Центральный процессор – «мозг» компьютера. Что называют мозгом компьютера. Компьютер и человек – что общего

Представьте себе экспериментальный нанонаркотик, который способен связывать сознания разных людей. Представьте, как группа предприимчивых нейробиологов и инженеров открывает новый способ использования этого наркотика – запустить операционную систему прямо внутри мозга. Тогда люди смогут телепатически общаться между собой, используя мысленный чат, и даже манипулировать телами других людей, подчиняя себе действия их мозга. И несмотря на то, что это сюжет научно-фантастической книги Рамеза Наама «Нексус», описанное им будущее технологий уже не кажется таким далеким.

Как подсоединить мозг к планшету и помочь парализованным больным общаться

Для пациента T6 2014 стал самым счастливым годом жизни. Это был год, когда она смогла управлять планшетным компьютером Nexus с помощью электромагнитного излучения своего мозга и буквально перенестись из эры 1980-х с их диско-ориентированными системами (Disk Operating System, DOS) в новых век андроидной ОС.

T6 - женщина 50 лет, страдающая боковым амиотрофическим склерозом, известным также как болезнь Лу Герига, которая вызывает прогрессирующее повреждение двигательных нейронов и паралич всех органов тела. T6 парализована почти полностью от шеи и вниз. До 2014 года она абсолютно не могла взаимодействовать с внешним миром.

Паралич может наступить и от повреждений костного мозга, инсульта или нейродегенеративных заболеваний, которые блокируют способность говорить, писать и вообще как-либо общаться с окружающими.

Эра интерфейсов, связывающих мозг и машину, расцвела два десятилетия назад, в процессе создания ассистивных устройств, которые бы помогли таким пациентам. Результат был фантастическим: слежение за взглядом (eye-tracking) и слежение за положением головы пользователя системы (head-tracking) позволили отслеживать движения глаз и использовать их как выходные данные для управления курсором мыши на экране компьютера. Иногда пользователь мог даже кликать по ссылке, фиксируя свой взгляд на одной точке экрана. Это называется »время задержки».

Тем не менее, системы eye-tracking были тяжелы для глаз пользователя и слишком дороги. Тогда появилась технология нейронного протезирования, когда устраняется посредник в виде сенсорного органа и мозг связывается с компьютером напрямую. В мозг пациента вживляется микрочип, и нейросигналы, связанные с желанием или намерением, могут быть расшифрованы с помощью сложных алгоритмов в режиме реального времени и использованы для контроля курсора на интерфейсе компьютера.

Два года назад, пациентке T6 имплантировали в левую сторону мозга, отвечающую за движение, 100-канальную электродную установку. Параллельно Стэнфордская лаборатория работала над созданием прототипа протеза, позволяющего парализованным печатать слова на специально разработанной клавиатуре, просто думая об этих словах. Устройство работало следующим образом: встроенные в мозг электроды записывали мозговую активность пациентки в момент, когда она смотрела на нужную букву на экране, передавали эту информацию на нейропротез, интерпретирующий затем сигналы и превращающий их в непрерывное управление курсором и щелчками на экране.

Однако этот процесс был чрезвычайно медленным. Стало понятно, что на выходе получится устройство, работающее без непосредственного физического соединения с компьютером через электроды. Сам интерфейс тоже должен был выглядеть интереснее, чем в 80-х. Команда клинического института BrainGate, занимающаяся этими исследованиями, поняла, что их система «указания и щелчка» была похожа на нажатие пальцем на сенсорный экран. И поскольку сенсорными планшетами большинство из нас пользуется каждый день, то рынок их огромен. Достаточно просто выбрать и купить любой из них.

Парализованная пациентка T6 смогла «нажимать» на экран планшета Nexus 9. Нейропротез связывался с планшетом через протокол Bluetooth, то есть как беспроводная мышь.

Сейчас команда работает над продлением работоспособности имплантата на срок всей жизни, а также разрабатывает системы других двигательных маневров, таких как «выделить и перетащить» и мультисенсорные движения. Кроме того, BrainGate планируют расширить свою программу на другие операционные системы.

Компьютерный чип из живых клеток мозга

Несколько лет назад исследователи из Германии и Японии смогли симулировать 1 процент активности человеческого мозга за одну секунду. Это стало возможным только благодаря вычислительной мощности одного из самых сильных в мире суперкомпьютеров.

Но человеческий мозг до сих пор остается самым мощным, низко энергозатратным и эффективным компьютером. Что если бы можно было использовать силу этого компьютера для питания машин будущих поколений?

Как бы дико это не звучало, нейробиолог Ош Агаби запустил проект «Конику» (Koniku) как раз для реализации этой цели. Он создал прототип 64-нейронной кремниевой микросхемы. Первым приложением этой разработки стал дрон, который может «чуять» запах взрывчатых веществ.

Одой из самых чутких обонятельных способностей отличаются пчелы. На самом деле, они даже перемещаются в пространстве по запаху. Агаби создал дрон, который не уступает пчелиной способности распознавать и интерпретировать запахи. Он может быть использован не только для военных целей и обнаружении бомб, но и для исследования сельхозугодий, нефтеперерабатывающих заводов - всех мест, где уровень здоровья и безопасности может быть измерен по запаху.

