Создание бэкапа в sql server. Настройка регулярного резервного копирования БД MS SQL Server. Восстановление базы данных из резервной копии

Обширный функционал Bacula Enterprise Edition, помимо прочего, позволяет быстро и просто создавать бэкапы БД под . Например, речь идет об инструменте, с помощью которого можно осуществлять резервное копирование MS SQL Server. Сделать бэкап MS SQL пользователь может, создавая резервные копии специфических баз данных MS SQL больших объемов, используемых платформой Windows, при меньших затратах на ПО сторонних производителей, с возможностью восстановления данных до определенного момента времени (PITR-восстановление) на сетевой и локальный диск.

Скрипт Bacula Systems для создания бэкапов MS SQL Server характеризуется крайней эффективностью, достигаемой за счет реализации современной, высоконадежной архитектуры. Более того, ПО позволяет сделать бэкап MS SQL Server, использовать самые различные возможности по созданию резервных копий MS SQL.

Скрипт бэкапа MS SQL Bacula Systems функционирует независимо от VSS. Это значит, что инструмент резервного копирования MS SQL не использует снапшоты VSS для создания бэкапов. Поэтому пользователь может задать следующее значение “Enable VSS = no” в Bacula FileSet. Эффективное создание бэкапов MS SQL Server и их восстановление с помощью данного решения достигаются за счет использования Microsoft API для SQL Server. Благодаря этому Bacula Systems может поддерживать работу механизмов обеспечения защиты и все типы проверки подлинности, реализованные в Microsoft SQL Server.

Резервное копирование журнала транзакций MS SQL и восстановление MS SQL на момент времени: ПО Bacula Enterprise Edition позволяет восстанавливать блоки данных MS SQL или конкретные настройки до определенного момента времени. Благодаря реализации моделей полного восстановления и восстановления с неполным протоколированием вы сможете восстанавливать MS SQL, используя PITR-восстановление, либо использовать LSN для восстановления системы до конкретного состояния. Вы можете восстанавливать определенное состояние базы данных MS SQL на любой конкретный момент времени с точностью до секунды. В случае бэкапа журнала транзакций MS SQL, при восстановлении состояние БД будет восстанавливаться из различных выбранных бэкапов.

Краткий обзор функций 
 автоматического бэкапа и восстановления MS SQL с Bacula Enterprise

Компания Bacula Systems создала плагин для резервного копирования MS SQL Server для совместного использования с Bacula Enterprise Edition. Бэкап MS SQL Server с Bacula обладает следующими функциями:

  • Поддержка полного и дифференциального резервного копирования MS SQL
  • Поддержка инкрементального резервного копирования MS SQL
  • Резервное копирование MS SQL на сетевой и локальный диск
  • Резервное копирование MS SQL по расписанию
  • Создание бэкапов на уровне базы данных MS SQL Server
  • Возможность включать/исключать БД из процедуры создания бэкапов
  • Поддержка создания бэкапов БД «только для чтения»
  • Восстановление MS SQL бэкапов на диск
  • Отправка потока резервной копии напрямую в Storage Daemon
  • Восстановление MS SQL на момент времени

Обзор и настройка резервного копирования MS SQL 2008, 2008 R2, 2012 и 2014

В данном документе представлены решения для Bacula Enterprise Edition 8.4 и более поздних версий, которые не поддерживаются ранними версиями ПО. Резервное копирование базы MS SQL был протестировано и поддерживается MS SQL 2003 R2, MS SQL 2008 R2, MS SQL 2012, MS SQL 2005, MS SQL 2008, MS SQL 2014. Возможна работа резервного копирования MS SQL от Bacula с SQL Express.

Глоссарий резервного копирования MS SQL 2008, 2008 R2, 2012 и 2014

  • MS SQL означает Microsoft SQL Server.
  • Журнал транзакций (transaction log). Любая база данных MS SQL Server имеет журнал транзакций, в который записываются все транзакции и модификации БД, выполненные в ходе таких транзакций. Журнал транзакций – важный элемент БД. В случае отказа системы журнал транзакций может потребоваться для восстановления БД до рабочего состояния. Более подробную информацию вы найдете по ссылке https://msdn.microsoft.com/en-us/library/ms190925.aspx .
  • Дифференциальное резервное копирование базы данных MS SQL Server. Дифференциальный бэкап основан на последнем полном . В ходе выполнения дифференциального бэкапа захватываются только те данные, которые были изменены с момента создания последнего полного бэкапа. Более подробную информацию вы найдете по ссылке https://msdn.microsoft.com/en- us/library/ms175526.aspx .
  • Полное резервное копирование базы данных MS SQL Server. В ходе полного бэкапа БД создается резервная копия всей базы данных. Бэкап включает часть журнала транзакций с целью восстановления полной БД из резервной копии. Полные бэкапы БД содержат БД на момент завершения создания резервной копии. Более подробную информацию вы найдете по ссылке https://msdn.microsoft.com/en- us/library/ms186289.aspx .
  • Бэкап «только для копирования» (CopyOnly). Бэкапы «только для копирования» представляют собой бэкапы MS SQL, независящие от обычной последовательности создания традиционных резервных копий SQL Server. Иногда полезно создавать бэкапы для особых нужд, не влияя на общий процесс резервного копирования и восстановления БД. Более подробную информацию вы найдете по ссылке https://msdn.microsoft.com/en-us/library/ms191495.aspx .
  • VDI (Интерфейс виртуального устройства) – это технология Microsoft, позволяющая создавать именованный канал между программами.
  • стандартные маски задают наборы строк с подстановочными знаками. Например, стандартная маска production* будет включать строки production1 и production2.
  • строка
  • целое число.
  • LSN Каждая запись в журнале транзакций MS SQL Server обозначается с помощью уникального регистрационного номера транзакции (LSN). Более подробную информацию вы найдете по ссылке https://technet.microsoft.com/en-us/library/ms190411%28v=sql.105%29.aspx .

