Тиристоры: принцип действия, конструкции, типы и способы включения. Тиристор – принцип работы, устройство и схема управления

Абсолютно любой тиристор может быть в двух устойчивых состояниях - закрыт или открыт

В закрытом состоянии он находится в состоянии низкой проводимости и ток почти не идет, в открытом, наоборот полупроводник будет находится в состоянии высокой проводимости, ток проходит через него фактически без сопротивления

Можно сказать, что тиристор это электрический силовой управляемый ключ. Но по сути управляющий сигнал может только открыть полупроводник. Чтобы запереть его обратно, требуется выполнить условия, направленные на снижение прямого тока почти до нуля.

Структурно тиристор представляет последовательность четырех, слоев p и n типа, образующих структуру р-n-р-n и соединенных последовательно.

Одна из крайних областей, на которую подключают положительный полюс питания называют анод , р – типа
Другая, к которой подсоединяют отрицательное полюс напряжения, называют катод , – n типа
Управляющий электрод подключен к внутренним слоям.

Для того чтоб разобраться с работой тиристора рассмотрим несколько случаев, первый: напряжение на управляющий электрод не подается , тиристор подсоединен по схеме динистора – положительное напряжение поступает на анод, а отрицательное на катод, смотри рисунок.

В этом случае коллекторный p-n-переход тиристора находится в закрытом состоянии, а эмиттерный – открыт. Открытые переходы имеют очень низкое сопротивление, поэтому почти все напряжение, следующее от источника питания, приложено к коллекторному переходу, из-за высокого сопротивления которого протекающий через полупроводниковый прибор ток имеет очень низкое значение.

На графике ВАХ это состояние актуально для участка отмеченного цифрой 1 .

При увеличении уровня напряжения, до определенного момента ток тиристора почти не растет. Но достигая условного критического уровня - напряжение включения U вкл , в динисторе появляются факторы, при которых в коллекторном переходе начинается резкий рост свободных носителей заряда, которое почти сразу же носит лавинный характер . В результате происходит обратимый электрический пробой (на представленном рисунке – точка 2). В p -области коллекторного перехода появляется избыточная зона накопленных положительных зарядов, в n -области, наоборот происходит накопление электронов. Рост концентрации свободных носителей заряда приводит к падению потенциального барьера на всех трех переходах , через эмиттерные переходы начинается инжекция носителей заряда. Лавинообразный характер еще сильнее увеличивается, и приводит к переключению коллекторного перехода в открытое состоянии. Одновременно увеличивается ток по всем областям полупроводника, в результате происходит падением напряжения между катодом и анодом, показанный на графике выше отрезком отмеченным цифрой три. В этот момент времени динистор обладает отрицательным дифференциальным сопротивлением. На сопротивлении R n растет напряжение и полупроводник переключается.

После открытия коллекторного перехода ВАХ динистора становится такой же, как на прямой ветви - отрезок №4. После переключения полупроводникового прибора, напряжение снижается до уровня одного вольта. В дальнейшем увеличение уровня напряжения или снижение сопротивления приведет к увеличению выходного тока, один в один, как и работе диода при его прямом включении. Если же уровень напряжение питания снизить, то высокое сопротивление коллекторного перехода, практически мгновенно восстанавливается, динистор закрывается, ток резко падает .

Напряжение включения U вкл , можно настраивать, внося в любой из промежуточных слоев, рядом с к коллекторным переходом, неосновные, для него носители заряда.

С этой целью используется специальный управляющий электрод , запитываемый от дополнительного источника, с которого следует управляющее напряжение – U упр . Как хорошо видно из графика – при росте U упр напряжение включения снижается.

