Возможна ли проверка шим контроллера мультиметром. ШИМ-контроллеры STMicroelectronics

В статье приводится обзор ШИМ-контроллеров компании ON Semiconductor, которые являются прекрасной основой для построения современных сетевых импульсных источников питания. Известный производитель и мировой эксперт в области электропитания и энергосбережения, компания ON Semiconductor предлагает широкую номенклатуру микросхем ШИМ-контроллеров для выбора. Микросхемы характеризует невысокая стоимость, высокая эффективность преобразования, экономичность за счет понижения энергопотребления в дежурном режиме, высокая надежность, обеспечиваемая наличием комплекса встроенных защит, а также низкий уровень ЭМИ.

Введение

Сетевой источник питания - один из самых ответственных узлов в структуре электронной аппаратуры. Наиболее важные параметры сетевого преобразователя: рабочий диапазон входного напряжения, потребляемая мощность в дежурном режиме, габаритные размеры, надежность, электромагнитная совместимость и себестоимость. Подавляющее большинство современной аппаратуры с питанием от сети использует импульсные источники питания. Сетевой импульсный источник питания обеспечивает гальваническую развязку выходных цепей от сетевого напряжения. Развязка обеспечивается за счет использования импульсного трансформатора в силовой цепи и оптрона в цепи обратной связи.

Ключевым элементом импульсного сетевого источника питания является микросхема ШИМ-контроллера. Основная функция ШИМ-контроллера - управление силовым транзистором (транзисторами), стоящим в первичной цепи импульсного трансформатора, и поддержание выходного напряжения на заданном уровне, используя сигнал обратной связи. Структура современных ШИМ-контроллеров обеспечивает и дополнительные функции, повышающие эффективность и надежность источника питания:

  • ограничение тока и скважности импульсов в цепи управления силовыми транзисторами;
  • плавный запуск преобразователя после подачи питания (Soft Start);
  • встроенный динамический источник питания от высоковольтного входного напряжения;
  • контроль уровня входного напряжения с устранением «провалов» и «выбросов»;
  • защита от КЗ в цепи силового трансформатора и выходных цепей выходного выпрямителя;
  • температурная защита контроллера, а также ключевого элемента;
  • блокировка работы преобразователя при пониженном и повышенном входном напряжении;
  • оптимизация управления для дежурного режима и режима с пониженным током в нагрузке (пропуск циклов или переход на пониженную частоту преобразования);
  • оптимизация уровня ЭМИ.

Рассматриваемые в статье ШИМ-контроллеры не имеют встроенного силового транзистора, управляющего током в первичной цепи силового трансформатора.

Базовые параметры режима управления силовым каскадом

В зависимости от требований конкретного применения в контроллере могут использоваться разные схемы выходного каскада управления силовым ключом, тип управления по цепи обратной связи (по току или по напряжению), а также различный частотный режим преобразования. Тип выходного каскада ШИМ-контроллера определяет и топологию преобразователя.

Типы топологии сетевых преобразователей:

  • обратноходовой;
  • прямоходовой;
  • двухтактный;
  • полумостовой;
  • мостовой;
  • квазирезонансный.

В таблице 1 показаны характеристики базовых топологий схем, используемых при построении импульсных сетевых источников питания.

Таблица 1. Базовые топологии схем, применяемые при построении импульсных источников питания

Обратноходовой преобразователь

Основная схема, по который выполнены многие маломощные импульсные источники питания, - это обратноходовой преобразователь (рис. 1). Эта схема преобразует одно постоянное напряжение в другое, регулируя выходное напряжение посредством широтно-импульсной модуляции (ШИМ) либо частотно-импульсной модуляции (ЧИМ). Модуляция ширины импульса - это метод управления, основанный на изменении отношения длительности включенного состояния ключа к выключенному при постоянной частоте. В обратноходовом преобразователе длительность включенного состояния ключа больше длительности выключенного состояния для того, чтобы большее количество энергии было запасено в трансформаторе и передано в нагрузку.

Рис. 1. Типовая схема Flyback-преобразователя

Прямоходовой преобразователь

Другая популярная конфигурация импульсного источника питания известна как схема прямоходового преобразователя и показана на рис. 2. Хотя эта схема очень напоминает обратноходовую схему, имеются и некоторые фундаментальные различия. Прямоходовой преобразователь накапливает энергию не в трансформаторе, а в выходной катушке индуктивности (дросселе). Точки, обозначающие начало обмоток на трансформаторе, показывают, что, когда ключевой транзистор открыт, во вторичной обмотке появляется напряжение, и ток течет через диод VD1 в катушку индуктивности. У этой схемы большая продолжительность включенного состояния ключа относительно выключенного состояния, более высокое среднее напряжение во вторичной обмотке и более высокий выходной ток нагрузки.

Рис. 2. Прямоходовой преобразователь напряжения сети

Двухтактный прямоходовой преобразователь

На рис. 3 показан двухтактный преобразователь, который является разновидностью прямоходового преобразователя за исключением того, что оба ключа включены в цепь первичной обмотки трансформатора.

Рис. 3. Схема двухтактного прямоходового преобразователя

В номенклатуре ШИМ-контроллеров ON Semi представлены микросхемы, имеющие различную топологию выходного каскада, тип управления, частотный режим управления, а также дополнительные встроенные функции. В таблице 2 представлены основные параметры ШИМ-контроллеров ON Semi, выпускаемых в настоящее время.

Таблица 2. Основные параметры ШИМ-контроллеров ON Semi для сетевых импульсных источников питания

Тип Топология Режим регулирования Частота, кГц Режим Stand-by Защита от пониженного входного напряжения UVLO, В Защита от КЗ на выходе Блокировка Режим Soft Start
NCL30000 Flyback По току До 300 - - - - -
NCL30001 Flyback По току До 150 - - - - -
NCP1237 Flyback По току 65 - - + + +
NCP1238 Flyback По току 65 - - + + +
NCP1288 Flyback По току 65 - 10 + + +
NCP1379 Flyback По току Варьируется + 9 + + +
NCP1380 Flyback По току Варьируется + 9 + + +
NCP1252 Forward По току До 500 + 9-10 + + +
CS51221 Forward По напряжению До 1000 - + - + +
CS5124 Flyback По току 400 - + - - +
MC33025 Push-Pull По току или по напряжению 1000 - + + - +
MC33060 Flyback По напряжению 200 - + - - +
MC33067 Flyback По напряжению 1000 - + + - +
MC33364 Flyback По току Варьируется + + - - -
MC34060 Мультирежимный По напряжению 200 - + - - -
MC34067 Резонансный По напряжению - - + + - -
MC44603 Flyback По току или по напряжению До 250 + 9 + + +
NCP1200 Flyback По току 100 + - + - -
NCP1203 Flyback По току 100 + + + - -
NCP1207 Flyback По току До 1000 + + + + +
NCP1216 Flyback По току 100 + - + - +
NCP1217 Flyback По току 100 + + + + +
NCP1219 Flyback По току 100 + 9,4 + + +
NCP1230 Flyback По току 100 + + + + +
NCP1252 Flyback/Forward По току До 500 + 9-10 + + +
NCP1271 Flyback По току 100 + + + + +
NCP1294 Flyback - До 1000 + + + + -
NCP1308 Flyback По току Варьируется + + + + +
NCP1337 Flyback По току Варьируется + + + + +
NCP1338 Flyback По току Варьируется + + + + +
NCP1351 Flyback По току Варьируется - - + + -
NCP1377 Flyback По току Варьируется + + - + +
NCP1379 Flyback По току Варьируется + 9 + + +
NCP1380 Flyback По току Варьируется + 9 + + +
NCP1381 Flyback По току Варьируется + + + + +
NCP1382 Flyback По току Варьируется + + + + +
NCP1392 Half-Bridge По току 250 - 9 - - +
NCP1393 Half-Bridge По току 250 - 9 - - +
NCP1395 Push-Pull По напряжению 1000 + + + + +
NCP1396 Push-Pull По напряжению До 500 + + + + +
NCP1397 А/В Half-Bridge По напряжению 50-500 - 9,5/10,5 + + +
NCP1562 Flyback По напряжению Дo 500 - + + + +
NCV3843, UC3843 Flyback По току 52 - + + - +
UC2842/43/44 Flyback По току 52 - + + - -
UC2843 /44/45 Flyback По току 52 - + + - -
UC3842 /44/45 Flyback По току 52 - + + - -
UC3845 Push-Pull По току 52 - + + - +