Резервное копирование MS SQL Server 2008, 2008 R2, 2012 и 2014

Полное резервное копирование баз данных MS SQL Server 2008, 2008 R2, 2012 и 2014

В ходе полного резервного копирования базы данных MS SQL сохраняются файлы БД и журнал транзакций, что позволяет полностью защитить базу MS SQL на случай отказа носителя. В случае повреждения одного или более файлов восстановление базы MS SQL из бэкапа позволит восстановить все совершенные транзакции. Также будет произведен откат всех транзакций, находившихся в процессе выполнения. В данном режиме производится создание бэкапов БД master и mbdb.

Дифференциальное резервное копирование баз данных MS SQL Server 2008, 2008 R2, 2012 и 2014

Дифференциальный бэкап базы MS SQL Server основан на самом последнем полном бэкапе базы данных MS SQL. В ходе создания дифференциального бэкапа MS SQL захватываются только те данные, которые были изменены с момента создания последнего полного бэкапа MS SQL. Для функции дифференциального бэкапа MS SQL крайне важна последовательность бэкапов. Если по какой-то причине полный бэкап, на который ссылается MS SQL, не доступен, дифференциальные бэкапы базы данных MS SQL Server нельзя будет использовать. Резервное копирование MS SQL от Bacula использует определенные методы для решения данной проблемы. Поэтому, в случае возникновения сложностей, статус дифференциального бэкапа БД может быть автоматически повышен до полного бэкапа.

Резервное копирование журнала транзакций MS SQL 2008, 2008 R2, 2012 и 2014

Настройка резервного копирования MS SQL и конфигурирование БД

Восстановление базы MS SQL из бэкапа

Вы можете использовать все стандартные способы запуска процедуры восстановления базы MS SQL из бэкапа. Однако вы должны убедиться в том, что, в случае восстановления дифференциальных данных, будет также восстановлен полный предыдущий бэкап базы MS SQL. В таком случае восстановление происходит автоматически, если вы запускаете его в консоли bconsole с помощью вариантов восстановления 5 или 12. В сгенерированной файловой структуре вам необходимо отметить восстановление полных БД или инстансов БД.

Варианты восстановления базы MS SQL из бэкапа

ПО Bacula Enterprise Edition позволяет пользователям использовать множество вариантов восстановления MS SQL и применять самые различные способы «отката» БД. Наиболее часто используемые варианты восстановления описаны ниже:

  • параметр Where: В случае с Bacula Enterprise Edition, данный параметр позволяет администратору восстанавливать БД в конкретном месте.
  • параметр Replace: Используется для того, чтобы определить, как ПО Bacula должно вести себя с текущей БД при восстановлении. Резервное копирование MS SQL от Bacula также позволяет использовать еще несколько опций при восстановлении, например:
  • Instance: Поскольку MS SQL использует несколько инстансов, бэкап базы MS SQL от Bacula позволяет выбирать, какой из инстансов следует восстанавливать. Данный параметр является опциональным, и, если он не задан, при восстановлении будет использоваться значение, заданное при создании бэкапа. По умолчанию, используется инстанс с именем “MSSQLSERVER”.
  • Database. Данная опция указывает имя БД для восстановления и она использует значение, заданное в момент создания БД. Данный параметре является опциональным. По умолчанию резервное копирование баз данных SQL Server использует параметр Where для определения имени новой БД. Если обоим параметрам Where и Database назначены валидное имя БД, то параметр Database будет использоваться.
  • User. Имя пользователя, используемое для подключения к инстансу базы данных MS SQL. Данный параметр является опциональным, и, если он не задан, при восстановлении будет использоваться значение, заданное при создании бэкапа.
  • Password. Пароль, используемый для подключения к инстансу базы данных MS SQL. Данный параметр является опциональным, и, если он не задан, при восстановлении будет использоваться значение, заданное при создании бэкапа.
  • Domain. Домен, используемый для подключения к инстансу базы данных MS SQL. Данный параметр является опциональным, и, если он не задан, при восстановлении будет использоваться значение, заданное при создании бэкапа.
  • Recovery. Параметр позволяет определить, будет ли произведен откат БД к предыдущему состоянию при восстановлении или нет. По умолчанию при восстановлении БД будет произведет откат к предыдущему состоянию.
  • Stop_before_mark. Условие WITH STOPBEFOREMARK = Используется для того, чтобы указать, что запись в журнале транзакций, которая находится непосредственно перед флагом, и является точкой восстановления. Точкой восстановления может служить дата и время, номер LSN или имя флага mark_name.
  • Stop_at_mark. Условие WITH STOPATMARK =Используется для того, чтобы показать, что помеченная транзакция является точкой восстановления. STOPATMARK перемещается вперед к флагу и включает повтор помеченной транзакции. Точкой восстановления может служить дата и время, номер LSN или имя флага mark_name.
  • Stop_at=. Условие WITH STOPAT = используется для того, чтобы указать, что точкой восстановления является дата/время.
  • Restrict_user. Условие WITH RESTRICT_USER используется для ограничения доступа к восстановленной БД. По умолчанию используется значение no.

Восстановление MS SQL на момент времени можно совершать непосредственно из плагина бэкапа MS SQL. Также можно восстанавливать файлы локально и выполнять операции из консоли управления Microsoft SQL Server Mangement Console, чтобы иметь возможность использовать больше возможностей.

LSN

LSN номер записи в журнале, в момент которой возникло конкретное событие по созданию бэкапа и восстановлению, можно просмотреть одним из следующих способов:

  • При выводе описания заданий по созданию бэкапа с помощью ПО Bacula
  • В названии файла журнала
  • В таблице msdb.backupset
  • В таблице msdb.backupfile

При выполнении задания по созданию бэкапа базы MS SQL при выводе описания задания отобразится следующая информация о LSN номерах:

Номер First LSN соответствует последнему LSN номеру последнего бэкапа журнала транзакций. Таким бэкапом может являться самый первый полный бэкап или последний бэкап (инкрементальный).

