Улучшенный пробник. Простые пробники, приставки, измерители. Схема, описание

На протяжении многих лет журнал "Радио" публиковал для начинающих радиолюбителей описания простейших конструкций, которые либо сами, либо совместно с известными авометрами позволяли проверить радиодетали, измерить при необходимости параметры транзисторов, "прозвонить" монтаж на правильность соединений цепей или просто расширить возможности использования авометра. О некоторых из подобных устройств рассказывается в предлагаемой статье.

Пробник для "прозвонки" монтажа

Прежде чем приступить к налаживанию собранной конструкции, нужно "прозвонить" ее монтаж, т. е. проверить правильность всех соединений в соответствии с принципиальной схемой. Для этих целей радиолюбители часто пользуются омметром или авометром. работающим в режиме измерения сопротивлений.

Нередко такой прибор может заменить компактный пробник, задача которого - сигнализировать о целости той или иной цепи. Особенно удобны пробники при "прозвонке" многопроводных жгутов и кабелей. Одна из возможных схем пробника приведена на рис. 1. В нем три маломощных транзистора, два резистора, светодиод и источник питания.

В исходном состоянии все транзисторы закрыты, поскольку на их базах относительно эмиттеров нет напряжения смещения. Если же соединить между собой выводы "К электроду" и "К зажиму", в цепи базы транзистора VT1 потечет ток Его значение зависит от сопротивления резистора R1. Транзистор откроется и на его коллекторной нагрузке - резисторе R2 -появится падение напряжения. В результате откроются транзисторы VT2 и VT3 и через светодиод HL1 потечет ток. Светодиод вспыхнет, что и послужит сигналом исправности проверяемой цепи.

Пробник выполнен несколько необычно: все его детали смонтированы в небольшом пластмассовом корпусе (рис. 2), который крепят к ремешку (или браслету) от наручных часов. Снизу к ремешку (напротив корпуса) прикрепляют металлическую пластину-электрод, соединенную с резистором R1 Когда ремешок застегнут на руке, электрод прижат к ней. В этом случае пальцы руки выполняют роль щупа пробника. При использовании браслета никакой дополнительной пластины-электрода не понадобится - вывод резистора R1 соединяют с браслетом.

Зажим пробника подсоединяют, например, к одному из концов проводника, который нужно отыскать в жгуте или "прозвонить" в монтаже. Касаясь пальцами поочередно концов проводников с другой стороны жгута, нужный проводник находят по появлению свечения светодиода. В данном случае между щупом и зажимом оказывается включенным не только сопротивление проводника, но и сопротивление кисти руки. Проходящего через эту цепь тока достаточно, чтобы пробник "сработал" и светодиод вспыхнул.

Транзистор VT1 используется любой из серии КТ315 со статическим коэффициентом (для краткости - просто коэффициентом) передачи тока не менее 50; VT2 и VT3 - также любые маломощные низкочастотные, соответствующей структуры и с коэффициентом передачи тока не менее 60 (VT2) и 20 (VT3).

Светодиод АЛ102А экономичен (потребляет ток около 5 мА). обладает небольшой яркостью свечения. Если она будет недостаточна для наших целей, установите светодиод АЛ 1025. Источник питания - два аккумулятора Д-0.06 или Д-0.07, соединенных последовательно. Выключателя питания в пробнике нет. поскольку в исходном состоянии (при разомкнутой базовой цепи первого транзистора) транзисторы закрыты и ток потребления ничтожен - он соизмерим с током саморазряда источника питания.

Пробник можно собрать на транзисторах одинаковой структуры, например, по приведенной на рис. 3 схеме. Правда, он содержит несколько больше деталей, чем предыдущая конструкция, но зато его входная цепь оказывается защищенной от внешних электромагнитных полей, приводящих иногда к ложному вспыхиванию светодиода.

В этом пробнике работают кремниевые транзисторы серии КТ315 с коэффициентом передачи тока не менее 25 Конденсатор С1 исключает ложную индикацию от воздействия внешних наводок.

Как и в предыдущем случае, в исходном режиме устройство практически не потребляет энергии, так как сопротивление подключенной параллельно источнику питания цепи HL1R4VT3 в закрытом состоянии транзистора составляет 0,5... 1 МОм. Потребляемый ток в режиме индикации не превышает 6 мА Яркость светодиода можно изменить подбором резистора R3.

Не меньший интерес могут вызвать пробники со звуковой индикацией. Схема одного из них, прикрепляемого к руке с помощью браслета, приведена на рис. 4.

Он состоит из чувствительного электронного ключа на транзисторах VT1. VT4 и генератора звуковой частоты (34), собранного на транзисторах VT2, VT3 v в миниатюрном телефоне BF1. Частота колебаний генератора равна частоте механического резонанса телефона Конденсатор С1 снижает влияние наводок переменного тока на работу индикатора Резистор R2 ограничивает ток коллектора транзистора VT1. а значит, и ток эмиттерного перехода транзистора VT4. Резистором R4 устанавливают наибольшую гром кость звучания телефона, резистор R5 влияет на устойчивость работы генератора при изменении питающего напряжения.

Звуковым излучателем BF1 может быть любой миниатюрный телефон (например ТМ-2) сопротивлением от 16 до 150 Ом, Источник питания - аккумулятор Д-0,06 или элемент РЦ53. Транзисторы - любые другие кремниевые, структуры р-n-p (VT1) и n-p-n (VT2-VT4). с возможно большим коэффициентом передачи тока и обратным током коллектора не более 1 мкА.

Детали пробника монтируют на изоляционной планке или плате из одностороннего фольгированного стеклотекстолита. Планку (или плату) помещают, например, в металлический корпус в виде наручных часов, с которым соединен металлический браслет. Напротив излучателя в крышке корпуса вырезают отверстие, на боковой стенке укрепляют миниатюрное гнездо разъема Х2. в которое вставляют удлинительный проводник с щупом Х1 (им может быть зажим "крокодил") на конце.

Несколько иная схема пробника приведена на рис. 5. В нем используются как кремниевые, так и германиевые транзисторы.

Конденсатор С2 шунтирует по переменному току электронный ключ, а конденсатор C3 - источник питания.