Следует отметить, что структура микросхем ШИМ-контроллеров последних разработок очень похожа. Основные различия определяются типом топологии, режимом регулирования (по току/напряжению), режимом частотного управления (частота постоянная или варьируемая), а также логикой работы при обнаружении критических ситуаций. Структура ШИМ-контроллера содержит логику, задающую автомат состояний. Схема автомата переходов реализована на компараторах, триггерах, таймерах и элементах логики. Основные состояния контроллера: начальный пуск частотного генератора, выход на рабочий режим, адаптивное слежение за током нагрузки и выбор оптимального режима, обнаружение критических ситуаций, переход в аварийный режим, автовосстановление после сбоев.

Защита и безопасность работы

Сетевые преобразователи должны обеспечивать достаточный уровень безопасности при работе без деградации характеристик силовых элементов в случае возникновения токовых перегрузок вследствие коротких замыканий в обмотках трансформатора или в нагрузке. КЗ обнаруживается в первую очередь по внезапному исчезновению сигнала обратной связи через оптрон. Нужно отключить драйвер выходного транзистора, чтобы предотвратить перегрев транзистора и насыщение трансформатора. Однако и в процессе запуска сигнал обратной связи также отсутствует некоторое время. Нужно идентифицировать эти две ситуации. В некоторых недорогих контроллерах защита от КЗ не реализована. В таких случаях возникновение КЗ приведет к неконтролируемым последствиям и может в считанные секунды привести к разрушению силовых элементов преобразователя. КЗ может быть нескольких типов - в самой нагрузке, в обмотках, в электролитическом конденсаторе выходного выпрямителя, выпрямительных диодах. Введение детерминируемых состояний увеличивает сложность автомата, но повышает надежность работы преобразователя.

Функция блокировки при аварийных ситуациях

При выборе подходящего для применения контроллера особое внимание разработчик должен обращать на логику автомата состояний, особенно на логику отработки аварийных ситуаций. Переход в аварийный режим при обнаружении критических ситуаций может предусматривать как принудительное ограничение тока, так и полную блокировку работы преобразователя. При блокировке останавливается задающий ШИМ-генератор и запрещается подача активного сигнала для силового транзистора. В зависимости от типа или модификаций микросхем возможны два сценария блокировки (Latch).

В первом случае после срабатывания блокировки преобразователь «защелкивается» в этом состоянии и не меняет его, даже если условие, вызвавшее это состояние, уже пропало. Восстановление работы преобразователя возможно лишь после выключения сетевого напряжения и повторного включения питания.

Во втором случае реализуются попытки автовосстановления (autorecovery) нормальной работы преобразователя. Для этого в структуре контроллера запускается таймер на время около 1,5 с. После истечения этого времени контроллер вновь проверяет наличие критических ситуаций, и если они сохраняются, блокировка остается. В этом случае светодиодный индикатор сетевого источника будет мигать с периодом 1,5 с. Автовосстановление происходит только при срабатывании по понижению напряжения.

Встроенный динамический источник питания

Встроенный динамический источник тока стартового питания (Dynamic Self-Supply, DSS) гарантирует надежный запуск преобразователя и в то же время - низкое потребление в выключенном состоянии. Встроенный динамический источник питания значительно упрощает дизайн импульсного трансформатора, потому что отпадает необходимость в использовании дополнительной обмотки для питания микросхемы.

Источник динамического питания обеспечивает питание контроллера при старте преобразователя, а также питает схему контроллера в тех случаях, когда напряжение питания на обмотке питания контроллера кратковременно пропадает, например при перегрузках. Стартовый генератор тока микросхемы обеспечивает плавный запуск преобразователя. После запуска преобразователя питание производится от питающей обмотки трансформатора. Есть модификации микросхем, в которых нет источника динамического питания и питание производится всегда только от линии высокого напряжения. С одной стороны, это приводит к повышению потребления, а с другой - не требует наличия дополнительной питающей обмотки трансформатора. Вход высоковольтного питания имеет детектор пониженного питания, который позволяет выключить контроллер (brown-out condition) или слишком высокое напряжение (line overvoltage). Эта защита работает как с переменным, так и выпрямленным входным напряжением и не зависит от пульсаций напряжения. В DSS используется синхронный пиковый детектор.

Режим пониженной частоты

В контроллерах последних разработок применяется режим с переходом на пониженную частоту (Frequency foldback). Переход на пониженную частоту происходит, когда сигнал обратной связи становится ниже порога. Снижение частоты преобразования позволяет уменьшить потребление в дежурном режиме.

Режим Soft-Skip

Режим пропуска частотных циклов позволяет уменьшить потребление в дежурном режиме. Режим активизируется по уменьшении уровня амплитуды сигнала обратной связи ниже установленного порога. Soft-Skip и Frequency foldback реализуются в одном структурном модуле контроллера.

Уменьшение ЭМИ за счет джиттера внутреннего генератора (Internal frequency jittering)

Для контроллеров, работающих на фиксированной частоте, может использоваться прием введения малой частотной модуляции около центральной частоты (джиттер). Наличие джиттера не влияет на работу преобразователя, однако позволяет «размыть» спектр ЭМИ и таким образом уменьшить амплитуду электромагнитного излучения, индуцируемого в цепи трансформатора и других силовых цепей преобразователя.

Ramp compensation - компенсация пилообразности сигнала обратной связи

В последних разработках ШИМ-контрол-леров используется компенсация пилообраз-ности сигнала обратной связи. Это позволяет улучшить режим стабилизации в процессе регулирования.

Dual level OCP - двухуровневая защита от токовой перегрузки

Защита от повышенного тока (Overcurrent Protection) в нагрузке и силовых цепях имеет два различных уровня. На низком уровне контроллер сохраняет способность к регулированию, но имеет долгий старт. На высоком уровне при потере сигнала регулирования запускается обычный таймер. Это позволяет источнику питания кратковременно работать в режиме критической мощности. Токовая защита зависит только от сигнала в цепи обратной связи.