Номер Last LSN соответствует последней транзакции, зарегистрированной в журнале.

В случае бэкапа журнала транзакций (инкрементального), название файла, связанного с этой БД, в задании по созданию инкрементального бэкапа будет выглядеть следующим образом:

Число в названии, в нашем случае 42000162001, соответствует последнему LSN номеру предыдущего задания (по созданию полного или инкрементального бэкапа).

Рисунок 2: Первый номер LSN, последний номер LSN и номера LSN в названии файлов

Как показано в примере на рисунке 2, если администратору необходимо восстановить базу данных MS SQL в состояние, соответствующем LSN номеру 14, можно выполнить следующие действия:

  • В меню восстановления БД используйте опцию 5
  • Выберите последний файл полного бэкапа “data.bak” (LSN: 10)
  • Выберите инкрементальный бэкап “log-10.trn”

Или, если последний полный бэкап MS SQL Server не доступен, однако доступен предыдущий полный бэкап, то:

  • Используйте опцию восстановления 3, выберите соответствующие значения jobids
  • Выберите директорию БД “/@mssql/db29187”
  • Выберите файл полного бэкапа “data.bak” (LSN: 2)
  • Выберите инкрементальные бэкапы “log-2.trn”, “log-3.trn”, “log-10.trn”
  • Задайте параметр stop_at_mark равный “lsn:14”
  • Запустите задачу по восстановлению бэкапа

Сценарии восстановления MS SQL

Описание Where Database Пример
Восстановить файлы на диск Путь where=c:/tmp
Восстановить исходную БД where=/
Восстановить с новым именем Имя where=newdb
Восстановить с новым именем Имя database=newdb
Восстановить с новым именем и переместить файлы Имя

Таблица 1: Сценарии восстановления MS SQL

2.3.1 Восстановление базы MS SQL с исходным именем

Чтобы восстановить БД с исходным именем, параметр Where должен быть не задан (пустое значение), либо должно быть задано значение “/”, а параметру Replace должно быть присвоено значение Always , или же сначала необходимо удалить исходную БД.

Восстановление бэкапа MS SQL с новым именем

Чтобы восстановить бэкап базы данных MS SQL с новым именем, возможно, сначала потребуется переместить файлы БД на диск. Все зависит от того, существует ли еще исходная БД.

Если исходная БД более не доступна, то параметр where , либо поле “Plugin Options” может содержать название новой БД. Резервное копирование MS SQL от Bacula автоматически создаст БД с новым именем.

Если исходная БД все еще пока требуется, параметр where будет использоваться для перемещения файлов на диск, и необходимо будет задать название новой БД с помощью меню “Plugin Options”. В дереве восстановления необходимо выбрать файл layout.dat.

Используя каталог My Catalogue

Запустите задачу восстановления MS SQL:

Используя каталог My Catalogue, запустите задачу восстановления базы MS SQL:

Восстановление MS SQL на локальный диск

Если указать where=c:/path/ , файлы будут восстановлены на локальный диск, и администратор базы данных MS SQL сможет использовать процедурное расширение TSQL для консоли управления Microsoft SQL Server Mangement Console для восстановления БД. Команды SQL, необходимые для восстановления БД, перечислены в описании Job output как показано на рисунке ниже.

«Кто владеет информацией - тот владеет миром» - Майер Амшель Ротшильд

Самое ценной сущностью в любом бизнесе является информация. Потеря информации может привести к непредсказуемым последствиям, в основном финансовым. Поэтому одной из главной задач IT специалистов является резервное копирование всей IT инфраструктуры. Это относится и базам данных MS SQL Server.


Для того, чтобы обеспечить сохранность информации в используемых базах данных, а также снизить время для восстановления работоспособности, необходимо производить периодическое резервное копирование SQL-серверов.

Разберем на простейшем примере: необходимо настроить резервное копирование базы данных на отдельный диск.

Решение:

  1. Открываем Microsoft SQL Server Management Studio . В навигационном меню справа открываем вкладку "Управление" . Там видим вкладку "Планы обслуживания" . Нажимаем правой кнопкой мыши -> "Создать план обслуживания" и даем имя нашему плану (Рис.1):

Рис.1 Создание нового плана обслуживания.

2. На панели элементов добавляем задачу "Резервное копирование базы данных" (Рис.2):

Рис.2 Добавление задачи "Резервное копирование базы данных".

3. На созданной задаче нажимаем правой кнопкой мыши -> "Изменить" (Рис.3):

4. В окне свойствах задачи выбираем тип резервной копии (в моем случае полный), выбираем нужную базу данных (у меня ka_cons), каталог для бэкапов, возможность проверки резервных копий на целостность и варианты сжатия оных (Рис.4-6):


Рис.4 Тип бэкапа - полный.

Рис.5 Выбор базы данных для бэкапа.

Рис.6 Определение каталога для бэкапов, проверки целостности и степени сжатия.

5. На панели настройки плана обслуживания справа. нажимаем на кнопку "Расписание" (Рис.7):

6. Настраиваем нужное нам расписание и нажимаем "Ок" (Рис.8):

Рис.8 Настройка расписания резервного копирования.

7. Сохраняем наш план обслуживания (Рис.9):

Рис.9 Сохранение плана обслуживания.

Полное резервное копирование базы данных по расписанию настроено.

Администраторы БД делятся на тех, кто делает бэкапы, и тех, кто будет делать бэкапы.

Введение

В этой статье описано самое обычное резервное копирование ИБ 1С при помощи инструментов MS SQL Server 2008 R2, объяснено почему следует делать именно так, а не иначе, и развеяно несколько мифов. В статье достаточно много ссылок на документацию MS SQL, эта статья скорее обзор механизмов резервного копирования, чем всеобъемлющее руководство. Но для тех, кто сталкивается с этой задачей впервые, даны простые и пошаговые инструкции, которые применимы к простым ситуациям. Статья предназначена не для гуру администрирования, гуру и так всё это знают, но предполагается, что читатель способен сам установить MS SQL Server и заставить это чудо враждебной техники создать в своих недрах базу данных, которую в свою очередь он же способен заставить хранить данные 1С.