В процессе разработки Агаби и его команда решали три основные проблемы: структурировать нейроны так же, как они структурированы в мозге, прочитать и записать информацию в каждый отдельный нейрон и создать стабильную среду.

Технология индуцированной дифференцировки плюрипотентной клетки - метод, когда зрелая клетка, например, кожи, генетически встроена в исходную стволовую клетку, позволяет любой клетке превратиться в нейрон. Но как и любым электронным компонентам, живым нейронам нужна специальная среда обитания.

Поэтому нейроны были помещены в оболочки с управляемой средой, для регулировки уровня температуры и водорода внутри, а также для подачи им питания. Кроме того, такая оболочка позволяет контролировать взаимодействие нейронов между собой.

Электроды под оболочкой позволяют считывать или записывать информацию на нейроны. Агаби описывает этот процесс так:

«Мы заключаем электроды в оболочку из ДНК и обогащенных протеинов, которая стимулирует нейроны формировать искусственную тесную связь с этими проводниками. Так, мы можем считывать информацию с нейронов или, наоборот, посылать информацию на нейроны тем же способом или посредством света или химических процессов».

Агаби верит, что будущее технологий - за раскрытием возможностей так называемого wetware - человеческого мозга в корреляции с машинным процессом.

«Нет практических границ для того, какими большими мы сделаем наши будущие устройства или как по-разному мы может моделировать мозг. Биология - это единственная граница».

Дальнейшие планы «Конику» включат разработку чипов:

  • с 500 нейронами, который будет управлять машиной без водителя;
  • с 10 000 нейронами - будет способен обрабатывать и распознавать изображения так, как это делает человеческий глаз;
  • с 100 000 нейронами - создаст робота с мультисенсорным входом, который будет практически неотличим от человека по перцептивным свойствам;
  • с миллионом нейронов - даст нам компьютер, который будет думать сам за себя.

Чип памяти, встроенный в мозг

Каждый год сотни миллионов людей испытывают сложности из-за потери памяти. Причины этому разные: повреждения мозга, которые преследуют ветеранов и футбольных игроков, инсульты или болезнь Альцгеймера, проявляющиеся в старости, или просто старение мозга, которое ожидает всех нас. Доктор Теодор Бергер, биомедицинский инженер Университета Южной Калифорнии, на средства Агенства по перспективным оборонным исследованиям Министерства обороны США DARPA, тестирует расширяющий память имплантат, который имитирует обработку сигнала в момент, когда нейроны отказываются работать с новыми долгосрочными воспоминаниями.

Чтобы устройство заработало, ученые должны понять, как работает память. Гиппокамп - это область мозга, которая отвечает за трансформацию краткосрочных воспоминаний в долгосрочные. Как он это делает? И возможно ли симулировать его деятельность в рамках компьютерного чипа?

«По существу, память - это серия электрических импульсов, которые возникают с течением времени и которые генерируются определенным числом нейронов», - объясняет Бергер, - «Это очень важно, так как это значит, что мы можем свести этот процесс к математическому уравнению и поместить его в рамки вычислительного процесса».

Так, нейробиологи начали декодировать поток информации внутри гиппокампа. Ключом к этой дешифровке стал сильный электрический сигнал, который идет от области органа под названием СА3 - «входа» гиппокампа - к СА1 - «выходящему» узлу. Этот сигнал ослабляется у людей с расстройством памяти.

«Если бы мы могли воссоздать его, используя чип, мы бы восстановили или даже увеличили объем памяти», — говорит Бергер.

Но проследить этот путь дешифровки сложно, так как нейроны работают нелинейно. И любой незначительный фактор, замешанный в процессе, может привести к совсем другим результатам.Тем не менее, математика и программирование не стоят на месте, и сегодня могут вместе создать самые сложные вычислительные конструкции со множеством неизвестных и множеством «выходов».

Для начала ученые приучили крыс нажимать тот или иной рычаг, чтобы получить лакомство. В процессе запоминания крысами и превращения этого воспоминания в долгосрочное, исследователи тщательно фиксировали и записывали все трансформации нейронов, и затем по этой математической модели создали компьютерный чип. Далее, они ввели крысам вещество, временно дестабилизирующее их способность запоминать и ввели чип в мозг. Устройство воздействовало на «выходящий» орган СА1, и, вдруг, ученые обнаружили, что воспоминание крыс о том, как добиться лакомства восстановилось.

Следующие тесты были проведены на обезьянах. На этот раз ученые сконцентрировались на префронтальной коре головного мозга, которая получает и модулирует воспоминания, полученные из гиппокампа. Животным была продемонстрирована серия изображений, некоторые из который повторялись. Зафиксировав активность нейронов в момент узнавания ими одной и то же картинки, была создана математическая модель и микросхема, на ее основе. После этого работу префронтальной коры обезьян подавили кокаином и ученые вновь смогли восстановить память.

Когда опыты проводились на людях, Бергер избрал 12 волонтеров, больных эпилепсией, с уже имплантированными электродами в головной мозг, чтобы проследить источник их припадков. Повторяющиеся судороги разрушают ключевые части гиппокампа, необходимые для формирования долгосрочных воспоминаний. Если, к примеру, изучить активность мозга в момент припадков, можно будет восстановить воспоминание.