Приведенные выше функции в полной мере реализованы в последних разработках микросхем ШИМ-контроллеров ON Semi - сериях микросхем NCP1237/38/88 и NCP1379/80.

Структура ШИМ-контроллеров NCP1237, NCP1238, NCP1287 и NCP1288

Микросхемы этих типов практически идентичны по цоколевке и схеме включения. В них используется режим управления по току с фиксированной частотой преобразования. Микросхемы предназначены для применения в обратноходовых преобразователях (Flyback) c гальванической развязкой (трансформатор, управление - обратная связь по напряжению через оптрон, по току - через дополнительную обмотку силового трансформатора). На рис. 4 показана структурная схема ШИМ-контроллера NCP1237.

Рис. 4. Структурная схема ШИМ-контроллера NCP1237

Встроенная схема Dynamic Self-Supply (DSS) упрощает проектирование и обеспечивает уменьшение дополнительных элементов. Наличие режима Soft-Skip с пропуском циклов обеспечивает повышение эффективности преобразования при малых нагрузках с сохранением низкого потребления в дежурном режиме. Также поддерживается и понижение частоты преобразования до 31 кГц (frequency foldback) с гистерезисом. Порог включения режима - 1,5 В, обратный переход в рабочий режим происходит при превышении порога 1 В. При понижении напряжения сигнала обратной связи ниже порога 0,7 В активизируется режим пропуска циклов Soft-Skip, который позволяет уменьшить потребление дополнительно, а также уменьшить возникновение акустического шума на трансформаторе и конденсаторах, использовать более дешевые трансформаторы. Встроенный двухпороговый защитный таймер служит для защиты при сбоях и нарушениях работы схемы управления вследствие скачков тока. Встроенная схема формирования джиттера частоты обеспечивает «размывание» спектра и уменьшение пиковых уровней ЭМИ. Контроллер также включает новую схему высоковольтного каскада, которая совместно со схемой старта позволяет оценивать уровень сигнала с токового датчика как в цепи переменного напряжения, так и в цепи постоянного выпрямленного напряжения. ON Semiconductor использует высоковольтную технологию входных цепей контроллера, поэтому NCP1288 может подключаться по питающим цепям непосредственно к шине высокого напряжения питания.

Режим блокировки для NCP1237 (рис. 5) может активизироваться по одному из двух условий: при повышении уровня напряжения выше порогового на входе Latch за счет перенапряжения или при уменьшении напряжения ниже другого заданного порога за счет терморезистора с отрицательным температурным коэффициентом, стоящего на силовом транзисторе.

Рис. 5. Типовая схема включения ШИМ-контроллера NCP1237

Токовый источник HV startup обеспечивает заряд конденсатора VCC до порогового напряжения VCC (on) и работает, пока входное напряжение более VHV (start), обеспечивая режим включения. Затем контроллер производит плавный пуск Soft-Start, во время которого ток потребления линейно возрастает перед включением режима регулирования. Во время периода плавного старта блокировка игнорируется, а ток блокировки удваивается, обеспечивая быстрый предзаряд конденсатора на входе вывода блокировки.

В микросхемах реализована защита от короткого замыкания на выходе.

Частота преобразования - 65/100/133 кГц и определяется модификацией микросхем. Микросхемы рассчитаны на использование в расширенном температурном диапазоне от -40 до +125 °С, что особенно актуально для промышленных приложений. Типовые применения контроллеров:

  • сетевые источники питания принтеров, мониторов;
  • зарядные устройства для аккумуляторов;
  • встроенные сетевые источники бытовой аппаратуры.

Функциональные отличия микросхем

Для модификаций микросхем NCP1238B и NCP1288B есть функции поддержки автовосстановления (autorecovery). NCP1237 имеет схему двухпороговой OCP, в то время как NCP1238 его не имеет. Базовые различия между микросхемами серии показаны в таблице 3.

Таблица 3. Базовые различия модификаций ШИМ-контроллеров серии NCP12xx

Модификация DSS Dual OCP Latch Auto Recovery
NCP1237A + + + -
NCP1237B + + - +
NCP1238A + - + -
NCP1238B + - - +
NCP1287A Только HV + + -
NCP1287B Только HV + - +
NCP1288A Только HV - + -
NCP1288B Только HV - - +

ШИм-контроллеры серии NCP1379/80

Микросхемы в первую очередь ориентированы для применения в сетевых адаптерах с высокой мощностью (AC/DC Wall Adapters). Основное отличие от серии NCP12xx - квазирезонансный режим, который и обеспечивает высокую токовую нагрузочную способность. При регулировании используется обратная связь по напряжению. На рис. 6 показана структурная схема микросхемы ШИМ-контроллера NCP1379.

Рис. 6. Структура микросхемы NCP1379

Динамическое питание для фазы запуска в микросхемах этой серии не используется. Питание подается постоянно через резистор от входной шины входного напряжения и через диод - с питающей обмотки трансформатора. NCP1379 и NCP1380 обеспечивают ультранизкое потребление в дежурном режиме, а также высокую эффективность работы с пониженной токовой нагрузкой за счет переключения на пониженную частоту.

Блокировка для микросхем серии NCP1379/80, в отличие от микросхем серии NCP1237/38/87/88, происходит по другим условиям. Реализована защита от превышения мощности в нагрузке Over Power Protection (OPP), или повышенного тока. В качестве токового датчика используется дополнительная обмотка трансформатора. Сигнал с обмотки подается на вывод 1 микросхем NCP1379/80. По сигналу на входе вывода 1 контролируется не только условие начального пуска по точке пересечения нуля (Zero Crossing Detection), но и оценивается превышение тока в нагрузке выше критического порога. На рис. 7 показана типовая схема включения ШИМ-контроллера NCP1379.

Рис. 7. Типовая схема включения ШИМ-контроллера NCP1379

В микросхемах NCP1379/80 реализована внутренняя термозащита (Internal Shutdown).

Таблица 4. Базовые различия модификаций ШИМ-контроллеров серии NCP1379/80

модификация Режим блокировки работы (Latch) Режим с пуском таймера автовосстановления после блокировки (autorecovery) Защита от перенапряжения (OVP) и термозащита (OTP) Защита от понижения питания (Brown Out) + защита от перенапряжения (OVP)
NCP1379 - + - +
NCP1380A + - + -
NCP1380B - + + -
NCP1380C + - - +
NCP1380D - + - +

Различия между модификациями микросхем NCP1380 определяются логикой схем начального запуска и работой цепей защиты.

В модификациях или реализуется блокировка (Latch), или разрешается автовосстановление после сбоя (AutoRecovery). Блокировка срабатывает при обнаружении повышенного тока в цепи нагрузки, например при коротком замыкании. Условие короткого замыкания определяется таймером длительностью 80 мс. Если повышенный ток детектируется более 80 мс, то ситуация оценивается как аварийная и работа преобразователя блокируется.

Защита от перенапряжения, пониженного напряжения на входе, а также защита от перегрева выходного транзистора реализуется посредством двухпорогового детектора, стоящего на входе вывода 7 микросхем NCP1379/80. Следует только учесть, что не все типы защит реализуются сразу в одной микросхеме, а только определенные комбинации. Четыре модификации микросхемы NCP1380 позволяют выбрать набор определенных защит.