Основные характеристики тиристоров

U вкл напряжение включения – при нем осуществляется переход тиристора в открытое состояние
U o6p.max – импульсное повторяющееся обратное напряжение при нем происходит электрический пробой p-n перехода. Для многих тиристоров будет верно выражение U o6p.max . = U вкл
I max - максимально допустимое значение тока
I ср - среднее значение тока за период U np - прямое падение напряжения при открытом тиристоре
I o6p.max - обратный максимальный ток начинающий течь при приложении U o6p.max , за счет перемещения неосновных носителей заряда
I удерж ток удержания – значение анодного тока, при котором осуществляется запирание тиристора
P max - максимальная рассеиваемая мощность
t откл - время отключения необходимое для запирания тиристора

Запираемые тиристоры - имеет классическую четырехслойную p-n-p-n структуру, но при этом обладает рядом конструктивных особенностей, дающих такую функциональную возможность, как полная управляемость. Благодаря такому воздействию от управляющего электрода, запираемые тиристоры могут переходить не только в открытое состояние из закрытого, но и из открытого в закрытое. Для этого на управляющий электрод поступает напряжение, противоположное тому, которое ранее открывает тиристор. Для запирания тиристора на управляющей электрод следует мощный, но короткий по длительности импульс отрицательного тока. При применении запираемых тиристоров следует помнить, что их предельные значения на 30% ниже, чем у обычных. В схемотехнике, запираемые тиристоры активно применяются в роли электронных ключей в преобразовательной и импульсной технике.

В отличие от своих четырехслойных родственников - тиристоров, они имеют пятислойную структуру.


Благодаря такой структуре полупроводника они имеют возможность пропускать ток в обоих направлениях – как от катода к аноду, так и от анода к катоду, а на управляющий электрод поступает напряжение обоих полярностей. Благодаря этому свойству вольт-амперная характеристика симистора имеет симметричный вид в обоих осях координат. Узнать о работе симистора вы можете из видеоурока, по ссылке ниже.


Принцип работы симистора

Если у стандартного тиристора имеются анод и катод то электроды симистора так описать нельзя т.к каждый уго электрод является и анодом и катодом одновременно. Поэтому симистор способен пропускать ток в обоих направлениях. Именно поэтому он отлично работает в цепях переменного тока.

Очень простой схемой, поясняющей принцип симистора является регулятор симисторный регулятор мощности.


После подачи напряжения на один из выводов симистора поступает переменное напряжение. На электрод, являющийся управляющим с диодного моста поступает отрицательное управляющее напряжение. При превышении порога включения симистор отпирается и ток поступает в подключенную нагрузку. В момент времени, когда на входе симистора меняется полярность напряжения он запирается. Затем алгоритм повторяется.

Чем выше уровень управляющего напряжения тем быстрее срабатывает симистор и длительность импульса на нагрузке увеличивается. При снижении уровня управляющего напряжения длительность импульсов на нагрузке также снижается. На выходе симисторного регулятора напряжение будет пилообразной формы с регулируемой длительностью импульса. Таким образом, регулируя управляющее напряжение мы можем изменять яркость лампочки накаливания или температуру жала паяльника подключенных в качестве нагрузки.

Итак симистор управляется как отрицательным так и положительным напряжением. Давайте выделим его минусы и плюсы.

Плюсы: низкая стоимость, большой срок службы, отсутствие контактов и, как следствие, отсутствие искрения и дребезга.
Минусы: достаточно чувствителен к перегреву и его обычно монтируют на радиаторе. Не работает на высоких частотах, так как не успевает переходить из открытого состояния в закрытое. Реагирует на внешниепомехи, вызывающие ложное срабатывание.

Следует также упомянуть о особенностях монтажа симисторов в современной электронной техники.

При малых нагрузках или если в ней протекают короткие импульсные токи, монтаж симисторов можно осуществлять без теплоотводящего радиатора. Во всех остальных случаях – его наличие строго обязательно.
К теплоотводу тиристор может фиксироваться крепежным зажимом или винтом
Для снижения вероятности ложного срабатывания из-за шумов, длина проводов должна быть минимальна. Для подсоединения рекомендуется использовать экранированный кабель или витую пару.

Или оптотиристоры специализированные полупроводники, конструктивной особенностью которого является наличие фотоэлемента, который является управляющим электродом.