Я считаю команду TSQL BACKUP DATABASE (и её брата BACKUP LOG) по сути единственным средством резервного копирования баз 1С, использующих MS SQL Server в качестве СУБД. Почему? Давайте рассмотрим, какие у нас способы вообще есть:

Как Хорошо Плохо Итого
Выгрузка в dt Очень компактный формат. Долго формируется, требует монопольного доступа, не сохраняет часть малозначительных данных (таких как настройки пользователей в ранних версиях), долго разворачивается. Это не столько способ резервного копирования, сколько способ переноса данных из одной среды в другую. Идеален для узких каналов.
Копирование файлов mdf и ldf Очень понятный способ для начинающих админов. Требует освобождения файлов базы данных от блокировки, а это возможно, если база отключена (команда take offline контекстного меню), отсоединена (detach) или просто остановлен сервер. Очевидно, что пользователи в это время работать не смогут. Этот способ имеет смысл применять тогда и только тогда, когда уже произошла авария, чтобы при попытках восстановления хотя бы иметь возможность вернуться к тому варианту, с которого началось восстановление.
Резервное копирование средствами ОС или гипервизора Удобный способ для сред разработки и тестирования. Не всегда дружит с целостностью данных. Ресурсоёмкий способ. Может ограниченно применяться для разработки. В продуктовой среде практического смысла не имеет.
Резервное копироавние средствами MS SQL Не требует простоев. Позволяет восстановить целостное состояние на произвольный момент, если заранее об этом побеспокоиться. Отлично автоматизируется. Экономный по времени и другим ресурсам. Не очень компактный формат. Не все умеют пользоваться этим способом в необходимой мере. Для продуктовых сред — основной инструмент.

Основные сложности при использовании резервного копирования встроенными средствами MS SQL возникают из-за элементарного непонимания принципов работы. Это объясняется отчасти великой ленью, отчасти отсутствием простого и понятного разъяснения на уровне "готовых рецептов" (хм, скажем так, мне не встречалось), да еще и усугубляется ситуация мифосоветами "недогуру" на форумах. Что делать с ленью я не знаю, а вот объяснить основы резервного копирования попробую.

Что и зачем сохраняем?

Давным-давно в далёкой галактике существовал такой продукт инженерно-бухгалтерской мысли, как 1С:Предприятие 7.7. Видимо из-за того, что первые версии 1С:Предприятия разрабатывались для использования популярного формата файлов dbf, его SQL-версия не хранила в базе данных достаточно информации для того, чтобы считать резервное копирование MS SQL полноценным, да еще и при каждом изменении структуры нарушались условия работы полной модели восстановления, поэтому приходилось идти на разные ухищрения, чтобы заставить систему резервного копирования исполнять свою основную функцию. Но, с тех пор, как появилась версия 8 администраторы баз данных наконец-то смогли расслабиться. Штатные средства резервного копирования позволяют создать полную и целостную систему резервных копий. Не входит в резервное копирование только журнал регистрации и некоторые мелочи типа настроек положения форм (в старых версиях), но это потеря этих данных на функциональности системы в не сказывается, хотя безусловно резервные копии журнала регистрации делать правильно и полезно.

А зачем вообще нам нужно резервное копирование? Хм. На первый взгляд странный вопрос. Ну, наверное, во-первых, чтобы иметь возможность развернуть копию системы и во-вторых восстановить систему при сбое? На счет первого я согласен, а вот второе назначение — первый миф резервного копирования.

Резервное копирование — это последний рубеж обеспечения сохранности системы. Если администратору базы данных приходится восстанавливать продуктовую систему из резервных копий, значит, с большой вероятностью было допущено множество грубых ошибок в организации работ. Нельзя относиться к резервному копированию, как к основному способу обеспечения целостности данных, нет, это скорее ближе к системе пожаротушения. Система пожаротушения необходима. Она должна быть настроена, проверена и работоспособна. Но если она сработала, то это само по себе является серьёзным ЧП с массой негативных последствий.

Для того, чтобы резервное копирование применялось только "в мирных" целях, используйте для обеспечения работоспособности и другие средства:

  • Обеспечьте физическую безопасность серверов: пожары, затопления, плохое электропитание, уборщицы, строители, метеориты и дикие животные — все они только и ждут за углом, чтобы уничтожить вашу серверную.
  • Ответственно относитесь к угрозам информационной безопасности.
  • Квалифицированно вносите изменения в систему и заранее максимально убедитесь, что эти изменения не приведут к ухудшениям. Кроме плана внесения изменений желательно иметь и план "что делать, если всё пойдёт не так".
  • Активно используйте технологии повышения доступности и надёжности системы вместо того, чтобы потом разгребать последствия аварий. Для MS SQL следует обратить на следующие возможности:
    • Использование кластеров MS SQL (хотя, если честно, я считаю, это одним из наиболее дорогих и бесполезных способов занять администратора БД для систем не требующих 24х7)
    • Зеркалирование базы данных (в синхронном и асинхронном режиме в зависимости от требований доступности, производительности и стоимости)
    • Доставка журналов транзакций
    • Репликация средствами 1С (распределённые базы данных)

В зависимости от требований доступности системы и от бюджета, выделенного на эти цели, вполне можно выбрать решения, которые позволят на 1-2 порядка сократить время простоя и восстановления при сбоях. Не нужно бояться технологий повышения доступности: они достаточно просты для того, чтобы их изучить за несколько дней при базовых знаниях MS SQL.

Но, несмотря ни на что, резервное копирование всё ж таки необходимо. Это тот самый запасной парашют, который вы сможете использовать, когда все остальные средства спасения откажут. Но, как и настоящий запасной парашют, для этого:

  • эта система должна быть заранее правильно и квалифицированно настроена,
  • специалист пользующийся системой должен иметь теоретические и практические навыки её применения (регулярно подкрепляемые),
  • система должна состоять из максимально надёжных и простых компонент (это же наша последняя надежда).