Соответственно, немного отличаются и типовые схемы включения для модификаций NCP1380 (рис. 8, 9).

Рис. 8. Типовая схема включения модификаций микросхем NCP1380A/B

Рис. 9. Типовая схема включения модификаций микросхем NCP1380C/D

Рассмотренные ШИМ-контроллеры предназначены для тех приложений, где устойчивость к жестким условиям эксплуатации и стоимость устройства - ключевые факторы выбора.

Литература

  1. AND8344/D Implementing an LCD TV Power Supply with the NCP1392B, NCP1606 and NCP1351B Prepared by: Jaromir Uherek ON Semiconductor.
  2. Ромадина И. Контроллеры ON Semiconductor для сетевых источников питания с экономичным дежурным режимом // Компоненты и технологии. 2009. № 7.
  3. Datasheet NCP1237 Fixed Frequency Current Mode Controller for Flyback Converters.
  4. Datasheet NCP1288 Fixed Frequency Current Mode Controller for Flyback Converters.
  5. Datasheet NCP1379 Quasi-Resonant Current-Mode Controller for High-Power Universal Off-line Supplies.
  6. Datasheet NCP1380 Quasi-Resonant Current-Mode Controller for High-Power Universal Off-Line Supplies.

В определенных условиях приходится монтировать автономные системы электропитания. Неотъемлемой их частью являются модули с аккумуляторными батареями. Заряд таких блоков может происходить от всевозможных источников питания, предоставляющих не всегда стабильные входные параметры.

Оптимальным положением в таких условиях является использование приборов или элементов, способных взять под контроль данный процесс зарядки. Основную роль в подобном случае играет в схеме шим контроллер.

Действующие процессы

Используются чаще всего данные контроллеры для работы с альтернативными источниками энергии, к которым относятся:

  • ветровые установки;
  • модули с солнечными батареями;
  • блоки с гидротурбинами;
  • дизельные источники питания.

Это делает их востребованными в современных домах и предприятиях.

В мировой научной среде ШИМ расшифровывается как pulse-width modulation (PWM), что в переводе означает широтно-импульсную модуляцию. На деле это - операция управления мощностью, подходящей к потребителю, с помощью коррекции скважности импульсов с неизменной частотой.

ШИМ регулятор мощности встречается нескольких типов:

  • цифровой;
  • аналоговый;
  • с двумя уровнями;
  • с тремя уровнями.

ВИДЕО: Принцип работы ШИМ контроллера UC3843 в импульсном блоке питания

Необходимость установки

Обязательно используются контроллеры для схем, в которых присутствуют свинцово-кислотные АКБ. Это связано с тем, что такие элементы питания негативно воспринимают как перезаряд, так и значительное разряжение. В первом случае может произойти быстрый выход из строя батареи за счет закипания электролита или даже взрыва банок с ним. Во втором случае процесс приводит к разрушению пластин.

ШИМ контроллер помогает и щелочным элементам питания, блокируя их перезаряд. Данный элемент разрывает цепь, отсоединяя от источника питания нагрузку.

Нередко для импульсных источников питания или в источники бесперебойного питания встраивают PWM-элементы. Встречаются они и в инверторах.

Обычно разъединение происходит при достижении двенадцативольтовым аккумулятором уровня 10,5 или 11 В. В таком случае за 10 часов непрерывной работы падение емкости составит со 100% до примерно 20%. В процессе более быстрого разряжения емкость будет уменьшаться.

В определенных условиях допускается коррекция напряжения отключения во время изготовления или настроечного процесса. Однако, на прилавках доминирует не регулятор напряжения, а прибор с типовым уровнем выходных параметров.

Не стоит экономить на качественном оборудовании для собственной солнечной или ветряной станции, рекомендуем купить исключительно фирменное оборудование с длительным сроком действия.

Ориентироваться по затратам поможет таблица:

Исходя из пропорций затрат, очевидно, что PWM-элементы не являются большой статьей затрат в схеме. При этом они играют важную роль в процессе обеспечения эффективности системы, продлевая срок службы остального оборудования.

Разновидности контроллеров

В фотоэлектрических схемах распространены несколько типов таких элементов. Они дифференцируются не только по стоимости, но и по алгоритмам работы, способам установления параметров тока и пр.

Наиболее простые по конструкции всего лишь разрывают цепь и блокируют от нее источник, когда на ней достигается определенное напряжение, например, уровень 14,4 В. При падении до уровня 12-13 В блок питания снова собирает цепь для зарядки. В таком цикле степень зарядки АКБ составляет примерно 60%. Стабильный недозаряд приводит к образованию сульфатации на свинцовых пластинах и в скором времени выходе из строя источника питания.

Данный тип практически не выпускается серийно, но встречается у мастеров-самоделок. Они выпускают элементы для экономии по бросовым ценам, хотя в итоге экономия оказывается иллюзией из-за скорой поломки АКБ.

PWM регуляторы являются более продвинутой технологией и позволяют дозаряжать КБ до 100%. В процессе получается несколько стадий заряда батареи:

  • осуществляется подача на клеммы максимального тока, что позволяет АКБ потреблять его весь, поступающий от солнца на модули в данную минуту;
  • при шим заряде уровень напряжения достигает установленного параметра и осуществляется постоянная поддержка параметра, чтобы избежать газообразования в банках (сила тока медленно снижается);
  • происходит выравнивание, ведь для большинства АКБ является естественным получение заряда до уровня газообразования при выравнивании напряжения на всех емкостях с электролитом (очищаются пластины, и перемешивается жидкость внутри);
  • стабилизация и постепенное снижение напряжения проводится, когда батарея получает полный заряд, не допуская перегрева.

Производители предлагают свои контроллеры даже со специальными информативными элементами:

  • световой индикацией;
  • жидкокристаллическими экранами;
  • многофункциональными мониторами.

В определенных моделях встречается функционал, позволяющий определить уровень заряда АКБ. За счет этой опции можно настроить работу под конкретную батарею, пролонгировав ее период эксплуатации.

Для некоторых товаров имеется указание в сертификате о возможности указания уровня заряда в % (state of charge SOC), но не всегда данная опция работает корректно.

Чтобы проконтролировать максимально достоверно SOC, необходимо мониторить несколько циклов зарядки батареи и провести самостоятельный расчет по достаточно громоздким формулам.

Популярные бренды

В бюджетных моделях проценты указываются приблизительно. Это относится к моделям бренда EPSolar. Производители от Morningstar совсем отказались от SOC и выдают информацию пользователю о напряжении АКБ в вольтах. Более достоверными считаются показания процентов у таких торговых марок:

  • Steca PR1010-3030;
  • Tarom;
  • Power Tarom.

Китайские производители EPSolar являются наиболее востребованными на рынке данной электроники. Их продукция является оптимальной по соотношению стоимости и качеству, при этом в арсенале имеются модели, впитавшие максимальное количество функционала. Высокое качество комплектующих и сборки выгодно отличает бренд от конкурентов типа Steca Solar. Имеются модели с таймерами для выключения/включения разных ночников.