Точно также, как и в предыдущих экспериментах, был зафиксирован специальный человеческий «код памяти», который впоследствии сможет предсказать паттерн активности в клетках СА1, основываясь на данных, хранящихся или возникающих в СА3. В сравнении с «настоящей» мозговой активностью, такой чип работает с точностью около 80%.

Пока рано говорить о конкретных результатах после опытов на людях. В отличие от моторного кортекса головного мозга, где каждый отдел отвечает за определенный орган, гиппокамп организован хаотично. Также пока рано говорить, сможет ли такой имплантат вернуть память тем, кто страдает от повреждений «выходящего» участка гиппокампа.

Проблемный остается вопрос геерализации алгоритма для такого чипа, так как экспериментальный прототип был создан на индивидуальных данных конкретных пациентов. Что, если код памяти разный для всех, в зависимости от типа входящих данных, которые он получает? Бергер напоминает, что и мозг ограничен своей биофизикой:

«Есть только такое количество способов, которыми электрические сигналы в гиппокампе могут быть обработаны, которое несмотря на свое множество, тем не менее ограничено и конечно», — говорит ученый.

С появлением и постоянным усовершенствованием электронно-вычислительных машин, в просторечии именуемых компьютерами, интеллектуальные способности человека как венца творения постоянно ставятся под сомнение. Высказываются даже предположения, что со временем компьютер сможет превзойти человека, особенно если будет завершена работа по созданию искусственного интеллекта. Так ли это на самом деле и чем отличается мозг человека от компьютера? Попробуем разобраться.

Определение

Мозг человека – орган тела, выполняющий функции регулировки и контроля всех жизненно важных систем организма.

Компьютер – электронное устройство для обработки информации, имеющее примитивный «мозг» (центральный процессор) и функционирующее согласно заданной программе.

Сравнение

Передача сигналов в компьютере основана на электрических импульсах. Для этого используется простой двоичный код, при котором сигналы имеют всего два значения: или «1», или «0». А вот в мозге ведется сложная работа, основанная на множестве химических сигналов, причем каждый из них имеет свою индивидуальную характеристику. Интересно, что скорость проводимости нервного импульса из нейрона в нейрон может меняться в зависимости от существующих обстоятельств. В мозге не предусмотрено функциональных блоков.

Компьютер не признает «полутонов». В нем всё четко – существует или значение «1», или значение «0»; либо то, либо другое. Сила сигнала идет дискретно – только с одним или же только с другим значением. В мозге, в отличие от компьютера, сигнал способен передаваться ускоренно или плавно, также как может изменяться и чувствительность нейрона, принимающего данный сигнал.

Основной объем памяти в ЭВМ сохраняется в специально для этого предназначенных запоминающих устройствах. В мозге же не существует участков, в которых отдельно хранятся наши воспоминания. В запоминании и распознавании субъектов или каких-либо событий участвуют одни и те же нейроны.

Мозг человека обладает очень большим запасом прочности, что позволяет ему функционировать даже при опасных травмах. Это неудивительно, учитывая, что одновременно в нем обычно задействованы не более 2-3% нервных клеток. Современные компьютеры лишены способности восстанавливаться и работать при серьезных повреждениях, тогда как мозг человека от природы наделен удивительной компенсаторной способностью: при поражении даже обширных его участков работу продолжают выполнять оставшиеся неповрежденными части. Если же в программе компьютера испортить даже несколько бит или всего лишь один транзистор в процессоре – устройство мгновенно потеряет возможность функционирования, иногда даже без возможности восстановления. Мозг же способен выживать и работать, даже если ему перед этим на пять-семь минут перекрыть кислород.

Мозг, в отличие от компьютера, способен сосредотачиваться на важной для него в данный момент времени информации и не принимать во внимание несущественную. Мозг отыскивает информацию не по адресу, как компьютер, а по содержанию. Для компьютера нет никакой связи между адресом, по которому находится информация, и самой сутью этой информации, а для мозга – есть. Мозг человека способен восстанавливать информацию лишь по ее отрывочной части или же извлекать данные вследствие ассоциативного ряда. Человек мыслит, компьютер же просто обрабатывает информацию на основе алгоритмов. Компьютер работает с абстрактными символами, а мозг человека – с образами конкретных объектов. Мозгу человека присущи интуиция и воображение, а еще – желание все время получать новые впечатления, творческая активность, которая тесно связана со сном (во сне упорядочивается полученная извне информация). Компьютеру всё это недоступно. Скрытые возможности мозга поистине безграничны, в отличие от изначально заданных определенным образом системных параметров компьютера.

Выводы сайт

  1. Для передачи сигналов компьютер использует простой двоичный код. В мозге человека работают множество нейронов, которые обмениваются разнообразными сигналами, меняющимися в зависимости от обстоятельств.
  2. В компьютере есть специальное устройство, в котором хранятся данные. В мозге человека нет конкретного участка, отвечающего за память, — и запоминание, и распознавание свойственно всем нейронам.
  3. Мозг человека, в отличие от компьютера, обладает огромной компенсаторной способностью: он может работать даже при серьезных повреждениях.
  4. Мозг ищет информацию по содержанию и ассоциациям, компьютер – по определенному адресу. Мозг работает с образами, а компьютер – с символами.
  5. Мозгу человека свойственны творческая активность, жажда знаний, интуиция и воображение.
  6. Возможности мозга человека безграничны, в то время как компьютерный «мозг» зависит от заложенных в него параметров.