Базовая информация о хранении и обработке данных MS SQL

Данные в MS SQL обычно хранятся в файлах данных (далее ФД — сокращение не общеупотребимое, в данной статье будет еще несколько не очень распространённых сокращений) с расширениями mdf или ndf. Кроме этих файлов есть еще журналы транзакций (ЖТ), которые хранятся в файлах с расширением ldf. Нередко начинающие администраторы безответственно и легкомысленно относятся к ЖТ, как в отношении производительности, так и в отношении надёжности хранения. Это очень грубая ошибка. На самом деле, скорее наоборот, если есть надёжно функционирующая система резервного копирования и на восстановление системы можно выделить много времени, то можно хранить данные на быстром, но крайне ненадёжном RAID-0 , но тогда ЖТ должны храниться на отдельном надёжном и производительном ресурсе (хотя бы на RAID-1). Почему так? Давайте рассмотрим подробнее. Сразу оговорюсь, что изложение несколько упрощено, но достаточно для начального понимания.

В ФД хранятся данные страницами по 8 килобайт (которые объединены в экстенты по 64 килобайт, но это не существенно). MS SQL не гарантирует , что сразу после выполнения команды изменения данных, эти изменения попадут в ФД. Нет, просто страница в памяти помечается как "требующая сохранения". Если у сервера достаточно ресурсов, то вскоре эти данные окажутся на диске. Причем, сервер работает "оптимистично" и если эти изменения происходят в транзакции, то они вполне могут попадать на диск до фиксации транзакции. То есть в общем случае, при активной работе ФД содержит разрозненные куски недописанных данных и незавершённых транзакций, для которых неизвестно, будут ли они отменены или зафиксированы. Есть специальная команда " CHECKPOINT ", которая указывает серверу, что нужно "прямо сейчас" сбросить все несохранённые данные на диск, но область применения этой команды достаточно специфична. Достаточно сказать, что 1С её не использует (я не сталкивался) и понимать, что во время работы обычно ФД не находится в целостном состоянии.

Чтобы справиться с этим хаосом нам как раз и нужен ЖТ. В него пишутся следующие события:

  • Информация о старте транзакции и её идентификатор.
  • Информация о факте фиксации или отмене транзакции.
  • Информация обо всех изменениях данных в ФД (грубо говоря, что было и что стало).
  • Информация об изменении самого ФД или структуры базы данных (увеличение файлов, уменьшение файлов, выделение и освобождение страниц, создание и удаление таблиц и индексов)

Вся эта информация пишется с указанием идентификатора транзакции в которой она произошла и в достаточном объёме чтобы понять как из состояния до этой операции перейти к состоянию после этой операции и наоборот (исключение — модель восстановления с неполным протоколированием).

Важно, что эта информация пишется на диск сразу. Пока информация не записана в ЖТ, команда не считается исполненной. В нормальной ситуации, когда размер ЖТ достаточного объёма и когда он не сильно фрагментирован, записи в него пишутся последовательно небольшими записями (не обязательно кратные 8 кб). В журнал транзакций попадают данные только действительно необходимые для восстановления. В частности не попадает информация о том, какой текст запроса привел к модификациям, какой план выполнения был у этого запроса, какой пользователь его запустил и прочая ненужная для восстановления информация. Некоторое представление о структуре данных журнала транзакций может дать запрос

Select * from::fn_dblog(null,null)

Из-за того, что жёсткие диски значительно эффективнее работают с последовательной записью, чем с хаотичным потоком команд на чтение и запись и из-за того, что команды SQL будут ждать момента окончания записи в ЖТ, возникает следующая рекомендация:

Если есть хоть малейшая возможность, то в продуктовой среде ЖТ должны располагаться на отдельных (от всего остального) физических носителях, желательно с минимальным временем доступа для последовательной записи и с максимальной надёжностью. Для простых систем вполне подойдёт RAID-1.

Если транзакция отменяется, то все уже внесённые изменения сервер вернёт в предыдущее состояние. Именно поэтому

Отмена транзакции в MS SQL Server обычно длится сопоставимо с суммарной длительностью операций изменения данных самой транзакции. Старайтесь не отменять транзакции или принимать решение об отмене как можно раньше.

Если сервер по каким-то причинам неожиданно прекратит работу, то при повторном запуске будет проанализировано, какие данные в ФД не соответствуют целостному состоянию (незаписанные, но зафиксированные транзакции и записанные, но отмененные транзакции) и эти данные будут откорректированы. Поэтому если вы, например запустили перестроение индексов большой таблицы и перезапустили сервер, то при повторном запуске уйдёт значительное время на откат этой транзакции, причем прервать этот процесс возможности нет.

Что происходит когда ЖТ дошёл до конца файла? Всё просто — если есть освобождённое место в начале, то он начнёт писать в свободное место в начале файла до занятого места. Как закольцованная магнитная лента. Если места в начале нет, то сервер обычно попытается расширить файл журнала транзакций, при этом для сервера выделенный новый кусок является новым виртуальным файлом журнала транзакций , которых в физическом файле транзакций может быть много, но это уже к резервному копированию относится мало. Если у сервера не получится расширить файл (закончилось место на диске или запрещено настройками расширять ЖТ), то текущая транзакция отменится с ошибкой 9002.