Более дорогим является немецкий бренд Steca. Европейское качество привязано к стоимости валюты, поэтому не все могут выбрать такие модели.

Правильный выбор контроллера

В процессе выбора стоит обращать внимание на входные параметры. Оно регламентируется производителями. Параметр указывается в технических данных прибора. Это значение обязано соответствовать напряжению ХХ батареи либо сумме напряжений ХХ нескольких солнечных блоков в последовательном соединении. Рекомендуется добавлять 20%-ный запас.

Общая расчетная мощность батареи подбирается не более, чем перемноженное значение напряжения системы и выходного тока. В этом случае тоже ставим запас в 20%. Если нет возможности самостоятельно провести расчеты, то стоит обратиться к специалистам в электротехнике.

ВИДЕО: Как проверить любой ШИМ (PWM) контроллер

Вот приспичило вам сделать себе могучую светодиодную хреновину, чтобы моргала и переливалась. Да еще в RGB и плавненько так. Собрали вы это дело, поглядели на количество каналов которыми нужно рулить и призадумались…

▌А что не так с ШИМ?
Да все с ним хорошо, только аппаратных каналов обычно всего несколько штук. А программный ШИМ имеет ряд недостатков. Да, можно взять и на базе , используя всего один таймер собрать многоканальный ШИМ, но сколько у нас будет вызовов прерываний?

Каждый отдельный фронт потребует своего прерывания на смену уровня. А представьте, что у нас этих каналов будет не 4, а 40? Или 400? Да контроллер из прерываний вылезать не будет. Прерывания будут налезать друг на друга, порождая джиттер. Не говоря уже о том, что все эти каналы надо будет при любом изменении скважности заново сортировать по длительности. В общем, тупилово будет еще то.

▌Нас спасет BAM
Но решение есть. Зовется этот метод BAM. Суть его в том, что мы включаем нагрузку импульсами, поразрядно, с длительностью равной весу разряда.


В результате мы имеем высокую дискретность, но при этом у нас всего 7 прерываний на любое число каналов. Соответственно разрядам.


Интегрируется все аналогично обычному ШИМу. Но есть ряд нюансов:

  1. Частота плавает и на малых разрядах она повышается. Для светодиода или грелки это наплевать. А вот двигатель или еще какую нагрузку с реактивными элементами вроде обмоток или емкостей я бы таким сигналом питать не стал.
  2. При переходе с малых весов к одному большому наблюдается мерцание. Но с этим можно бороться, подробности ниже.
  3. Выдавать вес лучше с большего к меньшему, так меньше заметно влияние второго пункта.

Микросхемы для импульсных источников питания. Справочник.
Издательство: Додэка.

Очень неплохой справочник. Замечателен тем, что является… самым обычным переводом даташитов. Один в один, картинка в картинку.
Переведенных даташитов там тьма, один только перечень в четыре колонки занимает десяток страниц. Все импульсные микросхемы которые знал там нашел! А что особенно радует, так это то, что есть документация на отечественную комплектуху. С коей вечно проблемы. Если аналог не подберешь, и не дернешь бумагу на него — пиши пропало.

DC-DC преобразование
Для изменения напряжения постоянного тока с минимальными потерями используются DC-DC преобразователи, работающие по принципу Широтно-Импульсной Модуляции (ШИМ , она же PWM по басурмански). Если не читал мои прошлые статьи, где я подробно разжевал принцип работы ШИМ , то я кратенько тебе напомню. Основной принцип тут в том, что напряжение подается не сплошным потоком, как в линейных стабилизаторах, а краткими импульсами и с большой частотой.


То есть у тебя на выходе ШИМ контроллера, например, сначала в течении десяти микросекунд напряжение, к примеру, двенадцать вольт, потом идет пауза. Скажем, те же десять микросекунд, когда на выходе напряжения вообще нет. Затем все повторяется, словно мы быстро-быстро включаем и выключаем рубильник.

Таким образом у нас получаются прямоугольные импульсы. Если вспомнить матан, а конкретно интегрирование, то после интегрирования этих импульсов мы получим площадь под фигурой очерченной импульсами. Таким образом, меняя ширину импульсов и пропуская их через интегратор, можно плавно менять напряжения от нуля до максимума с любым шагом и практически без потерь.
В качестве интегратора служит конденсатор, он заряжается на пике, а на паузах будет отдавать энергию в цепь. Также туда всегда последовательно ставят дроссель, который тоже служит источником энергии, только он запасает и отдает ток. Поэтому такие преобразователи при небольших габаритах легко питают мощную нагрузку и при этом почти не расходуют энергию на лишний нагрев.

Если не догнал, то я для простоты переложил это в понятное «канализационное русло» . Смотри на картинку, где ключевой транзистор ШИМ контроллера похож на вентиль , он открывает и закрывает канал. Конденсатор это банка, накапливающая энергию. Дроссель это массивная турбина, которая, будучи разогнанной потоком, при открытом вентиле, за счет своей инерции прогоняет воду по трубам и после закрытия вентиля.

Конечно, самостоятельно разработать такой источник питания сложно, требуется неслабое образование в области электроники, но не стоит напрягаться по этому поводу. Умные дядьки из Motorola, STM, Dallas и прочих Philips ’ов придумали все за нас и выпустили уже готовые микросхемы содержащие в себе ШИМ контроллер. Тебе остается его лишь припаять и добавить обвески, которая задает параметры работы, причем изобретать самому ничего не надо, в datasheet’ах подробно расписано что и как подключать, какие номиналы выбирать, а иногда даже дают готовый рисунок печатной платы. Надо лишь немного знать английский:)

Пока писал статью про UART пришла в голову одна извращенная идея — на базе UART же можно организовать самый натуральный низкодискретный ШИМ!

Достаточно только сделать где-нибудь в памяти переменную, куда мы будем совать число с заданной скважностью нулей и единиц, а по прерыванию опустошения буфера это число снова пихать в регистр UDRE. Таким образом, генерация ШИМ будет самопроизвольной, без лишних телодвижений. Правда можно получить всего 10 разных значений ШИМ, но зато нахаляву!!!

Для тех кто не понял как, приведу числа которые надо будет непрерывно слать через UART:
два дополнительных значения мы получим за счет старт и стоп битов.

00000000 — 1/10
00000001 — 2/10
00000011 — 3/10
00000111 — 4/10
00001111 — 5/10
00011111 — 6/10
00111111 — 7/10
01111111 — 8/10
11111111 — 9/10

Да и частоты там можно получить нефиговые!
Красота!=)))))

Вот уже несколько раз я ругался странным словом ШИМ . Пора бы внести ясность и разьяснить что же это такое. Вообще, я уже , но все же повторюсь в рамках своего курса.

Вкратце, Широтно Импульсная Модуляция (в буржуйской нотации этот режим зовется PWM Pulse Width Modulation ) это способ задания аналогового сигнала цифровым методом , то есть из цифрового выхода, дающего только нули и единицы получить какие то плавно меняющиеся величины. Звучит как бред, но тем не менее работает. А суть в чем:

Представь себе тяжеленный маховик который ты можешь вращать двигателем. Причем двигатель ты можешь либо включить, либо выключить. Если включить его постоянно, то маховик раскрутится до максимального значения и так и будет крутиться. Если выключить, то остановится за счет сил трения.