Транзистор VT1 желательно подобрать с коэффициентом передачи тока не менее 120, VT2 - не менее 50. VT3 и VT4 - не менее 20 (и обратным током коллектора но более 10 мкА). Звуковой излучатель BF1 - капсюль ДЭМ-4 (или аналогичный) сопротивлением 60...130 Ом

Пробники со звуковой индикацией потребляют несколько больший ток по сравнению с предыдущими, поэтому при больших перерывах в работе желательно отключать источник питания.

Измеритель RC

Как вы, наверное, догадались, рассказ пойдет о приборе, измеряющем сопротивление резисторов и емкость конденсаторов. В его основе (рис. 6) - мостовая измерительная схема, известная по школьному курсу физики и широко используемая в технике для точных измерений различных параметров.

Левая часть схемы - генератор переменного напряжения, правая - измерительный мост. Прибор предназначен для измерения сопротивлений резисторов от 10 Ом до 10 МОм и емкостей конденсаторов от 10 пФ до 10 мкФ.

Генератор переменного напряжения собран на одном транзисторе МП39 (подойдет любой из серий МП39-МП42 или другой низкочастотный транзистор). В цепь коллектора транзистора включена первичная обмотка трансформатора Т1, его вторичная обмотка соединена с базой транзистора. Напряжение смещения подается на базу с делителя R1R2. В цепи эмиттера включен резистор обратной связи R3. стабилизирующий работу генератора при изменении температуры окружающей среды и снижении напряжения питания. Генерация (возбуждение) возникает из-за положительной обратной связи между коллекторной и базовой цепями. Переменное напряжение снимается с коллектора транзистора и подается на мост через конденсатор С1.

Переключателем SA2 к измерительному мосту подключают эталонные резисторы и конденсаторы. Уравновешивают мост переменным резистором R7. К зажимам "С, Rx" вы будете подключать проверяемые детали, а в гнезда "Тф" включать головные телефоны с большим сопротивлением (ТОН-1, ТОН-2 и другие, сопротивлением не менее 2 кОм).

Постоянные резисторы возьмите МЛТ, ВС, причем R4-R6 с допуском не хуже 5 %. Конденсаторы С1-C3 могут быть бумажные (типов МБМ, БМТ, КБГИ и другие), а С4 слюдяной, емкости конденсаторов С2 - С4 также должны быть с допуском 5 % Трансформатор Т1 должен иметь соотношение витков коллекторной и базовой обмоток примерно 3:1. Здесь подойдет любой согласующий трансформатор от промышленных транзисторных приемников. В крайнем случае намотайте трансформатор сами на магнитопроводе из пермаллоевых Ш-образных пластин сечением не менее 30 мм2 (например, железо Ш5, толщина набора 6 мм). Обмотка I должна содержать 2400 витков провода марки ПЭВ или ПЭЛ диаметром 0.06...0.08 мм. обмотка II - 700...800 витков такого же провода.

Прибор соберите в деревянном или металлическом корпусе (рис. 7). На лицевой стенке укрепите выключатель SA1. переключатель SA2, переменный резистор R7, зажимы и гнезда для подключения проверяемых деталей и головных телефонов.

Против каждого фиксированного положения переключателя напишите значение номинала эталонной детали, как это показано на рисунке. Вокруг ручки переменного резистора начертите окружность и нанесите пока две риски, соответствующие крайним положениям ручки.

После проверки монтажа включите прибор и послушайте головные телефоны. Если звука нет, поменяйте местами выводы одной из обмоток трансформатора генератора.

Затем приступайте к градуировке шкалы. Поскольку шкала общая, градуировать ее можно на любом диапазоне измерений. Но для этого диапазона подберите несколько деталей с известными номиналами. Например, вы выбрали диапазон "х10к" и поставили в это положение переключатель SA2. Запаситесь резисторами от 1 до 100 кОм Сначала подключите к зажимам резистор сопротивлением 1 кОм и вращением ручки переменного резистора добейтесь исчезновения звука в телефонах. Мост уравновешен, и на шкале в этом месте можно поставить риску с надписью "0.1" (1 кОм: 10 кОм = 0,1). Подключая к зажимам поочередно резисторы сопротивлением 2, 3, 4...10 кОм, нанесите на шкалу риски от 0.2 до 1. Так же наносятся риски от 2 до 10. только резисторы в этом случае должны быть сопротивлением 20. 30 кОм и т. д.

Проверьте работу прибора на других диапазонах. Если результаты измерений расходятся с истинным значением номинала детали, подберите точнее сопротивление соответствующего эталонного резистора или емкость конденсатора.

При пользовании прибором придерживайтесь следующей последовательности. Измеряемый резистор подключите к зажимам и поставьте переключатель сначала в положение "х1 М". Вращением ручки переменного резистора попытайтесь уравновесить мост. Если это не удастся, поставьте переключатель последовательно в следующие положения. В одном из них мост будет уравновешен. Сопротивление измеряемого резистора подсчитайте перемножением показаний шкал переключателя и переменного резистора. К примеру, переключатель стоит в положении "х10 к", а ручка переменного резистора - против риски "0.8". Тогда измеряемое сопротивление составит 10 кОм х 0.8 = 8 кОм. Аналогично измеряют и емкость конденсатора.

Если при работе с прибором громкости звука будет недостаточно, можно включить в розетку Х3 вместо телефонов постоянный резистор сопротивлением 2...3 кОм и подать сигнал с него на усилитель 3Ч, даже выполненный на одном-двух транзисторах и нагруженный на головные телефоны либо на осциллограф. Усилитель должен питаться от отдельного источника.

Как проверить транзистор...

Для проверки работоспособности транзисторов можно воспользоваться радиотрансляционной сетью, собрав для этого приставку, схема которой приведена на рис. 8. Проверяемый транзистор VT и показанные на схеме детали образуют усилитель, на вход которого поступает сильно ослабленное делителем R1R2 напряжение сигнала ЗЧ радиотрансляционной сети. Если напряжение сети 30 В. на резисторе R2 будет всего 0,08 В, а на базе транзистора - еще меньше. При исправном транзисторе в телефонах BF1 будет слышен громкий звук. По нему, правда, грубо, судят об усилительных свойствах транзистора. При проверке транзисторов структуры n-p-n нужно поменять местами подключение выводов батареи GB1 и конденсатора С1.