Современной и перспективной разновидностью симистора являетсяо оптосимистор. Вместо управляющего электрода в корпусе имеется светодиод и управление происходит с помощью изменения напряжения питания на светодиоде. При попадании светового потока задонной мощности фотоэлемент переключает тиристор в открытое положение. Самой основной функцией в оптосимисторе является то, что между цепью управления и силовой имеется полная гальваническая развязка. Это создает просто отличный уровень и надежности конструкции.

Силовые ключи . Одним из главных моментов, влияющих на востребованность таких схем, служит низкая мощность, которую способен рассеять тиристор в схемах переключения. В запертом состоянии мощность практически не расходуется, т.к ток близок к нулевым значениям. А в открытом состоянии рассеиваемая мощность невелика благодаря низким значениям напряжения

Пороговые устройства – в них реализуется главное свойство тиристоров – открываться при достижении напряжением нужного уровня. Это используется в фазовых регуляторах мощности и релаксационных генераторах

Для прерывания и включения-выключения используются запирающие тиристоры. Правда, в данном случае схемам необходима определенная доработка.

Экспериментальные устройства – в них применяется свойство тиристора обладать отрицательным сопротивление, находясь в переходном режиме

Принцип работы и свойства динистора, схемы на динисторах

Динистор это разновидность полупроводниковых диодов относящихся к классу тиристоров. Динистор состоит из четырех областей различной проводимости и имеет три p-n перехода. В электроники он нашел довольно ограниченное применение, ходя его можно найти в конструкциях энергосберегающих ламп под цоколь E14 и E27, где он применяется в схемах запуска. Кроме того он попадается в пускорегулирующих аппаратах ламп дневного света.

Для того чтобы ясно представить себе работу необходимо дать понятие о сущности работы тиристора.

Управляемый проводник, состоящий из четырех полупроводниковых переходов P-N-P-N. Его принцип работы аналогичен работе диода и осуществляется при поступлении на управляющий электрод электротока.

Прохождение через тиристор тока возможно только в том случае, если потенциал анода будет выше, чем потенциал катода. Ток через тиристор прекращает проходить тогда, когда величина тока снизится до порога закрытия. Ток, который поступает на управляющий электрод не оказывает воздействие на величину тока в основной части тиристора и, кроме того ему не нужна постоянная поддержка при основном состоянии тиристора, он необходим исключительно для открытия тиристора.

Существует несколько решающих характеристик тиристора

В открытом состоянии, благоприятном для токопроводящей функции тиристор характеризуют следующие показатели:

  • Падение напряжения, оно определяется как пороговое напряжение с помощью внутреннего сопротивления.
  • Максимально допустимое значение тока до 5000 А, среднеквадратичная величина, свойственная для самых мощных компонентов.

В запертом состоянии тиристора – это:

  • Прямое максимально допустимое напряжение (выше, чем 5000А).
  • В общем случае прямое и обратное значение напряжения одинаковы.
  • Время запирания или время с минимальным значением, в течение которого на тиристор не осуществляется влияние положительного значения напряжения анода относительно катода, иначе произойдет самопроизвольное отпирание тиристора.
  • Ток управления, свойственный для открытой основной части тиристора.

Существуют тиристоры, предназначенные для работы в схемах, рассчитанных на небольшое значение частоты и для схем с высокой частотой. Это так называемые быстродействующие тиристоры, их область применения рассчитана на несколько килогерц. Для быстродействующих тиристоров характерно использование неодинакового прямого и обратного напряжения.

Для увеличения постоянного значения напряжения

Рис. №1. Габаритно-присоединительные размеры и чертеж тиристора. m 1, m 2 –контрольные точки, в которых происходит замер импульсного напряжения во время открытого состояния. L 1 min –наименьший воздушный промежуток (расстояние) по воздуху между выводами анода и управляющего электрода; L 2 min – минимальное расстояние длина прохождения тока утечки между выводами.