А вот если двигатель включать на десять секунд каждую минуту, то маховик раскрутится, но далеко не на полную скорость — большая инерция сгладит рывки от включающегося двигателя, а сопротивление от трения не даст ему крутится бесконечно долго.

Чем больше продолжительность включения двигателя в минуту, тем быстрей будет крутится маховик.
При ШИМ мы гоним на выход сигнал состоящий из высоких и низких уровней (применимо к нашей аналогии — включаем и выключаем двигатель), то есть нулей и единицы. А затем это все пропускается через интегрирующую цепочку (в аналогии — маховик). В результате интегрирования на выходе будет величина напряжения, равная площади под импульсами.
Пропорциональное управление – залог тишины!
Какая задача ставится перед нашей системой управления? Да чтобы пропеллеры зря не вращались, чтобы зависимость скорости вращения была от температуры. Чем горячее девайс — тем быстрей вращается вентилятор. Логично? Логично! На том и порешим.
Заморачиваться с микроконтроллерами конечно можно, в чем то будет даже проще, но совершенно не обязательно. На мой взгляд проще сделать аналоговую систему управления — не надо будет заморачиваться с программированием на ассемблере.

Будет и дешевле, и проще в наладке и настройке, а главное любой при желании сможет расширить и надстроить систему по своему вкусу, добавив каналов и датчиков. Всё что от тебя потребуется это лишь несколько резисторов, одна микросхема и термодатчик. Ну а также прямые руки и некоторый навык пайки.

В схемотехнике современных импульсных источников питания (ИИП) приобрели широкую популярность ШИМ-регуляторы, выполненные в малогабаритных планарных корпусах с шестью выводами. Обозначение типа корпуса может быть SOT-23-6, SOT-23-6L, SOT-26, TSOP-6, SSOT-6. Внешний вид и расположение выводов показаны на рисунке ниже. В данном случае на левом фрагменте картинки представлена кодовая маркировка LD7530A

Назначение выводов:
1 - GND. (Общий провод).
2 - FB. (FeedBack - Обратная Связь). Вход для управления длительностью импульсов сигналом с выходного напряжения. Иногда может иметь обозначение COMP (входной компаратор).
3 - RI/RT/CT/COMP/NC - В зависимости от типа микросхемы, может быть задействован для частотозадающей RC цепи (RI/RT/CT), либо для организации защиты, как вход компаратора отключения ШИМ при пороговом значение на его входе, указанном в документе. В некоторых типах микросхем этот вход может быть никак не задействован (NC - No Connect).
4 - SENSE, по другому CS (Current Sense) - Вход с датчика тока в истоке ключа.
5 - VCC - Вход напряжения питания и запуска микросхемы.
6 - OUT (GATE) - Выход для управления затвором (Gate) ключа.

Функционально подобные регуляторы работают по принципу популярных ранее микросхем ШИМ серии xx384x, которые хорошо зарекомендовали себя в плане надёжности и устойчивости.

Некоторые затруднения часто возникают при замене или выборе аналога для подобных ШИМ-регуляторов по причине применения кодовой маркировки в обозначении типа микросхем. Ситуация осложняется большим количеством производителей компонентов, которые не всегда предоставляют документацию в массовый доступ, так же не все производители готовых устройств снабжают схемами ремонтные сервисные центры, поэтому реальные схемные решения ремонтникам часто приходится изучать по установленным компонентам и монтажным соединениям непосредственно на плате.

В практике часто встречаются микросхемы ШИМ и кодом маркировки EAxxx и Eaxxx. Официальной документации на них не найдено в свободном доступе, но сохранились обсуждения на форумах и кусочки картинок из PDF от System General, которая публикует их как SG6848T и SG6848T2. Рисунок прилагается.


Вниманию мастеров предлагаем таблицы, составленные из доступной в интернете информации и документов PDF для подбора аналогов при замене наиболее распространённых шестиногих планарных ШИМ c цоколёвкой выводов: pin1 - GND, pin2 - FB (COMP), pin4 - Sense, pin5 - Vcc, pin6 - OUT.
Основным их различием является применение и назначение вывода 3.

ШИМ-регуляторы (PWM), без использования вывода 3.

Name Part Namber Diler Marking
SG6849 SG684965TZ Fairchild / ON Semi BBxx
SG6849 SG6849-65T, SG6849-65TZ System General MBxx EBxx
SGP400 SGP400TZ System General AAKxx

ШИМ-регуляторы (PWM) с установкой резистора 95-100 kOhm на вывод 3.

Применяя перечисленные ниже ШИМ, частоту следует установить резистором RT (RI) от вывода 3 на землю. Обычно его номинал выбирается 95-100 kOhm для частоты 65-100 KHz. Более точно смотрите в прилагаемой документации. Файлы PDF упакованы в RAR.

Name Part Namber Diler Marking
AP3103A AP3103AKTR-G1 Diodes Incorporated GHL
AP8263 AP8263E6R, A8263E6VR AiT Semiconductor S1xx
AT3263 AT3263S6 ATC Technology 3263
CR6848 CR6848S Chip-Rail 848H16
CR6850 CR6850S Chip-Rail 850xx
CR6851 CR6851S Chip-Rail 851xx
FAN6602R FAN6602RM6X Fairchild / ON Semi ACCxx
FS6830 FS6830 FirstSemi
GR8830 GR8830CG Grenergy 30xx
GR8836 GR8836C, GR8836CG Grenergy 36xx
H6849 H6849NF HI-SINCERITY
H6850 H6850NF HI-SINCERITY
HT2263 HT2263MP HOT-CHIP 63xxx
KP201 Kiwi Instruments
LD5530 LD5530GL LD5530R Leadtrand xxt30 xxt30R
LD7531 LD7531GL, LD7531PL Leadtrend xxP31
LD7531A LD7531AGL Leadtrend xxP31A
LD7535/A LD7535BL, LD7535GL, LD7535ABL, LD7535AGL Leadtrend xxP35-xxx35A
LD7550 LD7550BL, LD7550IL Leadtrend xxP50
LD7550B LD7550BBL, LD7550BIL Leadtrend xxP50B
LD7551 LD7551BL/IL Leadtrend xxP51
LD7551C LD7551CGL Leadtrend xxP51C
NX1049 XN1049TP Xian-Innuovo 49xxx
OB2262 OB2262MP On-Bright-Electronics 62xx
OB2263 OB2263MP On-Bright-Electronics 63xx
PT4201 PT4201E23F Powtech 4201
R7731 R7731GE/PE Richtek 0Q=
R7731A R7731AGE Richtek IDP=xx
SD4870 SD4870TR Silan Microelectronics 4870
SF1530 SF1530LGT SiFirst 30xxx
SG5701 SG5701TZ System General AAExx
SG6848 SG6848T, SG6848T1, SG6848TZ1, SG6848T2 Fairchild / ON Semi AAHxx EAxxx
SG6858 SG6858TZ Fairchild / ON Semi AAIxx
SG6859A SG6859ATZ, SG6859ATY Fairchild / ON Semi AAJFxx
SG6859 SG6859TZ Fairchild / ON Semi AAJMxx
SG6860 SG6860TY Fairchild AAQxx
SP6850 SP6850S26RG Sporton Lab 850xx
SP6853 SP6853S26RGB, SP6853S26RG Sporton Lab 853xx
SW2263 SW2263MP SamWin
UC3863/G UC3863G-AG6-R Unisonic Technologies Co U863 U863G

ШИМ-регуляторы, в которых вывод 3 используется иначе.