В качестве звукового индикатора BF1 лучше использовать телефонный капсюль ДЭМШ, ДЭМ-4М или малогабаритную динамическую головку (например, 0.1ГД-3 или 0.1ГД-6), но включать ее следует через выходной трансформатор от малогабаритного приемника. Его первичную обмотку (с большим числом витков) включают в цепь коллектора, а к вторичной подключают головку.

Все резисторы - МЛТ-0,25, конденсатор С1 - К50-6, источник питания - батарея 3336.

В другом пробнике (рис. 9) проверяемый транзистор работает в режиме генерации и в головных телефонах BF1 слышен звук определенного тона. При неисправном транзисторе звука не будет.

Телефоны высокоомные (ТОН-1, ТОН-2), резисторы - МЛТ-0,25, конденсаторы С1, С2 - БМ. МБМ. C3 - К50-6, разъем X2 - двухгнездная колодка. Зажимы Х2-Х4 для подключения транзистора - любой конструкции, батарея питания - 3336. Как и в предыдущем случае, при необходимости проверить транзисторы структуры n-p-n следует поменять местами подключение выводов батареи и оксидного конденсатора.

Для проверки транзисторов обеих структур (p-n-р и n-p-n) пригоден прибор, схема которого приведена на рис. 10. Если оба транзистора исправны, прибор превращается в несимметричный мультивибратор, работа которого контролируется по звуку в головных телефонах. При неисправном транзисторе звука не будет. Таким образом, для проверки транзисторов с помощью этого прибора нужно иметь по одному исправному транзистору каждой структуры, которые используются как образцовые.

В качестве телефонов используют капсюли ДЭМ-4М, ДЭМШ. микротелефон ТМ-2. Источник питания G1 - один из элементов 316,332,343 или 373. Выключателя питания в приборе нет - когда транзисторы не подключены, потребления тока от источника не будет.

Порядок работы с прибором такой. При проверке транзистора, например структуры p-n-p, его подключают к соответствующим зажимам прибора, а к другим зажимам - заведомо исправный транзистор другой структуры, n-p-n. После этого в двухгнездную колодку вставляют вилку телефона и контролируют работу мультивибратора.

Проверять маломощные транзисторы любой структуры можно также с помощью пробника (рис. 11), в котором проверяемый транзистор работает в паре с образцовым (заранее проверенным и специально подобранным для пробника), но другой структуры. Если, скажем, проверяют транзистор структуры p-n-p, его выводы вставляют в гнезда разъема Х1, а в гнезда разъема Х2 вставляют выводы образцового транзистора структуры n-p-n. Тогда получится генератор, вырабатывающий колебания звуковой частоты, - они слышны в головном телефоне ВF1. Звук будет лишь в случае исправности проверяемого транзистора. Момент возникновения генерации зависит от положения движка переменного резистора R3 "Генерация".

Кроме двух исправных образцовых транзисторов разной структуры, для пробника понадобятся миниатюрный телефон ТМ-2А, источник питания G1 - элементы 316, 332, 343, 373, переменный резистор любого типа и постоянные резисторы МЛТ мощностью до 0,5 Вт. Разъемами могут быть панельки под транзисторы, гнезда или зажимы.

Коэффициент передачи проверяемого транзистора нетрудно определять по положению движка переменного резистора - чем в большем диапазоне его перемещения будет сохраняться звук в телефоне, тем большим коэффициентом передачи обладает транзистор.

... и измерить его параметры

Как и другие радиодетали, транзисторы имеют свои параметры, определяющие их использование в тех или иных устройствах. Но прежде чем ставить транзистор в конструкцию, его нужно проверить. Для проверки всех параметров транзистора потребуется сложный измерительный прибор. Сделать такой прибор в любительских условиях практически невозможно. Да он и не нужен: ведь для большинства конструкций достаточно знать лишь статический коэффициент передачи тока базы, а еще реже - обратный ток коллектора. Поэтому лучше обойтись простейшими приборами, измеряющими эти параметры.

Как можно судить о статическом коэффициенте передачи тока базы? Посмотрите на рис. 12. Транзистор подключен к источнику питания G1, и в цепи его базы протекает ток, который зависит от сопротивления резистора R1. Этот ток транзистор усиливает. Значение усиленного тока показывает стрелка миллиамперметра, включенного в цепи коллектора. Достаточно разделить значение тока коллектора на значение тока в цепи базы и вы узнаете статический коэффициент передачи тока.

Существуют два несколько различающихся коэффициента передачи тока - h21, h21э.

Первый называется динамическим коэффициентом передачи тока и показывает отношение приращения тока коллектора к вызвавшему его приращению тока базы. Измерять этот коэффициент в любительских условиях трудно, поэтому на практике чаще определяют второй коэффициент. Это - статический коэффициент передачи тока, показывающий отношение тока коллектора к данному току базы. При небольших токах коллектора оба коэффициента близки.

И еще о коэффициенте передачи тока. Он во многом зависит от тока коллектора. В некоторых измерительных приборах, схемы которых были опубликованы в популярной радиотехнической литературе прошлых лет, коэффициент передачи тока маломощных транзисторов измерялся при токе коллектора 20 и даже 30 мА. Это ошибочно. При таком токе усиление транзистора падает и прибор показывает заниженное значение коэффициента передачи тока. Вот почему иногда приходится слышать, что одни и те же транзисторы при проверке на разных приборах показывают коэффициенты передачи, отличающиеся вдвое и даже втрое. Показания любого измерителя будут близкими лишь в том случае, если максимальный ток коллектора при измерениях не превышает 5 мА. Такой предел принят в описываемых ниже простых конструкциях. В более сложных измерителях для транзистора устанавливают такой ток коллектора, при котором транзистор будет работать в конструкции, - он определит реальное значение коэффициента передачи.

На рис. 13 приведена простейшая схема практического прибора для проверки транзисторов структуры p-n-р. Работает прибор так. К зажимам (или гнездам) "Э", "Б", "к" подключают выводы транзистора (соответственно эмиттер, базу, коллектор). При нажатой кнопке SB1 на выводы транзистора подается питающее напряжение от батареи GB1. В цепи базы транзистора при этом начинает протекать небольшой ток. Его значение определяется в основном сопротивлением резистора R1 (поскольку сопротивление эмиттерного перехода транзистора мало по сравнению с сопротивлением резистора) и в данном случае выбрано равным 0,03 мА (30 микроампер)

Усиленный транзистором ток регистрирует миллиамперметр РА1 в цепи коллектора. Шкалу миллиамперметра можно отградуировать непосредственно в значениях h21Э. Если в приборе использован миллиамперметр, рассчитанный на измерение тока до 3 мА (такой предел есть в авометре Ц20), тогда отклонение стрелки на конечное деление шкалы будет соответствовать коэффициенту передачи тока 100. Для миллиамперметров с другими токами отклонения стролки на конечное деление шкалы это значение будет иным. Так, для миллиамперметра со шкалой на 5 мА предельное значение коэффициента передачи тока при указанном выше токе базы будет около 166.

