. Теория гласит, что при малом токе заряда не наблюдается падение напряжения в конце заряда. Я набрался терпения и все-таки дождался этого падения. Оно мало (на графике на глаз почти и не заметно), ждать его нужно очень долго, но оно всегда есть. После десяти часов заряда и до спада напряжение на батарее хоть и растет, но крайне незначительно. На итоговом заряде это почти не сказывается, каких-то неприятных явлений типа нагрева батареи не наблюдается. Таким образом при конструировании слаботочных зарядных устройств снабжать их интеллектом никакого смысла нет. Достаточно таймера на 10-12 часов, причем никакой особой точности при этом не требуется.

    Однако такая идиллия была нарушена одним из элементов. Примерно через 5-6 часов заряда возникали весьма заметные колебания напряжения.

    Сначала я было списал это на конструктивный недостаток моего стенда. На фото видно, что собрано все было навесным монтажом, а контроллер подключен довольно длинными проводами. Однако повторные эксперименты показали, что такая ерунда стабильно возникает с одним и тем же аккумулятором и никогда не возникает с другими. К своему стыду причину такого поведения я не нашел. Тем не менее (и на графике это хорошо видно) среднее значение напряжение растет так, как надо.

    Эпилог

    В итоге имеем четыре аккумулятора, которым точными научными методами найдена экологическая ниша. Имеем разочарование в возможностях процесса тренировки. И имеем один необъясненный эффект, возникающий при заряде.
    На очереди батарейка побольше - автомобильный аккумулятор. Но там нагрузочные резисторы на пару порядков мощнее надо. Где-то едут по просторам Евразии.

    На этом все. Спасибо за внимание.



    
    Top