Разновидности тиристоров

  • – тиристор диодный, имеет два вывода анод и катод.
  • Тринистор – триодный тиристор оснащен добавочным управляющим электродом.
  • Симистор – симметричный тиристор, он является встречно-последовательным соединением тиристоров, обладает возможностью пропускать ток в прямом и обратном направлениях.

Рис. №2. Структура (а) и вольт-амперная характеристика (ВАХ) тиристора.

Тиристоры предназначены для работы в схемах с различными границами частот, в обычном применении тиристоры могут соединяться с диодами, который подключается встречно-включенным способом, это свойство используется для того чтобы увеличить постоянное напряжение, величину которого компонент способен выдержать в выключенном состоянии. Для усовершенствованных схем используется тиристор GTO (Gate Turn Oee – запираемый тиристор) , он полностью управляем. Его запирание происходит по управляющему электроду. Использование тиристоров подобного рода нашло применение в очень мощных преобразователях, так как он может пропускать высокие токи.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Данный прибор можно рассматривать и применять в качестве электронного выключателя или ключа, которые управляются с помощью нагрузки слабыми сигналами, а также могут переключаться из одного режима в другой. Общее количество современных тиристоров разделяется по способу управления и по степени проводимости, одно направление или два (такие приборы также называют симисторами).

Тиристоры также характеризуются нелинейной вольтамперной особенностью с наличием участка отрицательного дифференциального сопротивления. Эта особенность делает подобные приборы схожими с транзисторными ключами, но имеются между ними и различия. Так в переход из одного состояния в другое в цельной электрической цепи происходит путем лавинообразного скачка, а также методом внешнего воздействия на сам прибор. Последнее осуществляется двумя вариантами – токовым напряжением или воздействием света фототиристора.

Применение и типы тиристоров

Сфера применения данных приборов довольно разнообразна – это электронные ключи, современные системы CDI, механически управляемые выпрямители, диммеры или регуляторы мощности, а также инверторные преобразователи.

Как уже говорилось выше, подобные приборы разделяются на диодные и триодные. Первый тип также называют динисторами с двумя выводами, он разделяется на приборы, не имеющие возможность осуществлять проводимость в обратном направлении, на тип с проводимостью в обратном направлении и на симметричные приборы. Второй включает в себя триодные тиристоры с проводимостью в обратном направлении, приборы с отсутствием проводимости в обратном направлении, симметричные тиристоры, ассиметричные приборы и запираемые тиристоры.

Между ними, кроме количества выводов, нет существенных и принципиальных различий. Но, если в динисторе открытие происходит после достижения между анодом и катодом напряжения, зависящего от типа устройства, то в тиристоре имеющееся напряжение может быть в разы снижено или вовсе снято с помощью подачи токового импульса.

Существуют различия между триодными тиристорами и запираемыми приборами. Так у первого типа переключение в режим закрытого состояния происходит после снижения тока или после изменения полярности, а у запираемых устройств переход в открытое осуществляется путем воздействия тока на управляющий электрод.

Тиристор это полупроводниковый прибор, предназначенный для работы в качестве ключа. Он имеет три электрода и структуру p-n-p-n из четырёх слоёв полупроводника. Электроды именуются как анод, катод и управляющий электрод. Структура p-n-p-n функционально аналогична нелинейному резистору, который способен принимать два состояния:

  • с очень большим сопротивлением, выключенное;
  • с очень малым сопротивлением, включенное.

Виды

На включенном тиристоре сохраняется напряжение около одного или нескольких Вольт, которое незначительно увеличивается с возрастанием силы тока, протекающего через него. В зависимости от вида тока и напряжения, приложенного к электрической цепи с тиристором, в ней используется одна из трёх современных разновидностей этих полупроводниковых приборов. На постоянном токе работают:

  • включаемые тринисторы;
  • три разновидности запираемых тиристоров, именуемых как

На переменном и постоянном токе работают симисторы. Все эти тиристоры содержат управляющий электрод и два других электрода, через которые тёчёт ток нагрузки. Для тринисторов и запираемых тиристоров это анод и катод, для симисторов наименование этих электродов обусловлено правильностью определения свойств управляющего сигнала, подаваемого на управляющий электрод.