Детали прибора совсем не обязательно располагать в футляре. Их можно быстро соединить друг с другом и проверить партию имеющихся у вас транзисторов. Резистор R2 предназначен для ограничения тока через миллиамперметр, если случайно попадется транзистор с пробитым переходом эмиттер - коллектор.

А как быть, если надо проверить транзисторы другой структуры - п-p-n? Тогда придется поменять местами выводы батареи питания и миллиамперметра.

Еще одна приставка к авометру - испытатель транзисторов (рис. 14), позволяющий измерить два параметра биполярных транзисторов малой мощности: h21э - статический коэффициент передачи тока базы, 1КБО - обратный ток коллектора. Испытываемый транзистор VT подключают выводами к соответствующим зажимам "Э", "Б" и "К". В зависимости от структуры проверяемого транзистора переключатель SA2 устанавливают в положение "p-n-p" или "n-p-n". При этом изменяется полярность подключения источника питания, а также выводов индикатора РА1.

Как и в предыдущей приставке, в качестве индикатора используется авометр Ц20. При измерении коэффициента h21Э (переключатель SA1 в правом по схеме положении) параллельно индикатору подключается через секцию SA1.3 резистор R2, в результате чего стрелка индикатора отклоняется до конечного деления шкалы уже при токе 3 мА. В этом же положении переключателя через секцию SA1.2 к выводу базы испытываемого транзистора подключается резистор R1, обеспечивающий ток базы 10 мкА. При этом шкала индикатора будет соответствовать коэффициенту h21Э=300 (3 мА:0.01 мА=300).

В левом по схеме положении переключателя SA1 база испытываемого транзистора VT соединяется с источником питания, а шунтирующий резистор R2 отключается от индикатора. Это положение соответствует измерению обратного тока коллектора, а шкала индикатора - току 300 мкА.

Все измерения проводят при нажатии кнопочного выключателя SB1.

Резистор R1 типа МЛТ-0,25, подстроечный резистор R2 любого типа. Переключатели - движковые, кнопочный выключатель - с самовозвратом (применима звонковая кнопка).

Зажимы для подключения транзистора -любые, важно лишь, чтобы они обеспечивали надежный контакт с выводами транзистора. Хорошо зарекомендовали себя самодельные зажимы (их можно применить и в других измерителях и пробниках), показанные на рис. 15. Зажим состоит из двух согнутых полосок пружинящей латуни или бронзы. В наружной 1 и внутренней 2 полосках просверлены отверстия под вывод транзистора. Внутренняя полоска необходима для увеличения надежности устройства и пружинящих свойств зажима. Полоски скрепляют друг с другом и прикрепляют к корпусу приставки винтами 3. Для крепления вывода транзистора нужно прижать верхнюю часть полосок до совмещения отверстий, вставить в отверстия вывод транзистора и отпустить полоски. Вывод транзистора будет надежно прижат к полоскам в трех точках.

Возможный вариант конструкции этой приставки показан на рис. 16. Верхняя панель изготовлена из изоляционного материала (гетинакс, текстолит), нижняя (на ней укреплена батарея питания GB1) и боковые стенки - из алюминия или другого листового металла.

Налаживание приставки сводится к установке резистором R2 заданного предела измерения, равного 3 мА. Для этого нужно установить переключатель SA1 в положение "h21Э" и, не подключая транзистор, включить между зажимами "Э" и "К" постоянный резистор сопротивлением 1,5 кОм (подобрать точно). Включив кнопочным выключателем питание, резистором R2 устанавливают стрелку индикатора РА1 на конечное деление шкалы.

Для проверки транзисторов с жесткими короткими выводами (например, серии КТ315) нужно вырезать из фольгированного материала небольшую планку и прорезать в фольге несколько канавок, чтобы получились три дорожки. Ширина дорожек и расстояние между ними должны соответствовать размерам выводов транзистора. К дорожкам подпаивают отрезки многожильного монтажного провода, которые при проверке транзистора подключают к соответствующим зажимам прибора. Выводы транзистора прикладывают к дорожкам и нажимают кнопку SB1 прибора.

Перед монтажом транзисторов средней и большой мощности тоже бывает нужно знать их статический коэффициент передачи тока, а иногда и обратный ток коллектора. Конечно, можно было бы ввести дополнительный переключатель в предыдущие приставки и проверять на них транзисторы повышенной мощности. Но подобная проверка требуется не часто, а дополнительная коммутация усложнила бы конструкции приставок. Поэтому проще изготовить еще одну приставку к авометру - только для проверки транзисторов повышенной мощности. Схема такой приставки показана на рис. 17.

Как и в предыдущих приставках, испытываемый транзистор VT подключают к зажимам "Э", "Б" и "К", а необходимую полярность источника питания и включения индикатора РА1 для транзисторов разной структуры устанавливают переключателем SA1. Коэффициент h21Э измеряют при фиксированном токе базы, равном 1 мА. Этот ток зависит от сопротивления резистора R1. Шкала индикатора (авометр включен на измерение постоянного тока до 300 мА) оказывается рассчитанной на коэффициент h21Э=300.

После подключения транзистора и установки переключателя в нужное положение нажимают кнопку SB 1 и по шкале авометра определяют параметр h21Э. Следует, однако, учитывать, что продолжительность измерения должна быть возможно меньшей, особенно для транзисторов с большим (свыше 100) значением h21Э. При необходимости измерить обратный ток коллектора отключают от приставки вывод эмиттера и нажимают кнопку.

Переключатель - движковый, кнопка и зажимы - любые.

Описанные здесь приставки могут стать основой самостоятельной конструкции измерительного прибора с использованием в нем микроамперметра с током полного отклонения от 100 до 300 мкА. В каждом случае в зависимости от индикатора придется подобрать соответствующие резисторы. Нетрудно также объединить все приставки в единый самостоятельный измерительный прибор.