Упс. А что же надо сделать чтобы место в ЖТ всегда было? Вот тут мы подошли к системе резервного копирования и к моделям восстановления. Для отмены транзакций и для восстановления корректного состояния сервера в случае внезапного выключения необходимо хранить в ЖТ записи, начиная с момента старта самой ранней из открытых транзакций. Этот минимум пишется и хранится в ЖТ обязательно . Вне зависимости от погоды, настроек сервера и желания админа. Сервер не может допустить, чтобы этой информации не было. Поэтому, если открыть в одном сеансе транзакцию, а в других выполнять разные действия, то журнал транзакций может неожиданно закончиться. Самую раннюю транзакцию можно выявить командой DBCC OPENTRAN . Но это только необходимый минимум информации. Дальнейшее зависит от модели восстановления . В SQL Server их три:

  • Simple (Простая) — хранится только необходимый для жизни остаток ЖТ.
  • Full (Полная) — хранится весь ЖТ с момента последнего резервного копирования журнала транзакций . Обратите внимание, не с момента полного бэкапа!
  • Bulk logged (С неполным протоколированием) — часть (очень небольшая обычно часть) операций записываются в очень компактном формате (по сути только запись, что изменена такая-то страница файла данных). В остальном идентична Full.

С моделями восстановления связано несколько мифов.

  • Simple позволяет снизить нагрузку на дисковую подсистему . Это не так. пишется ровно столько же, сколько при Bulk logged, только считается свободным гораздо раньше.
  • Bulk logged позволяет снизить нагрузку на дисковую подсистему . Для 1С это почти не так. По сути одна из немногих операций, которая может без дополнительных плясок с бубном подпадать под минимальное протоколирование — загрузка данных из выгрузки в формате dt и реструктуризация таблиц.
  • При использовании модели Bulk logged какие-то операции не попадают в резервную копию журнала транзакций и она не позволяет восстановить состояние на момент этой резервной копии . Это не совсем так. Если операция относится к минимально протоколируемым, то в резервную копию попадут текущие страницы с данными и будет возможность "проиграть" журнал транзакций до конца (хотя и нельзя на произвольный момент времени, если есть минимально протоколируемые операции).

Модель Bulk logged для баз 1С использовать почти бессмысленно, поэтому дальше мы её не рассматриваем. А вот выбор между Full и Simple расмотрим подробнее в следующей части.

  • Структура журнала транзакций
    • Модели восстановления и управление журналом транзакций
    • Управление журналом транзакций
  • Использование резервных копий журналов транзакций

Принцип действия резервного копирования в моделях восстановления Simple и Full

По типу формирования резервные копии бывают трёх видов:

  • Full (Полная)
  • Differential (Дифференциальная, разностная)
  • Log (Резервная копия журналов транзакций, учитывая, то, насколько часто этот термин используется, будем сокращать до РКЖТ)

Здесь надо не запутаться: полная модель восстановления и полная резервная копия — существенно разные вещи. Для того чтобы их не спутать, ниже я буду использовать английские термины для модели восстановления и русскоязычные для видов резервных копий.

Полная и дифференциальная копия работают одинаково для Simple и Full. Резервная копия журналов транзакций полностью отсутствует в Simple.

Полная резервная копия

Позволяет восстановить состояние базы данных на некоторый момент времени (на тот в который начато формирование резервной копии). Состоит из постраничной копии используемой части файлов данных и активного куска журнала транзакций за то время пока формировалась резервная копия.

Разностная резервная копия

Хранит страницы данных, изменившиеся с момента последней полной резервной копии. При восстановлении нужно сначала восстановить полную резервную копию (в режиме NORECOVERY , примеры будут приведены ниже), потом можно к получившейся "заготовке" применить любую из последующих разностных копий, но, конечно только из тех, которые сделаны до следующей полной резервной копии. За счет этого можно значительно снизить объём дискового пространства для хранения резервной копии.

Важные моменты:

  • Без предыдущей полной резервной копии разностная копия бесполезна. Поэтому желательно хранить их где-то рядом друг с другом.
  • Каждая последующая разностная копия будет хранить все страницы, входящие в предыдущую разностную резервную копию, сделанную после предыдущей полной (хотя, возможно, уже с другим содержимым). Поэтому каждая следующая разностная копия больше предыдущих, пока снова не сделать полную копию (если это и нарушается, то только из-за алгоритмов сжатия)
  • Для восстановления на какой-то момент достаточно последней полной резервной копии на этот момент и последней разностной копии на этот момент. Промежуточные копии для восстановления не нужны (хотя они могут быть нужны для выбора момента восстановления)

РКЖТ

Содержит копию ЖТ за некоторый период. Обычно с момента прошлой РКЖТ до момента формирования текущей РКЖТ. РКЖТ позволяет из восстановленной в режиме NORECOVERY копии на любой момент времени, входящий в период восстанавливаемой копии ЖТ, восстановить состояние на любой последующий момент времени, входящий в интервал восстанавливаемой резервной копии. При формировании резервной копии со стандартными параметрами, место в файле журнала транзакций высвобождается (до момента последней открытой транзакции).

Очевидно, что РКЖТ не имеет смысла в модели Simple (тогда ЖТ содержит лишь информацию с момента последней незакрытой транзакции).

При использовании РКЖТ возникает важное понятие — непрерывная цепочка РКЖТ . Эту цепочку может прервать либо потеря некоторых резервных копий этой цепочки, либо перевод базы данных в Simple и обратно.

Внимание: набор РКЖТ по сути бесполезен, если он не является непрерывной цепочкой, причем момент начала последнего успешного полного или разностного резервного копирования должен быть внутри периода этой цепочки.

Частые заблуждения и мифы:

  • "РКЖТ содержит данные журнала транзакций от момента предыдущего полного или разностного бэкапа". Нет, это не так. РКЖТ содержит и на первый взгляд бесполезные данные между предыдущей РКЖТ и последующим полным бэкапом.
  • "Полный или разностный бэкап должны приводить к освобождению места внутри журнала транзакций". Нет, это не так. Полный и разностный бэкап не трогают цепочку РКЖТ.
  • ЖТ нужно перидически чистить вручную, уменьшать, шринкать. Нет, не надо и даже наоборот — нежелательно. Если освобождать ЖТ между РКЖТ, то будет нарушена цепочка РКЖТ, нужная для восстановления. А постоянные уменьшения/расширения файла приведут к его физической и логической фрагментации.