Рецепт мозга выглядит так: 78% воды, 15% жира, а остальное - белки, гидрат калия и соль. Нет ничего более сложного во Вселенной из того, что мы знаем и что сопоставимо с мозгом вообще.

Как вы думаете, какое количество энергии потребляет мозг? 10 Ватт. Лучшие из мозгов в лучшие из своих креативных мгновений потребляют, скажем, 30 Ватт. Суперкомпьютеру нужны мегаватты. Из этого следует, что мозг работает каким-то совершенно другим способом, нежели компьютер.

В человеческом мозгу большинство процессов идет параллельно, в то время как компьютеры имеют модули и работают сериально, просто компьютер очень быстро переходит с одной задачи на другую.

Кратковременная память у человека организована не так, как в компьютере. В компьютере есть «железо» и «софт», а в мозгу hardware и software нераздельны, это какая-то смесь. Можно, конечно, решить, что hardware мозга - это генетика. Но те программы, которые наш мозг качает и устанавливает в себя всю жизнь, через некоторое время становятся «железом». То, чему вы научились, начинает влиять на гены.

Память человека организована семантически, в отличие от компьютера. Например - информация о собаке вовсе не лежит в том месте, где собрана наша память о животных. Вчера пес опрокинул чашку кофе на мою желтую юбку - и навсегда у меня собака этой породы будет ассоциироваться с желтой юбкой.

У человека больше ста миллиардов нейронов. У каждого из нейронов, в зависимости от типа, может быть до 50 тысяч связей с другими частями мозга. Квадриллион комбинаций, больше чем число звезд во вселенной. Мозг - это не просто нейронная сеть, это - сеть сетей сетей. В мозге 5,5 петабайт информации - это три миллиона часов видеоматериала. Триста лет непрерывного просмотра! Это - пульсирующие нейронные сети. Там нет «мест», где отдельно работает что-то одно. Поэтому даже если бы мы нашли в мозгу зоны жертвенности, любви, совести, это нам никак не облегчило бы жизнь.

Да был романтический период в истории науки изучения мозга, когда еще казалось, что мозг можно описать по качествам и адресам. Когда думали, что есть разделы, которые занимаются нежной дружбой, привязанностью и т. д. Это делалось на основании чего-то. Был период, когда начали действительно открывать связь между умениями людей и определенными отделами в мозгу, которые якобы за это отвечают. Якобы – потому что это и, правда, и неправда. Мы ведь знаем, что у человека есть речевые зоны. И если с ними что-то случится, речь исчезнет. С другой стороны, мы знаем массу примеров, когда у человека вообще удален левый мозг. И там физически нет ни одной речевой зоны. А речь возможна. Как это происходит? Вопрос с локализацией функций – вопрос очень подвешенный. В мозгу одновременно все локализовано - и не локализовано. Память имеет адрес. И одновременно не имеет.

Конечно, в мозгу есть функциональные блоки, есть какая-то локализация функций. И мы думаем, как дурачки, что если мы делаем языковую работу, то в мозгу будут активированы зоны, которые заняты речью. Так вот нет, не будут. То есть они будут задействованы, но остальные участки мозга тоже будут принимать в этом участие. Внимание и память в этот момент будут работать.

Если задание зрительное, значит, зрительная кора тоже будет работать, если слуховое - то слуховая. Ассоциативные процессы тоже всегда будут работать. Одним словом, во время выполнения какой-либо задачи в мозге не активируется какой-то отдельный участок - мозг всегда работает весь. То есть участки, которые за что-то отвечают, вроде бы есть, и в то же время их как бы нет

Если мы ставим карандашом точку на листе – то это точка. А если мы смотрим на нее через лупу, то она уже становится какой-то шершавой. А если мы возьмем электронный микроскоп, то даже непонятно, что мы там увидим. Это ситуация, в которой мы сейчас оказались. Еще полшага - и нам удастся описывать мозг с точностью до одного нейрона.

И что? - Мы оказываемся в ситуации, когда есть огромные горы фактов и миллиметры объяснений. Если признать, что сознание – это в первую очередь осознание, то мы наталкиваемся на огромный разрыв между относительно хорошо изученными психофизиологическими процессами и фактически неизученным осознанием и пониманием. Мы даже не можем сказать, что это такое.

Вот, например, с чего вы взяли, что с использованием больших данных, big data, вы будете предсказывать мое поведение? Мое поведение не предсказывается ни Декартом, ни Аристотелем, никем. Оно может быть истерическим. Например, нобелевский лауреат по экономике, психолог Даниел Канеман описывал, как человек принимает решения, и пришел к выводу, что решения принимаются ПРОСТО ТАК. «А я вот так пойду, и все - хочу потому что». Как вы собираетесь это предсказать?