Высокоомный вольтметр постоянного тока

Авометр Ц20, как известно, предназначен для измерения постоянного напряжения. Однако пользоваться им как вольтметром не всегда бывает возможно. Это, в частности, касается измерений напряжений в высокоомных цепях радиоустройств. Ведь относительное входное сопротивление его вольтметра постоянного тока невелико - около 20 кОм/В, и при измерении напряжения через прибор протекает значительная часть тока измеряемой цепи. Это приводит к шунтированию измерительной цепи и появлению ошибки (иногда значительной) в измерениях. Поэтому одной из первых задач по совершенствованию комбинированного измерительного прибора Ц20 является повышение его относительного входного сопротивления при измерении напряжений.

Схема сравнительно простой приставки, позволяющей решить эту задачу, приведена на рис. 18. Приставка представляет собой измерительный мост постоянного тока, в одну диагональ которого включен источник питания G1, а к другой диагонали подключен индикатор РА1 (авометр Ц20, включенный на предел измерения постоянного тока 0,3 мА). Плечи моста образуют участки эмиттер-коллектор транзисторов VT1 и VT2, резистор R10 с верхней (по схеме) от движка частью переменного резистора R11 и резистор R12 с нижней частью резистора R11. Мост балансируют переменным резистором R11 ("Уст. 0"); подстроечным резистором R8 изменяют напряжение смещения на базах транзисторов и тем самым уравнивают сопротивления участков эмиттер-коллектор.

Измеряемое напряжение подается на базы транзисторов через один из добавочных резисторов R1-R5. При этом на резисторах R6-R9 образуется падение напряжения, а база транзистора VT2 оказывается под более отрицательным напряжением (относительно эмиттера), чем база транзистора VT1. Наступает разбаланс моста, и стрелка индикатора отклоняется. Угол ее отклонения будет тем больше, чем больше измеряемое напряжение на выбранном поддиапазоне. Причем ток через индикатор будет в десятки раз больше (это зависит от статического коэффициента передачи тока транзисторов), чем через входную цепь приставки.

Относительное входное сопротивление вольтметра с такой приставкой может быть около 300 кОм/В, но оно заведомо снижается до 100 кОм/В введением подстроенного резистора R6. Это сделано для того, чтобы упростить подбор транзисторов и, кроме того, использовать добавочные резисторы R1-R5 стандартных номиналов (и не подбирать их). Постоянные резисторы - с мощностью рассеяния не менее 0,25 Вт, причем добавочные резисторы R1-R5 желательно применить с допускаемым отклонением ±5 %. Подстроечные резисторы R6, R8 и переменный резистор R11 - СПО-0,5, СП-1.

Транзисторы желательно подобрать с одинаковым статическим коэффициентом передачи тока, равным 50...80.

Источник питания G1 - элементы 332, 343 или 373 напряжением 1,5 В. Входные гнезда XI-Х6, а также зажимы Х7, Х8 - любые.

Детали приставки можно разместить в любом подходящем готовом или самодельном корпусе (рис. 19). На верхней панели корпуса располагают гнезда, зажимы, выключатель питания и переменный резистор балансировки моста.

Перед налаживанием приставки движки резисторов R8 и R11 следует установить в среднее по схеме положение, а резистора R6 - в верхнее (это нужно для того, чтобы выводы баз транзисторов соединялись накоротко). К зажимам подключают щупы авометра, включенного на предел измерений постоянного тока до 0,3 мА. Затем включают питание приставки и резистором R11 устанавливают стрелку авометра на нулевую отметку, т. е. балансируют мост. Движок резистора R6 устанавливают в нижнее по схеме положение и подстроечным резистором R8 дополнительно балансируют мост. Если при этом окажется, что движок резистора R8 устанавливается близко к одному из крайних положений,придется подобрать резистор R7 или R8. Если, например, движок подстроенного резистора находится близко к верхнему по схеме положению, резистор R7 должен быть меньшего сопротивления или резистор R9 большего. Такая регулировка свидетельствует лишь о том, что используемые транзисторы отличаются по статическому коэффициенту передачи тока.

Следующий этап налаживания - установка нужного относительного входного сопротивления приставки. Для этого между гнездами Х6 и Х2 следует включить источник напряжением 1,5 В (например, элемент 343) и подстроечным резистором R6 установить стрелку индикатора РА1 на конечное деление шкалы. Подавая на другие входные гнезда соответствующие напряжения, проверяют правильность показаний индикатора на других пределах измерения. При обнаружении расхождений подбирают добавочный резистор соответствующего предела измерений.

Начало.

Часто бывает необходимо в куче проводов найти куда какой идет, узнать целостность цепи, проверить, если ли короткое замыкания или же обрыв, также часто нужно узнать целостность p-n перехода диодов, транзисторов и прочих полупроводником, в этом нам поможет такой инструмент как прозвонка. Она будет несомненно полезна как электрику, так и электронику. Дело в том, что пользоваться режимом прозвонки в мультиметре не всегда бывает удобно, а в некоторых из них вообще отсутствует эта функция, так что такая простая прозвоночка решит эту проблему.

Прозвонка очень практичная, ее тон звучания зависит от сопротивления проверяемого участка цепи. Чем больше сопротивление - тем реже щелчки, соответственно при маленьком сопротивлении щелчков будет очень много и они будут слышаться как писк, тональность которого можно настроить номиналами: То бишь на уже готовой плате с впаянными компонентами можно легко найти короткое замыкание, а p-n переходы мы будем слышать не как КЗ, тональность будет отличаться. А если немного приловчиться, то по звуку с легкость возможно сказать где у транзистора эмиттер, а где коллектор (у второго щелчков больше).

Корпус.

Корпус - тоже очень важен, от него будет зависеть насколько приятно будет пользоваться прибором, все-таки эстетика важна. Кроме этого он будет защищать платку и элемент питания от суровых условий повседневной жизни человека работающего с электричеством.

Мною был взят корпус от АТБшного маркера, в него идеально входит один элемент АА и ещё остается место для платы, да и выглядит он хорошо для этих целей.

В качестве щупов кучок медного провода в эмали и цилиндрической кусочек медь, а именно старое жало паяльника, этот цветной металл имеет малое сопротивление и более-менее хорошо переносит O2, особенно с припоем:) На самой плате жало закрепляется расплавленным оловом на определенном участке меди.