Наличие в тиристоре структуры p-n-p-n позволяет разделить её условно на две области, каждая из которых является биполярным транзистором соответствующей проводимости. Таким образом, эти взаимосвязанные транзисторы являются эквивалентом тиристора, что имеет вид схемы на изображении слева. Первыми на рынке появились тринисторы.

Свойства и характеристики

По сути это аналог самоблокирующегося реле с одним нормально разомкнутым контактом, роль которого выполняет полупроводниковая структура, расположенная между анодом и катодом. Отличие от реле состоит в том, что для этого полупроводникового прибора может быть применено несколько способов включения и выключения. Все эти способы объясняются транзисторным эквивалентом тринистора.

Два эквивалентных транзистора охвачены положительной обратной связью. Она многократно усиливает любые изменения тока в их полупроводниковых переходах. Поэтому существует несколько видов воздействия на электроды тринистора для его включения и выключения. Первые два способа позволяют выполнить включение по аноду.

  • Если напряжение на аноде увеличивать, при его определённом значении начнут сказываться эффекты начинающегося пробоя полупроводниковых структур транзисторов. Появившийся начальный ток лавинообразно усилится положительной обратной связью и оба транзистора включатся.
  • При достаточно быстром увеличении напряжения на аноде происходит заряд межэлектродных ёмкостей, которые присутствуют в любых электронных компонентах. При этом в электродах появляются зарядные токи этих ёмкостей, которые подхватывает положительная обратная связь и всё заканчивается включением тринистора.

Если перечисленные выше изменения напряжения отсутствуют, включение обычно происходит током базы эквивалентного n-p-n транзистора. Выключить тринистор можно одним из двух способов, которые также становятся понятны из-за взаимодействия эквивалентных транзисторов. Положительная обратная связь в них действует, начиная с некоторых величин токов, протекающих в структуре p-n-p-n. Если величину тока сделать меньше этих величин, положительная обратная связь сработает на быстрое исчезновение токов.

Другой способ выключения использует прерывание положительной обратной связи импульсом напряжения, который меняет полярность на аноде и катоде. При таком воздействии направления токов между электродами изменяется на противоположные и тринистор выключается. Поскольку для полупроводниковых материалов характерно явление фотоэффекта, существуют фото- и оптотиристоры, у которых включение может быть обусловлено освещением либо приёмного окошка, либо светодиодом в корпусе этого полупроводникового прибора.

Существуют ещё и так называемые динисторы (неуправляемые тиристоры). В этих полупроводниковых приборах нет управляющего электрода конструктивно. По своей сути это тринистор с одним отсутствующим выводом. Поэтому их состояние зависит только от напряжения анода и катода и они не могут включиться управляющим сигналом. В остальном процессы в них аналогичны обычным тринисторам. То же относится и к симисторам, которые по сути являются двумя тринисторами соединёнными параллельно. Поэтому они применяются для управления переменным током без дополнительных диодов.

Запираемые тиристоры

Если определённым образом изготовить области структуры p-n-p-n вблизи баз эквивалентных транзисторов можно достичь полной управляемости тиристором со стороны управляющего электрода. Такая конструкция структуры p-n-p-n показана на изображении слева. Включать и выключать такой тиристор можно соответствующими сигналами в любой момент времени подавая их на управляющий электрод. Остальные способы включения, применяемые к тринисторам, для запираемых тиристоров так же годятся.

Однако эти способы не применяются к таким полупроводниковым приборам. Они наоборот исключаются теми или иными схемотехническими решениями. Целью является получение надёжного включения и выключения только по управляющему электроду. Это необходимо для использования таких тиристоров в мощных инверторах повышенной частоты. GTO работают на частотах до 300 Герц, а IGCT способны на существенно более высокие частоты, достигающие 2 кГц. Номинальные значения токов могут быть несколько тысяч ампер, а напряжение – несколько киловольт.