Я могу проанализировать ситуацию и решить вести себя определенным образом, а потом в четыре секунды все ломается. Это говорит о серьезной вещи: насколько мы не хозяева себе. Действительно пугающая мысль - а кто на самом деле в доме хозяин? Их слишком много: геном, психосоматический тип, масса других вещей, включая рецепторы. Хотелось бы знать, кто это существо, принимающее решения? Про подсознание вообще никто ничего не знает, лучше эту тему сразу закрыть.

Мозг может морочить нам голову. Есть реальные работы, в которых об этом говорится. Например, «The mind’s best trick: How we experience conscious will» Даниэля Вегнера. Он пишет, что мозг все делает сам. Вообще все! После этого посылает нам сигнал: «Не волнуйтесь, все хорошо, это ты принял решение»

Я часто привожу пример с пальцем, чтобы показать, как работает наш мозг. Сейчас я решаю согнуть указательный палец на правой руке, но на самом деле я ничего не сгибаю. Т.е. это просто решение. А вот теперь я его сгибаю (сгибает палец).

Как это получилось? Ответы, которые я получаю на этот вопрос, всегда бьют мимо цели. Мне говорят, что это мозг послал сигнал на рецепторы..Но это же смешно. Я доктор биологических наук, мне это все известно. Если бы правда все было так, я бы не задавала этот вопрос. Меня интересует именно то, что происходит в промежутке времени между тем, как я об этом подумала, и как мозг послал сигнал. Почему мозг стал посылать сигнал? Получается, это был скачок из области нематериального - т.е. из области моей мысли, к области материальной, когда палец начал сгибаться.

Поэтому центральный вопрос, который никуда не уходит, звучит так: «Что есть наш мозг - реализация множества всех множеств, не являющихся членами самих себя или самодостаточный шедевр, находящийся в рекурсивных отношениях с допускаемой в него личностью, в теле которой он размещен?»

Мозг не живет, как голова профессора Доуэля, на тарелке. У него есть тело - уши, руки, ноги, кожа, потому он помнит вкус губной помады, помнит, что значит «чешется пятка». Тело является его непосредственной частью. У компьютера этого тела нет.

Сейчас все больше людей интересуются тем, как устроен мозг. Конечно, это мода. Но вторая причина не менее важная – мы кардинально зависим от мозга. Наши глаза, уши, наши органы чувств поставляют информацию туда. Смотреть – это одно, а видеть – это другое. Картина мира находится в мозгу. Но вопрос – можем ли мы ему доверять? Если взять пациента, у которого галлюцинации, и сделать ему магнитно-резонансную томографию, то она покажет, что во время видений его мозг действительно обрабатывает зрительные или слуховые сигналы.

Если мозг настолько самодостаточен, что сам делает все, то какова наша роль? Или мы просто вместилище для этого монстра? Поэтому вопрос о свободе воли очень серьезно стоит в нейронауке, психологии и философии. Мы свободны в своих решениях или нет? Или мозг сам принимает решение, а потом посылает нам утешительный сигнал: «Ни о чем не тревожься, это решение принял ты

Гештальтное восприятие, все искусство, творчество, наука, которая не только счетом занимается, - этого компьютеры не могут делать. Пока это все наше, у нас есть шансы.

До сих пор не очень понятно, каким образом в мозге хранятся языки, слова, их значения. При этом есть патологии, когда люди не помнят существительные, но помнят глаголы. И наоборот.

В общем, и сознание - это мозг, и память - мозг, и язык - тоже. Бродский говорил, что «поэзия - высшая форма языка, особый ускоритель сознания и наша видовая цель». То есть мы как вид умеем больше, чем эти железные счетоводы, которые единицы и ноли гоняют. Мы делаем нечто совсем другое.

Мы знаем, конечно, что есть функциональные блоки в мозгу. Скажем, эта часть занимается языком, эта занимается зрительными образами, есть зоны, которые особенно заняты памятью, но если всерьез, то весь мозг занят всем. Эти зоны есть, и мы о них знаем, потому что, если кирпич упадет на зону Брока, то человек перестанет говорить, и это факт. Но обратный ход неправильный. Нельзя сказать, что речью управляет такая-то зона. Речью, как и сознанием, памятью, всем управляет весь мозг.

Беда в том, что, смотря в мозг, вы ничего там не видите. Какой бы совершенной ни была ваша аппаратура, дальше возникает этап интерпретации. А она зависит уже от философской позиции. Это круг. Сейчас есть большой скепсис по поводу того, имеет ли смысл вообще все это изучать. Ведь мы не знаем, что с этим делать. Здесь есть и еще одна неприятность. Страшная разница в индивидуальных результатах. Если мы будем даже исследовать одного и того же человека, а не складывать вместе академиков, алкоголиков и т. д., результат все равно будет специфическим. 33 раза был повторен один и тот же опыт с одним человеком. Это просто разные картины. Есть провал в объяснительной базе. Мы можем сказать так: «Мы думаем, что …» - и приложить картинку из его мозга.