На картинке вы можете увидеть, как устроена прозвонка изнутри, сначала идет щуп, который отходит от платы, далее сама плата прозвонки, потом батарейка/аккумулятор, который плотно закрепляется "затычкой".

Также тут присутствует динамик - это элемент индикации, для громкого воспроизводения звука много дырочек, через которые он колышет воздух. (он не нарисованы!)

Компоненты и замены.

Значения параметров всех применяемых в этой схеме деталей не критично и может варьироваться, например нету резистора 51к, а есть 47к - то смело ставьте его. Все транзисторы - любые, главное чтобы структура совпадала (3 - НПН, 1 - ПНП).

Маркировка: BC847 1 G , BC 857 3 F N сбоку).

Динамик конечно же берется миниатюрный - такой как в наушниках. Сопротивление его обычно16 Ом, а громкость вполне достаточная. У меня был в наличии громкоговоритель (speaker)из старой Нокии 6303Ай, весьма хороший телефон нужно отметить. Его я приклеил на обратную сторону платы термоклеем, она выступала в роле резонатора.

Если вы работаете в таком месте где очень шумно, то следует параллельно звукоизлучателю поставить светодиод, который и будет служить световой индикацией.

Питание.

Питание прозвонки - пальчиковая батарейка 1,5 Вольта, если увеличить это значение, то появиться возможность проверять и светодиоды, к тому же громкость звука значительно возрастет. Но в таком случае высокое напряжение может повредить некоторые чувствительные радиодетали.

Добавляем чувствительности.

Хотите супер-мега чувствительность? Тогда отключите электролитический конденсатор С1. Теперь если просто дотронемся до щупов прибора, то он уже начнет бурно на это реагировать. Не знаю зачем, но если хотите такой бешеный режим то поставьте микро-кнопку на один из выводов конденсатора.

А лучше вот вам вообще эта же, но немного измененная схема, таким образом у нас получится два режима: очень маленькая чувствительность и супер-чувствительность до 120 Мом. Между ними можно легко переключаться с помощью кнопок S1 и S2.

(почтиготоваяплата , нобездинамикаищупов )


Предлагаю вашему вниманию небольшой пробничек, который можно собрать за пол часа. Он позволяет прозванивать различные цепи, и проверять наличие переменного и постоянного напряжения от 5 до 380 Вольт.

Выше 380 В не проверял. Будьте внимательны и осторожны, безопасность превыше всего!

Схема пробника автоэлектрика и электромонтёра

Пробник очень удобен при ремонте автомобиля, поэтому сколько я их ни делал, знакомые водилы сразу их «приватизировали». Детали могут быть абсолютно любыми. Выбор транзистора КТ312 обусловлен исключительно удобством распайки. Можно применить любой маломощный NPN кремниевый транзистор.


У пробника есть небольшой недостаток, а, возможно и ещё одно достоинство - высокая чувствительность. Допустим, трансформатор подключен к сети 380В через плавкие вставки, и если одна вставка перегорела, то пробник на этом конце через обмотку всё равно покажет наличие напряжения на вторичке.
На мой взгляд, если последовательно с резистором R1 включить динистор, например КН102, ситуация должна измениться. Так как эти пробники у меня долго не задерживаются по причине, описанной выше, проверить эту доработку на практике мне не удалось.


Секретный документ из прошлого столетия. Отрыт и бережно отксканирован.
Ты помнишь, как всё начиналось…

Порядок работы

А проще некуда. Имеем два щупа. Конструктивно щуп X2 выходит из корпуса в виде жесткой спицы, а Х1 - в виде провода с некоторым запасом и заканчивается зажимом типа «крокодил». На корпусе установлены два светодиода: зеленый и красный.

При замыкании щупов (прозвонка) загорается зеленый. Если имеется какое-то сопротивление, то по интенсивности свечения зелёного светика это будет заметно. Красный в это время не горит.

Если на щупы прикладывается какое-то напряжение, то горят оба светодиода. При этом, при проверке постоянного напряжения, индикация будет только при верном подключении: полюс к щупу X2. Фазный провод определяется следующим образом: щуп X1 берем в руку, а щупом Х2 касаемся исследуемой цепи. Если светодиод горит, значит тут фаза.

Работает пробник от двух батареек, можно применить мелкие «таблетки» и сохраняет работоспособность в течение пары лет.


Фотка не моя!


Готового пробника в настоящий момент нету, но на выходных постараюсь сделать и приложить фотки. Пока вот нашел фотки в Сети, думаю, суть понятна.

Источники

К сожалению было это давненько, точно источник указать не могу. В общем, по материалам журнала «Радио» и интернетов.

Всем здоровья и удачи!


Дополнение от [email protected] - печатная плата в LAY


🕗 24/01/15 ⚖️ 8,57 Kb ⇣ 53

Данные устройства предназначены для проверки (прозвонки) монтажа собранных конструкций, проверки правильности соединений и соответствии принципиальной схемы. Несомненным удобством пробников является наличие сигнализации, которая позволяет контролировать целостность той или иной цепи.
Одна из возможных схем пробника приведена на Рис.1 . В нём три маломощных транзистора, два резистора, светодиод и источник питания.

В исходном состоянии все транзисторы закрыты, поскольку на их базах относительно эмиттера нет напряжения смещения. Если же соединить между собой выводы «К зажиму» и «К электроду», в цепи базы транзистора VT1 потечёт ток, значение которого зависит от сопротивления резистора R1. Транзистор откроется, и на его коллекторной нагрузке – резисторе R2 появится падение напряжения. В результате откроются транзисторы VT2 и VT3 и через светодиод VD1 потечёт ток. Светодиод вспыхнет, что и послужит сигналом исправности проверяемой цепи.