Сравнение различных тиристоров приведено в таблице ниже.

Разновидность тиристора Преимущества Недостатки Где используется
Тринистор Минимальное напряжение во включенном состоянии при максимально больших токах и перегрузках. Наиболее надёжен из всех. Хорошая масштабируемость схем путём совместной работы нескольких тринисторв соединяемых либо параллельно, либо последовательно Отсутствует возможность произвольного управляемого отключения только управляющим электродом. Наиболее низкие рабочие частоты. Электроприводы, источники электропитания питания большой мощности; сварочные инверторы; управление мощными нагревателями; статические компенсаторы; коммутаторы в цепях с переменным током
GTO Возможность произвольного управляемого выключения. Относительно высокая способность к перегрузкам по току. Способность надёжно работать при последовательном соединении. Рабочая частота до 300 Гц, напряжение до 4000 В. Значительно напряжение во включенном состоянии при максимально больших токах и перегрузках и соответствующие им потери, в том числе и в системах управления. Сложная схемотехника построения системы в целом. Большие динамические потер.
IGCT Возможность произвольного управляемого выключения. Относительно высокая способность к перегрузкам по току. Относительно малое напряжение во включенном состоянии при максимально больших токах и перегрузках. Рабочая частота — до 2000 Гц. Простое управление. Способность надёжно работать при последовательном соединении. Наиболее дорогие из всех тиристоров Электроприводы; статические компенсаторы реактивной мощности; источники электропитания питания большой мощности, индукционные нагреватели

Тиристоры изготавливаются для широкого диапазона токов и напряжений. Конструкция их определяется размерами структуры p-n-p-n и необходимостью получения надёжного отвода тепла от неё. Современные тиристоры, а также их обозначения на электрических схемах показаны на изображениях ниже.

— устройство, обладающее свойствами полупроводника, в основе конструкции которого лежит монокристалический полупроводник, имеющий три или больше p-n-переходов.

Его работа подразумевает наличие двух стабильных фаз:

  • «закрытая» (уровень проводимости низкий);
  • «открытая» (уровень проводимости высоки).

Тиристоры — устройства, выполняющие функции силовых электронных ключей. Другое их наименование — однооперационные тиристоры. Данный прибор позволяет осуществлять регуляцию воздействия мощных нагрузок посредством незначительных импульсов.

Согласно вольт-амперной характеристике тиристора, увеличение силы тока в нём будет провоцировать снижение напряжения, то есть появится отрицательное дифференциальное сопротивление.

Кроме того, эти полупроводниковые устройства могут объединять цепи с напряжением до 5000 Вольт и силой тока до 5000 Ампер (при частоте не более 1000 Гц).

Тиристоры с двумя и тремя выводами пригодны для работы как с постоянным, так и с переменным током. Наиболее часто принцип их действия сравнивается с работой ректификационного диода и считается, что они являются полноценным аналогом выпрямителя, в некотором смысле даже более эффективным.

Разновидности тиристоров отличаются между собой:

  • Способом управления.
  • Проводимостью (односторонняя или двусторонняя).

Общие принципы управление

В структуре тиристора имеется 4 полупроводниковых слоя в последовательном соединении (p-n-p-n). Контакт, подведённый к наружному p-слою — анод, к наружному n-слою — катод. Как результат, при стандартной сборке в тиристоре максимально может быть два управляющих электрода, которые крепятся к внутренним слоям. Соответственно подключённому слою проводники, по типу управления устройства делятся на катодные и анодные. Чаще используется первая разновидность.

Ток в тиристорах течёт в сторону катода (от анода), поэтому соединение с источником тока осуществляет между анодом и плюсовым зажимом, а также между катодом и минусовым зажимом.

Тиристоры с управляющим электродом могут быть:

  • Запираемыми;
  • Незапираемыми.

Показательным свойством незапираемых приборов является отсутствие у них реакции на сигнал с управляющего электрода. Единственный способ закрыть их — снизить уровень протекающего сквозь них тока так, чтобы он уступал силе тока удержания.