Есть еще вот такая прелестная вещь, о которой, кстати говоря, всем не вредно бы знать,- у нас есть в мозгу так называемые «Зеркальные системы» Это системы, которые открыл Джакомо Резолатти, замечательный ученый, кстати, наш почетный профессор Петербургского университета, я это организовывала, между прочим, и он к нам приезжал, лекции читал, вообще, прелестный дядька. И он открыл эти зеркальные системы. Они представляют собой вот что:они включаются не тогда, когда вы сами что-то делаете, а когда вы наблюдаете за тем, как это делает другой. Слово «Другой» с большой буквы. Вообще, любой Другой. Это основа для коммуникации, основа, вообще для любого обучения. И основа языка, и самое главное, я повторяю - это основа коммуникации. Потому что люди, у которых диагноз «Аутизм» или «Шизофрения» - уже доказано это, что у них поломаны эти системы. Они живут в своем собственном мире, совершенно не имея никакой возможности из него выйти и посмотреть на ситуацию другими глазами.

Человек – это животное?

Важными отличиями человека от других животных является язык и сознание.

Мы постоянно имеем дело не только с самими объектами, но и с символами. Вот, допустим, на столе стоит стакан. Зачем его называть «стаканом»? Зачем его рисовать? Кажется, у человека есть то, что можно назвать «страсть к дублированию мира».

Важно понять, что мы зависим от нашего мозга на все 100%. Да, мы смотрим на мир «своими глазами», что-то слышим, что-то ощущаем, но то, как мы понимаем это все, зависит только от мозга. Он сам решает, что нам показывать и как. По сути, мы вообще не знаем, что такое реальность на самом деле. Или как видит и ощущает мир другой человек? А мышь? А как видели мир шумеры?

У ворон, а точнее даже у врановых в целом, мозг довольно похож на мозг приматов по уровню развития. Вороны узнают свое отражение.

Обезьяны успевают заметить порядок чисел и быстро в правильном порядке нажимать квадратики, под которыми числа скрываются. Более того, даже мы с вами не можем в этом с ними состязаться.

Если вы влезете и наберете что-то насчет интеллектуальных задач, которые дают обезьянам, там есть просто фильмы, вы можете посмотреть онлайн, как это происходит: ей показывают на короткое время какие-то цифры и убирают, а после этого начинают мелькать эти цифры, и она должна пальцем тыкать в те, которые она видела. Абсолютно не возможная для меня задача. Не только с такой скоростью, а вообще, я даже не могу подумать. Она это делает с космической скоростью, что вы видите просто. Так что не стоит про себя слишком много думать.

Мозг дельфинов тоже мощно развит. Еще неизвестно у кого лучше - у нас или у них. Говорит, что часто в ответ доносится «Но они же не построили цивилизацию!». Но какая разница, когда они могут спать, отключая только одно полушарие и продолжая бодрствовать, обладают иронией, своим языком, живут счастливыми жизнями, всегда сыты, не имеют совсем опасных врагов и далее по списку. Понимаете, они пляшут и поют, у них бесконечное количество еды - весь океан, экология прекрасная, плыви куда хочешь. Только поют, играют, любовью занимаются и все, а чего больше, что они должны сделать? Стройку коммунизма устроить там, на Фиджи или что? Что они должны сделать, чтобы мы были довольны?

И еще был знаменитый попугай Алекс. Он знал порядка 150 слов, отвечал на простые вопросы.

По моему глубочайшему убеждению, наука занимается тем, что пытается узнать в меру своих слабых сил, как Господь устроил мир. Чем больше ты в научном смысле знаешь, тем больше ты видишь немыслимую сложность того, что произошло, и одновременно четкость и универсальность этих законов во Вселенной, - это наводит на мысль, что все не случайно…

P.S.

Вы думаете это я, Tim_duke, вывод написал? Нет, это вот кто:

Черниговская Татьяна Владимировна – родилась в 1947 г. в городе Ленинграде. Занимается проблемами психолингвистики, нейронаук и теорией сознания. Является доктором биологических наук, профессором, залуженным деятелем науки РФ, по ее инициативе в двухтысячном году по ее инициативе создана ученая специализация «Психолингвистика». До 1998 г. работала в « Институте эволюционной физиологии и биохимии им. И.М. Сеченова РАН, в лабораториях биоакустики, функциональной асимметрии мозга человека и сравнительной физиологии сенсорных систем (ведущий научный сотрудник).

Перечислять все регалии Татьяны Владимировны наверно не имеет смысла, защитила кандидатскую и докторскую диссертации по нейролингвистике, регулярно приглашаемый лектор в университетах США и Европы, президент Межрегиональной ассоциации когнитивных исследований. В 2010 г. указом президента РФ ей было присвоено звание «Заслуженный деятель науки РФ». В 2017 г. номинирована РАН на Золотую медаль за выдающиеся достижения в области пропаганды научных знаний член различных российских и международных сообществ (лингвистическое, ассоциации искусственного интеллекта, физиологического общества, International Neuropsychological Society , International Society of Applied Psycholinguistics и других.

Мозг любого человека является чем-то особенным, невероятно сложным чудом природы, созданным благодаря миллионам лет эволюции. Сегодня наш мозг часто называют настоящим компьютером. И это выражение используется отнюдь не зря.

И сегодня мы постараемся разобраться в том, почему человеческий мозг ученые называют биологическим компьютером, и какие интересные факты о нем существуют.