При использовании перечисленных ниже ШИМ (PWM-контроллеров) следует обратить внимание на вывод 3, который может использоваться для организации защиты - тепловой или от превышения входного напряжения.
Частота может быть фиксированной 65kHz, либо устанавливаться номиналом конденсатора на выводе 3.
При замене любых микросхем на аналоги внимательно изучайте документацию. Файлы PDF упакованы в архив RAR.

Name Part Namber Diler Marking
AP3105/V/L/R AP3105KTR-G1, AP3105VKTR-G1, AP3105LKTR-G1, AP3105RKTR-G1 Diodes Incorporated GHN GHO GHP GHQ
AP3105NA/NV/NL/NR AP3105NAKTR-G1, AP3105NVKTR-G1, AP3105NLKTR-G1, AP3105NRKTR-G1 Diodes Incorporated GKN GKO GKP GKQ
AP3125A/V/L/R AP3125AKTR-G1, AP3125VKTR-G1, AP3125LKTR-G1, AP3125RKTR-G1 Diodes Incorporated GLS GLU GNB GNC
AP3125B AP3125BKTR-G1 Diodes Incorporated GLV
AP3125HA/HB AP3125HAKTR-G1, AP3125HBKTR-G1 Diodes Incorporated GNP GNQ

На сегодняшний день разработано около 14 различных топологий импульсных источников питания (табл. 1). Каждая обладает уникальными свойствами, позволяющими использовать ее для решения своего круга задач.

Таблица 1. Базовые топологии схем, применяемые при построении импульсных источников питания

Топология Схема Мощность,
Вт
Область применения Особенности
Обратноходовый
(flyback)
до 300 Источники питания бытовой аппаратуры (TV, DVD и т.п.), мощные зарядные устройства и внешние блоки питания. Простота схемы, низкая стоимость
Прямоходовый
(feed forward)
до 300 Источники питания бытовой аппаратуры (TV, DVD и т.п.), мощные зарядные устройства, внешние и встроенные блоки питания. Пониженный уровень помех, повышенная эффективность при низких выходных напряжениях
Резонансный
(resonance)
до 300 Источники питания бытовой аппаратуры (TV, DVD и т.п.) Высокая рабочая частота и как следствие — малые габариты, простота фильтрации помех
Двухтактный
(push-pull)
100…5000 Внешние и встраиваемые источники питания для бытовой, промышленной и автомобильной аппаратуры Пониженный уровень помех
Полумостовой
(half-bridge)
100…1000 Внешние и встраиваемые источники питания (например, компьютеры) Малые габариты
Пониженный уровень помех
Мостовой
(full-bridge)
100…3000 Блоки бесперебойного питания, зарядные устройства Повышенный КПД

Сегодня «сердцем» практически любого современного трансформаторного импульсного источника питания средней и высокой мощности является специализированная ИС, управляющая работой внешнего силового транзистора/транзисторов. В подавляющем большинстве таких источников используется несколько режимов управления работой силовых транзисторов: широтно-импульсный (PWM — ШИМ), частотно-импульсный (FPM — ЧИМ), квазирезонансный (QR). Также зачастую с целью повышения КПД используется смешанный режим: ЧИМ или квазирезонансный режимы — на низкой выходной мощности, а ШИМ — на средних и больших мощностях.

Задачи и функции ШИМ-контроллеров сводятся не только к управлению внешними силовыми транзисторами и поддержанию выходного напряжения на требуемом уровне с заданной погрешностью. В действительности в перечень этих функции в обязательном порядке входят:

контроль состояния ключевых транзисторов (ограничение тока и скважности импульсов управления);

плавный запуск после подачи питания (плавный пуск);

контроль уровня входного напряжения и его «провалов» и «выбросов»;

защита от пробоя силового трансформатора и выходным цепей выходного выпрямителя;

контроль температуры самого контроллера (реже и силовых транзисторов).

Условно все производимые ШИМ-контроллеры STMicroelectronics (табл. 2) можно разделить на три группы: управление по напряжению, управление по току и смешанное управление.

Таблица 2. Краткие характеристики и параметры ШИМ-контроллеров STMicroelectronics

Наимено-
вание
Режим
управления
Входное
напря-
жение, В
Выходное
напря-
жение, В
Макс.
выход-
ной
ток, А
Макс.
частота
регули-
рования,
кГц
Скваж-
ность,
%
Корпус
Мин. Макс. Мин. Макс.
SG2525A Напряжение 8 35 0,5 500 49 DIP16/SO16
SG3524 Напряжение 8 40 0,1 300 45 DIP16/SO16
SG3525A Напряжение 8 35 0,5 500 49 DIP16/SO16
L5991 Ток 12 20 4,92 5,08 1,5 100 93 DIP16/SO16
UC2842B Ток 11 30 1 500 100 DIP8/SO8
UC2843B Ток 8,2 30 1 500 100 DIP8/SO8
UC2844B Ток 11 30 1 500 50 DIP8/SO8
UC2845B Ток 8,2 30 1 500 50 DIP8/SO8
UC3842B Ток 11 30 1 500 100 DIP8/SO8
UC3843B Ток 8,2 30 1 500 100 DIP8/SO8
UC3844B Ток 11 30 1 500 50 DIP8/SO8
UC3845B Ток 8,2 30 1 500 50 DIP8/SO8
L6566A Смешанное 8 23 4,95 5,05 0,8 300 70 SO16
L6566B Смешанное 8 23 4,95 5,05 0,8 300 70 SO16
L6668 Смешанное 9,4 22 0,8 105 75 SO16

SG2525A/SG3524/SG3525A — серия управляемых напряжением ШИМ-контроллеров (рис. 1) с фиксированной частотой преобразования, специально спроектированных для построения любых типов импульсных источников питания (согласно заявлению компании-производителя) и позволяющих до минимума сократить число необходимых внешних компонентов.


Рис. 1.

Это стало возможным благодаря наличию встроенного опорного источника питания (+5,1 В ±1%), возможности управления частотой работы внешней RC-цепью, длительностью интервала «мертвого» времени — одним внешним резистором, длительностью времени плавного старта — одним внешним конденсатором (вывод SOFT-START), встроенным драйверам (±200 мА) для управления внешними силовыми транзисторами или внешним маломощным трансформатором. Помимо всего вышеуказанного, в ИС предусмотрена возможность синхронизации нескольких источников от одного внешнего тактового сигнала (вывод SYNC) и защиты по току внешних силовых транзисторов (вывод SHUTDOWN). Область применения — практически любой DC/DC-конвертер малой и средней мощности (рис. 2 и рис. 3).


Рис. 2.


Рис. 3.

UC2842B/3B/4B/5B и UC3842B/3B/4B/5B популярная серия малогабаритных ШИМ-контроллеров с фиксированной частотой преобразования и управлением током, размещенных в 8-выводных корпусах SO и MiniDIP (рис. 4).