Как это работает в simple

Пусть есть база данных в 1000 ГБ. Каждый день база прирастает на 2 ГБ, при этом меняется 10 ГБ старых данных. Сделаны следующие резервные копии

  • Полная копия F1 от 0:00 1 февраля (объём 1000 ГБ, сжатие для простоты картины не учитываем)
    • Разностная копия D1.1 от 0:00 2 февраля (объём 12 ГБ)
    • Разностная копия D1.2 от 0:00 3 февраля (объём 19 ГБ)
    • Разностная копия D1.3 от 0:00 4 февраля (объём 25 ГБ)
    • Разностная копия D1.4 от 0:00 5 февраля(объём 31 ГБ)
    • Разностная копия D1.5 от 0:00 6 февраля (объём 36 ГБ)
    • Разностная копия D1.6 от 0:00 7 февраля (объём 40 ГБ)
  • Полная копия F2 от 0:00 8 февраля (объём 1014 ГБ)
    • Разностная копия D2.1 от 0:00 9 февраля (объём 12 ГБ)
    • Разностная копия D2.2 от 0:00 10 февраля (объём 19 ГБ)
    • Разностная копия D2.3 от 0:00 11 февраля (объём 25 ГБ)
    • Разностная копия D2.4 от 0:00 12 февраля(объём 31 ГБ)
    • Разностная копия D2.5 от 0:00 13 февраля (объём 36 ГБ)
    • Разностная копия D2.6 от 0:00 14 февраля (объём 40 ГБ)

При помощи этого набора мы можем восстановить данные на момент 0:00 любого из дней с 1 по 14 февраля. Для этого нам нужно взять полную копию F1 для недели 1-7 февраля или полную копию F2 для 8-14 февраля, восстановить её в режиме NORECOVERY и потом применить разностную копию нужного дня.

Как это работает в full

Пусть у нас есть такой же набор резервных полных и разностных резервных копий, как в предыдущем примере. В дополнение к этому есть следующие РКЖТ:

  • РКЖТ 1 за период с 12:00 31 января по 12:00 2 февраля (около 30 ГБ)
  • РКЖТ 2 за период с 12:00 2 февраля по 12:00 4 февраля (около 30 ГБ)
  • РКЖТ 3 за период с 12:00 4 февраля по 12:00 6 февраля (около 30 ГБ)
  • РКЖТ 4 за период с 12:00 6 февраля по 12:00 7 февраля (около 30 ГБ)
  • РКЖТ 5 за период с 12:00 8 февраля по 12:00 10 февраля (около 30 ГБ)
  • РКЖТ 6 за период с 12:00 10 февраля по 12:00 12 февраля (около 30 ГБ)
  • РКЖТ 7 за период с 12:00 12 февраля по 12:00 14 февраля (около 30 ГБ)
  • РКЖТ 8 за период с 12:00 14 февраля по 12:00 16 февраля (около 30 ГБ)

Обратите внимание:

  1. Размер РКЖТ будет примерно постоянным.
  2. Резервные копии мы можем делать реже, чем разностные или полные, а можем и чаще, тогда они будут меньше по размеру.
  3. Теперь мы можем восстановить состояние системы на любой момент с 0:00 1 февраля, когда у нас есть самая ранняя полная копия по 12:00 16 февраля.

В самом простом случае нам для восстановления понадобятся:

  1. Последняя полная копия до момента восстановления
  2. Последняя разностная копия до момента восстановления
  3. Все РКЖТ, от момена последней разностной копии до момента восстановления
  • Полная копия F2 от 0:00 8 февраля
  • Разностная копия D2.2 от 0:00 10 февраля
  • РКЖТ 6 за период с 12:00 10 января по 12:00 12 февраля

Сначала будет восстановлена F2, потом D2.2, потом РКЖТ 6 до момента 13:13:13 10 февраля. Но существенное преимущество Full модели в том, что у нас появляется выбор — использовать последнюю полную или разностную копию или НЕ последнюю. Например, если бы обнаружилось, что копия D2.2 была испорчена, а нам надо восстановить на момент до 13:13:13 10 февраля, то для модели Simple это бы значило, что мы можем восстановить данные только на момент D2.1. При Full — "DON"T PANIC", у нас есть следующие возможности:

  1. Восстановить F2, потом потом D2.1, потом РКЖТ 5, потом потом РКЖТ 6 до момента 13:13:13 10 февраля.
  2. Восстановить F2, потом РКЖТ 4, потом РКЖТ 5, потом потом РКЖТ 6 до момента 13:13:13 10 февраля.
  3. Или вообще восстановить F1 и прогнать все РКЖТ до РКЖТ 6 до момента 13:13:13 10 февраля.

Как видно, полная модель предоставляет нам больший выбор.

А теперь представим, что мы очень хитрые. И за пару дней до сбоя (13:13:13 10 февраля.) знаем, что сбой будет. Мы восстанавливаем на соседнем сервере базу данных из полной резервной копии, оставляя возможность донакатывать последующие состояния разностными копиями или РКЖТ, т. е. оставили в режиме NORECOVERY . И каждый раз сразу после формирования РКЖТ применяем её к этой резервной базе, оставляя в режиме NORECOVERY . Ого! Да ведь на восстановление базы данных у нас теперь уйдёт всего 10-15 минут, вместо того, чтобы восстанавливать огромную базу! Поздравляю, мы заново изобрели механизм доставки журналов , один из способов снижения времени простоев. Если так передавать данные не раз в период, а постоянно, то получится уже зеркалирование, причем если база-источник ждёт пока база-зеркало обновится, то это синхронное зеркалирование, если не ждёт, то асинхронное.

Подробнее о средствах высокой доступности можно прочтитать в справке:

  • Высокий уровень доступности (компонент Database Engine)
    • Общие сведения о решениях с высоким уровнем доступности
    • Высокий уровень доступности. Взаимодействие и совместная работа

Прочие аспекты резервного копирования

Этот раздел можно смело пропустить, если вам наскучила теория и руки чешутся опробовать настройки резервного копирования.