Почему мозг – биологический компьютер

Ученые называют мозг биологическим компьютером по вполне очевидным причинам. Мозг, как и главный процессор любой компьютерной системы, отвечает за работу всех элементов и узлов системы. Как в случае с оперативной памятью, винчестером, видеокартой и другими элементами ПК, мозг человека управляет зрением, дыханием, памятью и любым другим процессом, происходящим в организме человека. Он обрабатывает полученные данные, принимает решения и выполняет всю интеллектуальную работу.

Что же касается характеристики «биологический», то её наличие также является вполне очевидным, ведь, в отличие от обычной компьютерной техники, человеческий мозг имеет биологическое происхождение. Так и получается, что мозг – это самый настоящий биологический компьютер.

Как и у большинства современных компьютеров, у мозга человека присутствует огромное количество функций и возможностей. И некоторые наиболее интересные факты о них мы предлагаем ниже:

  • Даже в ночное время, когда наш организм отдыхает, мозг не засыпает, а наоборот – находится в более активном состоянии, чем днем;
  • Точный объем места или памяти, которая может храниться в человеческом мозге, на данный момент неизвестен ученым. Однако они предполагают, что этот «биологический жесткий диск» способен вместить в себе до 1000 терабайт информации;
  • Средняя масса мозга – полтора килограмма, и его объем увеличивается, как и в случае с мышцами, от тренировок. Правда, в данном случае тренировки подразумевают получение новых знаний, улучшение памяти и т.д.;
  • Несмотря на то, что именно мозг реагирует на любые поражения тела, отправляя в соответствующие участки тела болевые сигналы, сам он не чувствует боли. Когда мы чувствуем головную боль, это лишь болевые ощущения в тканях и нервах черепной коробки.

Теперь вы знаете, почему мозг называется биологическим компьютером, а значит – произвели небольшую тренировку своего мозга. Не останавливайтесь на этом, и систематически узнавайте что-нибудь новое.

Прежде чем сравнивать мышление человека с искусственным ин­теллектом, необходимо сначала остановиться на некоторых общих чертах организации мозга и компьютера.

1. Обработка информации. Легко можно провести параллель между обработкой информации компьютером и человеческим мозгом. Дея­тельность компьютера, как и мозга, включает четыре этапа -кодиро­вание, хранение, обработку информации и выдачу результата.

Первый этап в случае компьютера -это ввод информации с клавиату­ры или с дискеты, на которой записана программа. Новейшие техни­ческие разработки позволяют осуществлять голосовой ввод или ввод с помощью светочувствительных элементов.

Второй этап, столь же важный для компьютера, как и для мозга, - это память. От ее емкости, которая может варьировать от нескольких тысяч до нескольких миллионов единиц 1 , зависит мощность компьютера. У компьютера имеются два вида памяти. В постоянной памяти запи­саны все программы, определяющие работу компьютера (язык, инструк­ции, конфигурации алфавитно-цифровых знаков и т.д.). Эту память можно сравнить с врожденным багажом животных того или иного вида -будь то звуки, которые они способны издавать, или механизмы функционирования интеллекта. Что касается оперативной памяти, то в ней, как

" Основная единица памяти в теории информации - это бит. Бит соответст­вует одному двоичному выбору, т. е. отражает тот факт, что некоторый элемент может находиться в одном из двух состояний - 1 или 0; например, определенный электронный контур в компьютере может быть открыт или закрыт, т. е. пропус­кать (1) или не пропускать (0) ток. Существует более крупная единица-байт, равная 8 бит. Емкость памяти карманных микрокалькуляторов составляет 1000 байт (1 килобайт, или Кбайт) или 2000 байт (2 Кбайт). Память очень мощных машин может достигать тысяч килобайт. Персональные компьютеры обычно обладают памятью в 128 или 256 Кбайт.

необходим_____________Глава 9 ____________________

совокупное и у человека, могут записываться или стираться данные. Именно данные для выполнения программы. симости о", важнейший блок-это процессор. Он представляет собой в компью-сть контуров и служит «корой головного мозга» компьютера.



Наконец осуществляет операции, указанные в программе, выдачу инструкций и данных, хранящихся в памяти или вводимых на экран, пpоцессep.

Из всегзодиться в речевой форме. Кроме того, устройство вывода мозга и к<ь связано с какой-то аппаратурой или роботами, исполняю-турна. Мосазы компьютера.

и машины о этого видно, что аналогия между основными структурами два примермпьютера совершенно очевидна, хотя и несколько карика-

2. Кибе"жно провести аналогии и на уровне деятельности мозга пьютер, ка. Чтобы проиллюстрировать эти аналогии, мы рассмотрим связи. Cai^a-из области кибернетики и решения проблем. жизни.Имрнетика. Речь здесь пойдет о саморегуляции, которую ком-окруж-.ющк и мозг, осуществляет с помощью отрицательной обратной изменяем 1Юрегуляция - это неотъемлемая часть нашей повседневной закона зф^енно благодаря той информации, которую мы получаем от