Рис. 4.

Несмотря на то, что она выпускается уже около 10 лет, по-прежнему остается одной из самых востребованных серий в основном благодаря низкой стоимости и высокой надежности, отчасти благодаря простоте реализации. Предназначены для построения однотактных DC/DC-преобразователей с входным напряжением до 8,2…30 В. Наличие RC-генератора (частота работы до 500 кГц), встроенного мощного драйвера (±200 мА) для управления внешним полевым или биполярным транзистором, встроенного термостабилизированного опорного источника +5 В ± 1% позволяют строить на основе ИС этой серии обратноходовые источники питания с необходимым набором защитных функций — защита от перенапряжения на входе, защита внешнего силового транзистора по току, температурная защита ИС. Для исключения ложного срабатывания встроенного компаратора по току (Current Sense) из-за возможных помех, возникающих при переключениях внешнего силового транзистора, реализован т.н. режим блокировки компаратора (Leading Edge Blanking) на фиксированное время (около 100 нс) с моментов переключения транзистора (рис. 5).


Рис. 5.

Особенность серии управление по току внешнего силового транзистора, что позволяет исключить из схемы дополнительные гальванически развязанные цепи обратной связи (оптрон), что позволяет в значительной степени уменьшить габариты и стоимость конечного DC/DC-преобразователя. Кроме того, при построении маломощных преобразователей (до 3 Вт) существует возможность исключения внешнего силового транзистора и использования вместо него встроенный выходной драйвер.

L5991/L5991A — серия ШИМ-контроллеров с управлением по току, высокой частотой работы (до 1 МГц) и повышенной функциональностью (рис. 6).

Рис. 6.

К отличительным особенностям ИС этой серии относятся: мощный драйвер с выходным током до 1 А для управления мощным полевым транзистором, программируемый плавный запуск, возможность синхронизации как по входу (Slave), так и по выходу (Master), вход отключения с сокращением тока потребления до 120 мкА, возможность ограничения максимальной скважности внешними RC-цепями, наличие режима Standby, повышающего экономичность (работа с малой нагрузкой или без нее). Серия создана для построения мощных обратноходовых DC/DC-преобразователей.

Для исключения ложного срабатывания встроенного компаратора по току (Current Sense) из-за возможных помех, возникающих при переключениях внешнего силового транзистора, реализован т.н. режим блокировки компаратора (Leading Edge Blanking) на фиксированное время (около 100 нс) с моментов переключения транзистора (рис. 7).


Рис. 7.

L6566A/L6566B/L6668 серия многофункциональных ШИМ-контроллеров, специально спроектированных для работы в составе обратноходовых импульсных преобразователей напряжения средней и высокой мощности (рис. 7). Отличительные особенности ИС: два режима работы по выбору — режим с фиксированной частотой (Fixed Frequency — FF) и квазирезонансный режим (Quasi-resonant — QR). Частота работы в режиме с фиксированной частотой, которая определяется номиналами внешней RC-цепи. Дополнительный вход FMOD позволяет работать в режиме модуляции частоты, что позволяет уменьшить помехи от работы источника. В ИС встроен источник питания с высоковольтным входом, предназначенный для начального запуска.

Отдельно стоить отметить особенности работы ИС в квазирезонансном режиме, в котором источник работает на гране режимов непрерывного и прерывистого тока. Для этой цели в силовом трансформаторе должна быть предусмотрена дополнительная обмотка, предназначенная для точного определения момента открытия силового транзистора. В этом режиме достигается максимальная эффективность преобразователя: на малых нагрузках частота работы низкая, а потери на силовом транзисторе минимальны. На средней и большой нагрузке частота работы увеличивается до заданной частоты, определяемой внешней RC-цепью.

L6566A/L6566B/L6668 прежде всего ориентированы на применение в составе одно- и многоканальных AC/DC-преобразователей средней и высокой мощности (рис. 8). Основными приложениями являются внешние блоки питания ноутбуков, бытовой техники, встраиваемые источники питания для промышленной аппаратуры и т.п.


Рис. 8.

Заключение

На сегодняшний момент семейства ШИМ-контроллеров компании STMicroelectronics уверенно и прочно заняли нишу в ряду недорогих надежных многофункциональных, и в то же время простых в эксплуатации импульсных источников питания малой, средней и большой мощности. В большинстве своем их можно встретить как в обычной бытовой технике (компьютеры, ноутбуки, DVD-проирыватели, ЖК-телевизоры и мониторы и т.п.), так и в сложной промышленной и медицинской аппаратуре. Одной из причин этого стала весьма низкая цена при высокой функциональности в малогабаритных 8- и 16-выводных SO- и DIP-корпусах, высокой надежности с увеличенным жизненным циклом (согласно опыту многих разработчиков). Большая популярность некоторых серий, сохраняющаяся вот уже более десяти лет, дает определенную гарантию производителям источников питания, что ШИМ-контроллеры от STMicroelectronics не будут сняты с производства еще долгие годы.

Получение технической информации, заказ образцов, поставка —
e-mail:

TI анонсировала новые DSP

Моделирование системы и первоначальная реализация алгоритма в большинстве случаев производится на базе арифметики с плавающей точкой. После чего, отлаженный алгоритм загружается на микроконтроллер или цифровой сигнальный процессор с фиксированной точкой. Процессоры с плавающей точкой используются только в приложениях, требующих высокой точности и производительности, где цена конечного устройства не критична.

Для таких приложений компания Texas Instruments выпустила цифровые сигнальные процессоры с плавающей точкой TMS320F28335, TMS320F28334, TMS320F28332. Но, как и раньше, не остановилась на этом. Появились новые DSP TMS320F2823x с фиксированной точкой, которые программно и аппаратно совместимы с процессорами с плавающей точкой TMS320F2833x.

Теперь пользователи могут моделировать систему, отлаживать ее на платформе с плавающей точкой (TMS320F2833x), а затем просто перекомпилировать полученный программный код под TMS320F2823x, сократив тем самым время разработки (время загрузки приложения на платформу с фиксированной точкой) и стоимость конечного устройства.

Серийное производство TMS320F2823x и TMS320F2833x начнется во втором квартале 2008 года.

Наимено-
вание
МГц Flash,
кБ
ОЗУ,
кБ
TMS320F28235 150 512 68
TMS320F28234 150 256 68
TMS320F28232 100 128 52

TI раскрывает подробности своего 45-нм техпроцесса

Компания Texas Instruments (TI) готова к серийному выпуску своих первых 45-нанометровых микросхем. Переход к нормам 45 нм, как утверждается, позволил снизить энергопотребление чипов на 63% и повысить производительность на 55% по сравнению с 65-нанометровыми продуктами

В настоящее время TI отгружает ознакомительные образцы первого 45-нанометрового процессора для устройств с поддержкой сетей 3.5G. В производстве новинки применяется напряженный кремний, иммерсионная литография и диэлектрики со сверхмалым значением диэлектрической постоянной (ultra-low K).

Указанный процессор позволит выпускать более компактные и легкие устройства для сетей 3.5G.

О компании ST Microelectronics



Top