Управляя тиристором следует учитывать некоторые моменты. Устройство данного типа сменяет фазы работы с «выключен» на «включён» и обратно скачкообразно и только при условии внешнего воздействия: при помощи тока (манипуляции с напряжением) или фотонов (в случаях с фототиристором).

Чтобы разобраться в данном моменте необходимо помнить, что у тиристора преимущественно имеется 3 вывода (тринистор): анод, катод и управляющий электрод.

Уэ (управляющий электрод) как раз таки и отвечает за то, чтобы включать и выключать тиристор. Открытие тиристора происходит при условии, что приложенное напряжение между А (анодом) и К (катодом) становится равным или превосходит объём напряжения работы тринистора. Правда, во втором случае потребуется воздействие импульса положительной полярности между Уэ и К.

При постоянной подаче питающего напряжения тиристор может быть открыт бесконечно долго.

Чтобы перевести его в закрытое состояние, можно:

  • Снизить уровень напряжения между А и К до нуля;
  • Понизить значение А-тока таким образом, чтобы показатели силы тока удержания оказались больше;
  • Если работа цепи построена на действии переменного тока, выключение прибора произойдёт без постороннего вмешательства, когда уровень тока сам снизится до нулевого показания;
  • Подать запирающее напряжение на Уэ (актуально только в отношении запираемых разновидностей полупроводниковых устройств).

Состояние закрытости тоже длится бесконечно долго, пока не возникнет запускающий импульс.

Конкретные способы управления

  • Амплитудный .

Представляет собой подачу положительного напряжения изменяющейся величины на Уэ. Открытие тиристора происходит, когда величины напряжения довольно, чтобы пробиться через управляющий переход тока спрямления (Iспр.). При помощи изменения величины напряжения на Уэ, появляется возможность изменения времени открытия тиристора.

Главный недочёт этого метода — сильное влияние температурного фактора. Кроме того, для каждой разновидности тиристора потребуется резистор другого вида. Этот момент не добавляет удобства в эксплуатации. Помимо этого время открытия тиристора возможно корректировать лишь пока длится первая 1/2 положительного полупериода сети.

  • Фазовый.

Заключается в смене фазы Uупр (в соотношении с напряжением на аноде). При этом применяется фазовращательный мост. Главный минус — малая крутизна Uупр, поэтому стабилизировать момент открытия тиристора можно лишь ненадолго.

  • Фазово-импульсный .

Рассчитан на преодоление недостатков фазового метода. С этой целью на Уэ подаётся импульс напряжения с крутым фронтом. Данный подход в настоящее время наиболее распространён.

Тиристоры и безопасность

Из-за импульсности своего действия и наличия обратного восстановительного тока тиристоры очень сильно повышает риск перенапряжения в работе прибора. Помимо этого опасность перенапряжения в зоне полупроводника высока, если в других частях цепи напряжения нет вовсе.

Поэтому во избежание негативных последствий принято использовать схемы ЦФТП. Они препятствуют появлению и удержанию критический значений напряжения.

Двухтранзисторная модель тиристора

Из двух транзисторов вполне можно собрать динистор (тиристор с двумя выводами) или тринистор (тиристор с тремя выводами). Для этого один из них должен иметь p-n-p-проводимость, другой — n-p-n-проводимость. Выполнены транзисторы могут быть как из кремния, так и из германия.

Соединение между ними осуществляется по двум каналам:

  • Анод от 2-го транзистора + Управляющий электрод от 1-го транзистора;
  • Катод от 1-го транзистора + Управляющий электрод от 2-го транзистора.

Если обойтись без использования управляющих электродов, то на выходе получится динистор.

Совместимость выбранных транзисторов определяется по одинаковому объёму мощности. При этом показания тока и напряжения должны быть обязательно больше требуемых для нормального функционирования прибора. Данные по напряжению пробоя и току удержания зависят от конкретных качеств использованных транзисторов.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.




Top