Возьметей среды, мы либо продолжаем, либо прекращаем, либо с помощы^аши действия. Собственно говоря, именно в этом сущность деляющий,>екта и принципа подкрепления. осуществлю простейший пример. Представим себе, что человек бреется тельность f3 электрической бритвы. В этом случае ввод данных, опре-тера. следует ли продолжать или прекращать эту операцию, будет

В языкепъся путем ощупывания кожи рукой. Таким образом, дея-товых ком^озга и руки можно сравнить с функционированием компью-струкции н

такую инс" Бейсик-самом простом языке, который используется в бы-причем тр1"пьютерах, - саморегуляция осуществляется с помощью ин-

1) пров»а английском языке „IF...THEN..." (если... то...). Используя

2) пров(фукцию, мы можем написать программу из пяти строк",

3) IF кс1 первые строки образуют цикл:

4) IF ксЭДение бритвой по коже;

5) прекрдение рукой по коже;

>жа не гладка, THEN 1;

.|жа гладка, THEN S ;

1 ^а ращение бритья.

инструкции i

женное в тре

чески прекрати, деде инструкция 4 излишняя, так как переход к очередной фоизойдет автоматически, если не будет выполнено условие, зало-тьей строке. В случае если кожа станет гладкой, бритье автомати-тится.

Адаптация и творчество 474

Сходные закономерности действуют и во многих других областях повседневной жизни. Подобные программы используются домохозяй­кой при мытье посуды, гитаристом при настройке гитары, лектором (или конферансье), следящим за вниманием аудитории, и т. п. Такие же программы действуют и при формулировании гипотез, позволяющих воспринять или распознать предмет либо животное. Нетрудно пред­ставить себе программы из инструкций „IF... THEN...", с помощью которой мозг ребенка будет отличать кошку от собаки или даже от львенка.

Разумеется, существует множество других инструкций, позволяющих формировать циклы или даже вкладывать их один в другой. Однако подробный разбор таких инструкций не входит в наши задачи.

3. Решение проблем. Из главы 8 мы уже знаем, что для решения проблем необходимо объединение и обработка информации, содержа­щейся в памяти и поступающей из внешней среды. Для этого можно использовать разные процедуры, различающиеся по тому, в какой степени используется память и в какой -манипулирование самой ин­формацией (Norman, Lindsay, 1980).

Типы процедур. Возьмем простой пример: предположим, что нам необходимо умножить 12 на 12. Для этого можно использовать по меньшей мере три типа процедур.

Первая из них -это метод последовательных преобразований. При этом наш расчет может быть осуществлен с помощью 11 сложений:

12 + 12 = 24; 24 + 12 = 36; 36 + 12 = 48 и т. д.

Такая процедура требует очень малого участия памяти, но большого манипулирования информацией.

Второй тип процедур основан на использовании таблиц. При этом в памяти необходимо хранить как можно больше столбцов из таблицы умножения, и тогда ответ, взятый из столбца с множителем 12, авто­матически появится в голове или на экране. В отличие от первого способа здесь требуется очень небольшая обработка информации, но весьма обширная память.

Третья разновидность процедур -это своего рода компромисс между первыми двумя типами. Она основана на применении правил и требует среднего объема памяти и манипулирования информацией. В нашем примере для этого достаточно знать таблицу умножения для первых 10 чисел, а затем произвести несколько операций. Схема расчета будет такой:

(10-10) + (2-10) + (10-2) + (2-2) = 144.

Типы процедур, используемых для решения проблем, зависят от имеющегося опыта, от необходимого числа повторений одной и той же операции и от емкости памяти.

Для того чтобы узнать, какое вино подходит к тому или иному блюду, мы можем последовательно перепробовать различные вина, использовать таблицу, в которой к каждому блюду рекомендуется

474 Глава 9

какое-то вино, или же использовать общие правила соответствия вин различным типам мясных блюд. Инженер, проектирующий мост, и астроном, отыскивающий на небе звезду, будут таким же образом выбирать нужный тип процедуры.

Можно провести еще одну параллель между работой человеческого мозга и компьютера при решении проблем. Речь идет о применении тех стратегий, которые мы рассмотрели в главе 8.

Поскольку компьютер может работать только по программе, рас­сматривать здесь случайный перебор бессмысленно. В случае если речь идет об игре, в которой такая стратегия не используется, было бы неэкономно «заставлять» компьютер искать решение задачи с помощью этой стратегии.

Остальные две стратегии используются как человеком, так и компью­тером.

Рациональный перебор соответствует эвристическому методу, при котором процессор занимается поисками частичных решений, чтобы максимально повысить вероятность нахождения приемлемого решения, сведя к минимуму время и усилия на его поиск.

Систематический перебор соответствует алгоритмическому методу; в этом случае систематически просматриваются все возможные (при имеющемся наборе данных) решения с целью найти то из них, которое, наиболее эффективно. Однако компьютер, так же как и человек, не использует эту последнюю стратегию для решения сложных задач. Например, при игре в шахматы алгоритмический метод потребовал бы того, чтобы компьютер для полной уверенности в выигрыше каждый раз просматривал 10 120 возможностей. В подобных случаях выгоднее ис­пользовать эвристический метод, позволяющий с помощью ряда подпрограмм ограничивать поиски решений конкретными «узкими» зада­чами, такими как захват центра шахматной доски или атака на короля противника.




Top