Пробник можно собрать в любом варианте. Как один из них в виде небольшого пластмассового корпуса, который можно прикрепить к ремешку от наручных часов. Снизу к ремешку (напротив корпуса прикрепляют металлическую пластину – электрод, соединённую с резистором R1. Когда ремешок застёгнут на руке, электрод прижат к ней. В этом случае пальцы выполняют роль щупа пробника. При использовании браслета никакой дополнительной пластины – электрода не понадобится – вывод резистора R1 соединяют с браслетом.
Зажим пробника подсоединяют, например, к одному из концов проводника, который нужно отыскать в жгуте или «прозвонить» в монтаже. Касаясь пальцами поочерёдно концов проводников с другой стороны жгута, нужный проводник находят по появлению свечения светодиода. В данном случае между щупом и зажимом оказывается включённым не только сопротивление проводника, но сопротивление части руки Тем не менее проходящего через эту цепь тока достаточно, чтобы пробник «сработал» и светодиод вспыхнул.
Транзистор VT1 может быть любой из серии КТ315 со статическим коэффициентом передачи тока не менее 50, VT2 и VT3 – любые маломощные низкочастотные, соответствующей структуры и с коэффициентом передачи тока не менее 60 (VT2) и 20 (VT3).
Светодиод АЛ102 экономичен (потребляет ток не более 5 мА), обладает небольшой яркостью свечения. Если она будет недостаточна для ваших целей можно установить светодиод АЛ102Б. В этом случае ток потребления возрастёт в несколько раз (конечно в момент индикации).
Источник питания – два аккумулятора Д-0,06 или Д 0,07, соединённые последовательно. Выключателя питания в пробнике нет, поскольку в исходном состоянии (при разомкнутой базовой цепи первого транзистора) транзисторы закрыты, и ток потребления ничтожен – он соизмерим с током саморазряда источника питания.
Пробник можно собрать и на транзисторах одинаковой структуры, например по приведённой на Рис.2 схеме. Правда, он содержит несколько больше деталей, чем предыдущая конструкция, но зато его входная часть оказывается защищенной от электромагнитных цепей, приводящих иногда к ложному вспыхиванию светодиода.
В этом пробнике работают кремниевые транзисторы серии КТ315, характеризующиеся малым током коллекторного перехода в широком диапазоне температур. При использовании транзисторов с коэффициентом передачи тока 25 … 30 входное сопротивление пробника составит 10 … 25 Мом. Повышение входного сопротивления нецелесообразно из-за вероятности ложного индицирования внешними наводками и посторонними проводимостями.
Как и в предыдущем случае, в исходном состоянии устройство практически не потребляет энергии. Потребляемый ток в режиме индикации не превышает 6 мА.
Корректировать входное сопротивление прибора можно подбором резистора R3, предварительно подключив ко входу цепочку резисторов общим сопротивлением 10 … 25 Мом и добиваясь минимальной яркости светодиода.
В случае отсутствия светодиода вместо него можно использовать в обоих вариантах малогабаритную лампу накаливания на напряжение 2.5 В и потребляемый ток 0,068 А (например, лампу МН 2,5-0,068). Правда, в этом случае придётся уменьшить сопротивление резистора R1 примерно до 10 кОм и подобрать его точнее по яркости свечения лампы при замкнутых входных проводниках.

В схемах пробников также можно использовать и звуковую индикацию. Схема одного из них, прикреплённого к руке с помощью браслета, приведена на Рис.3 . Он состоит из чувствительного электронного ключа на транзисторах VT1, VT4 и генератора звуковой частоты (ЗЧ), собранного на транзисторах VT2, VT3 и миниатюрном телефоне BF1. Частота колебаний генератора равна частоте механического резонанса телефона. Конденсатор С1 снижает влияние наводок переменного тока на работу индикатора. Резистор R2 ограничивает ток коллектора транзистора VT1, а значит, и ток змиттерного перехода транзистора VT4. Резистором R4 устанавливают наибольшую громкость звучания телефона, резистор R5 влияет на надёжность работы генератора при изменении питающего напряжения.
Звуковым излучателем BF1 может быть любой миниатюрный телефон сопротивлением от 16 до 150 ом. Источник питания — аккумулятор Д-0,06 или подобный. Транзисторы — любые кремниевые соответствующей структуры, с коэффициентом передачи тока не менее 100 и обратным током коллектора не более 1 мкА.
Конструкция монтируется на изоляционной планке или плате из одностороннего фольгированного стеклотекстолита. Планку (или плату) помещают, например, в металлический корпус в виде наручных часов, с которым соединён металлический браслет. Напротив излучателя в крышке корпуса вырезают отверстие, на боковой стенке укрепляют миниатюрное гнездо разъема ХТ1, в которое вставляют удлинительный проводник с щупом ХР1 (им может быть зажим «крокодил») на конце.
Несколько иная схема пробника приведена на Рис.4 . В ней используются как кремниевые, так и германиевые транзисторы. Конденсатор С2 шунтирует по переменному току электронный ключ, а конденсатор С3 — источник питания. Транзистор VT1 желательно подобрать с коэффициентом передачи тока не менее 120 и обратным током коллектора менее 5 мкА, VT2 — с коэффициентом передачи не менее 50, VT3 и VT4 — не менее 20 (и обратным током коллектора не более 10 мкА). Звуковой излучатель BF1 — капсюль ДЭМ-4 (или подобный) сопротивлением 60 … 130 Ом.
Пробники со звуковой индикацией потребляют несколько больший ток по сравнению с предыдущими, поэтому при больших перерывах в работе желательно отключать источник питания.

На Рис.5 изображена схема пробника — омметра. Он бывает необходим если при «прозвонки» также желательно измерить примерное сопротивление цепи. Диапазон измеряемых им сопротивлений — от единиц ом до 25МОм.
Схему омметра составляет пробник приведённый на Рис.2 . Только в омметре параллельно резистору R3 подключают (в зависимости от диапазона измерений) один из резисторов R5 — R7.
Пока щупы ХР1 и ХР2 разомкнуты (ничто не подключено), транзисторы закрыты и пробник не потребляет ток от источника GB1. Но стоит подключить щупы, например к кому-нибудь резистору, как в цепи базы составного транзистора VT1VT2 потечёт ток. Сопротивление участка коллектор — эмиттер транзистора VT2 уменьшится и в его цепи также потечёт ток, который создаст на эмиттерном переходе транзистора VT3 падение напряжения. Оно будет тем больше, чем меньше сопротивление проверяемого резистора и чем больше сопротивление нижнего плеча резистора делителя (резистора R3 и одного из резисторов R5 — R7). В показанном на схеме положении кнопочных выключателей SB1 — SB3 этого напряжения будет достаточно для открывания транзистора VT3 и зажигания светодиода при сопротивлении проверяемого резистора (или цепи) менее 25 МОм. Если же нажать кнопку выключателя SB1, светодиод зажжётся только при сопротивлении до 1 МОм. При нажатии остальных кнопок светодиод будет реагировать лишь на сопротивление, не превышающее обозначенного у кнопки предела.
Транзисторы могут быть серий КТ306, КТ312, КТ315 с любым буквенным индексом, но возможно большим коэффициентом передачи и меньшим обратным током коллектора. Светодиод — АЛ102А, АЛ102Г, АЛ307А. Резисторы МЛТ-0,125 или МЛТ-0,25. Остальные детали — любого типа.
Налаживание пробника сводится к установки выбранных пределов измерения. Сначала подбирают щупы пробника к цепочке последовательно соединённых резисторов общим сопротивлением 25 МОм и подбором резистора R3 добиваются минимальной яркости свечения светодиода. Затем щупы подключают к резистору сопротивлением 1 МОм и тех же результатов добиваются подбором резистора R5 при нажатой кнопке выключателя SB1. Аналогично поступают на оставшихся пределах измерения. Следует заметить, что светодиод вспыхивает тем ярче, чем больше коэффициент передачи тока транзистора VT3.
Максимальный ток, потребляемый пробником в режиме измерения, не превышает 10 мА.

В ходе проведения различных ремонтных и электромонтажных операций нередко возникают ситуации, связанные с необходимостью определения наличия напряжения на отдельных участках электрической цепи. Кроме того, нередки и такие случаи, когда нужно оперативно убедиться в наличии или отсутствии контакта между различными элементами исследуемых цепей. Во всех таких случаях наиболее подходящим для работы инструментом являются индикаторные приборы, объединённые в группу устройств под общим названием пробник электрика.

Это понятие включает в себя ряд приборов и инструментов следующих наименований:

  • так называемые индикаторы фазы или, проще говоря – индикаторные отвёртки;
  • двухполюсные индикаторы напряжения;
  • универсальные пробники;
  • контрольные приборы (типа «Аркашка»).

Необходимо отметить также, что большинство из приведённых в перечне приборов не занимают, как правило, много места в ремонтном комплекте. Отдельные их образцы вообще переносятся прямо в карманах рабочего снаряжения, где они находятся, образно выражаясь, «всегда под рукой». Последнее утверждение особо касается таких известных приспособлений, какими являются индикаторная отвертка и самодельный контрольный прибор. Особо следует подчеркнуть то обстоятельство, что все эти приборы достаточно надёжны и просты в работе и неплохо замещают (дополняют) относительно габаритный и не всегда удобный в обращении тестер. С их помощью всегда можно разобраться с .

Работать с прибором “Аркашка” очень просто

Индикаторы фазы

Индикатор фазы изготавливается обычно в виде небольшой отвёртки, выступающей при необходимости и в роли щупа.

Электрическая схема электрического тестера этого типа состоит из двух последовательно соединённых элементов – неоновой лампочки и резистора с очень низкой проводимостью. В процессе проверки цепи на наличие напряжения оператору необходимо прикоснуться любым пальцем руки к специальному металлическому контакту, размещённому на верхней части отвёртки. Таким образом, для успешной работы индикатора в исследуемую цепь должно включаться также и тело человека, проводящего операцию. Встроенный высокоомный резистор, играющий в измерительной цепи роль ограничителя напряжения, снижает протекающий по ней ток (в том числе и через человека) до абсолютно безопасного значения (обычно – менее 0,3 мА).

Отдельных пояснений требуют некоторые особенности работы с индикаторной отвёрткой, состоящие в следующем:

Поскольку тело оператора также участвует в процессе электрических измерений – необходимо наличие надёжного контакта человека с землёй и отвёрткой, что выполнимо лишь при отсутствии в рабочей цепи каких-либо изоляторов (резиновых ковриков и подставок, а также резиновых перчаток).

Индикатор фазы способен определять лишь наличие или отсутствие потенциала в контрольной точке, что никоим образом не свидетельствует о наличии напряжения в измеряемой цепи. В случае обрыва нулевого провода, например, напряжение в сети отсутствует, но щуп, тем не менее, будет показывать наличие «фазы» на одном из контактов. В том случае, когда вам нужно убедиться именно в наличии напряжения – измерения следует проводить с помощью мультиметра (ампервольтметра или тестера).

В случае неисправности измерительной цепи индикатора (при выходе из строя неоновой лампочки, например) последний покажет вам отсутствие напряжения в контрольной точке. Во избежание серьёзных неприятностей обязательно проверяйте работоспособность индикаторной отвёртки путём контрольной проверки её в цепи, заведомо находящейся под напряжением.

Следует быть очень внимательным при работе с индикатором в условиях яркого солнечного освещения, при котором свечение неоновой лампочки практически незаметно для глаза, что также может привести к ошибке в определении наличия фазы.

Простейшие измерительные приборы

Под понятием «универсальный электрический пробник» подпадает также целая группа измерительных приборов, используемых, как правило, для «прозвонки» исследуемой цепи, а если проще – для определения её целостности.

Более развитой по своему функционалу разновидностью прибора считается двухполюсный индикатор наличия напряжения ПИН-90, позволяющий определять наличие или отсутствие такового между , а также между контрольной точкой и «землёй». От обычного индикатора фазы он отличается тем, что имеет ещё один щуп, который соединён с основным узлом посредством специального шнура и позволяет определять наличие напряжения в цепи. Ещё большей функциональностью отличаются двухполюсные индикаторы типа ЭЛИН-1СЗ ИП, оснащаемые двумя встроенными светодиодными индикаторами, позволяющими регистрировать различные уровни напряжения в сети.
В настоящее время разработано множество вариантов универсальных тестеров для электрических работ, как зарубежного, так и отечественного производства (в это число входят и различные самодельные устройства). Такие приборы отличаются довольно широкими возможностями и позволяют производить различные операции и способны:

  • определить наличие, вид и полярность исследуемого напряжения;
  • обнаружить обрыв в цепи;
  • оценить сопротивление этой цепи;
  • проверить конденсаторы определённой ёмкости на предмет обрыва и тока утечки;
  • проверять полупроводниковые приборы;
  • контролировать состояние встроенных аккумуляторов.

На рисунке приведена электрическая схема прибора «Ратон», позволяющего контролировать основные из перечисленных ранее величин. Отсутствие питания и универсальность – большие плюсы данного изделия.




Top