Файловые группы

1С:Предприятие по сути не умеет работать с файловыми группами. Есть единственная файловая группа и всё. На самом деле программист или администратор базы данных MS SQL способен некоторые таблицы, индексы или даже куски таблиц и индексов положить в отдельные файловые группы (в простейшем варианте — в отдельные файлы). Это нужно либо для того, чтобы ускорить доступ к каким-то данным (положив на очень быстрые носители), либо наоборот, пожертвовав скоростью поместить на более дешёвые носители (например, малоиспользуемые но объёмные данные). При работе с файловыми группами есть возможность делать их резервные копии отдельно, также отдельно можно и восстанавливать, но нужно учесть, что все файловые группы придётся "догнать" до одного момента накатыванием РКЖТ.

Файлы данных

Если помещением данных в разные файловые группы управляет человек, то когда внутри файловой группы есть несколько файлов, то данные по ним распихивает MS SQL Server самостоятельно (при равном объёме файлов — постарается равномерно). С прикладной точки зрения это используется для распараллеливания операций ввода-вывода. А с точки зрения резервных копий есть другой момент. Для очень больших баз данных в эпоху "до SQL 2008" была типичной проблема выделить непрерывное окно для полной резервной копии, да и диск-приемник для этой резервной копии мог просто её не вместить. Самым простым способом в этом случае было делать резервную копию каждого файла (или файловой группы) в своё окно. Сейчас, с активным распространением сжатия резервных копий эта проблема стала меньше, но всё же этот прием можно иметь в виду.

Сжатие резервных копий

В MS SQL Server 2008 появилась супер-мега-ультра возможность. Отныне и навсегда резервные копии могут быть компрессированными при формировании на лету. Это уменьшает размер резервной копии БД 1С в 5-10 раз. А учитывая, что обычно производительность дисковой подсистемы является узким местом СУБД, то это даёт не только снижение стоимости хранения, но и еще мощное ускорение резервного копирования (хотя и повышается нагрузка на процессоры, но обычно процессорные мощности вполне достаточны на сервере СУБД).

Если в версии 2008 эта возможность была только для Enterprise редакции (которая стоит очень дорого), то в 2008 R2 эта возможность отдана в версию Standard, что сильно радует.

Ниже при разборе примеров настройки сжатия не рассматриваются, но я настоятельно рекомендую использовать сжатие резервных копий, если нет особых причин его отключить.

Один файл бэкапа — много внутренностей

На самом деле резервная копия это не просто файл, это достаточно сложный контейнер, в котором может храниться много резервных копий. У этого подхода очень древняя история (я лично её наблюдаю с версии 6.5), но на текущий момент для администраторов "обычных" баз данных, особенно баз данных 1С, нет каких-либо серьёзных причин не использовать подход "одна резервная копия — один файл". Для общего развития полезно изучить возможность складывать в один файл несколько резервных копий, но использовать её скорее всего не придётся (или если и придётся, то разбирая завалы горе-администратора, который эту возможность неквалифицированно использовал).

Несколько зеркальных копий

В SQL Server есть еще одна замечательная возможность. Можно резервную копию формировать параллельно в несколько приемников. Как простейший пример, можно сваливать одну копию на локальный диск и одновременно складывать на сетевой ресурс. Локальная копия удобна, так как восстановление из неё существенно быстрее, удалённая копия зато гораздо лучше перенесёт физическое уничтожение основного сервера базы данных.

Примеры систем резервного копирования

Довольно теории. Пора практикой доказать, что вся эта кухня работает.

Настройка типичного резервирования сервера через Планы обслуживания (MaintenancePlan)

Этот раздел построен в виде готовых рецептов с пояснениями. Этот раздел очень скучный и длинный за счет картинок, поэтому его можно пропустить.

Пользуемся мастером создания плана обслуживания

Настройка резервирования сервера скриптами TSQL, примеры некоторых возможностей

Сразу возникает вопрос, а чего еще надо? Вроде ж только что всё настроили и всё работает как часы? Зачем маяться со всякими скриптами? Планы обслуживания не позволяют:

  • Использовать зеркальное резервирование
  • Использовать настройки сжатия отличные от настроек сервера
  • Не позволяет гибко реагировать на возникающие ситуации (никаких возможностей по обработке ошибок)
  • Не позволяет гибко использовать настройки безопасности
  • Планы обслуживания очень неудобно развёртывать (и поддерживать одинаковыми) на большом количестве серверов (даже, пожалуй, уже на 3-4)

Ниже приведены типичные команды резервного копирования

Полная резервная копия

Полная резервная копия с затиранием существующего файла (если есть) и проверкой контрольных сумм страниц перед записью. При формировании резервной копии отсчтитывается каждый процент прогресса выполнения

BACKUP DATABASE TO DISK = N"C:\Backup\mydb.bak" WITH INIT, FORMAT, STATS = 1, CHECKSUM

Разностная резервная копия

Аналогично — разностная копия

BACKUP DATABASE TO DISK = N"C:\Backup\mydb.diff" WITH DIFFERENTIAL , INIT, FORMAT, STATS = 1, CHECKSUM

РКЖТ

Резервная копия журнала транзакций

BACKUP LOG TO DISK = N"C:\Backup\mydb.trn" WITH INIT, FORMAT

Зеркальное резервирование

Часто удобно делать сразу не одну резервную копию, а две. Например, одна может лежать локально на сервере (чтобы была под рукой), а вторая сразу формируется в физически удалённое и защищённое от неблагоприятных воздействий хранилище:

BACKUP DATABASE TO DISK = N"C:\Backup\mydb.bak", MIRROR TO DISK = N"\\safe-server\backup\mydb.bak" WITH INIT, FORMAT

Важный момент, который часто упускается: у пользователя, от имени которого запускается процесс MSSQL Server должен быть доступ к ресурсу "\\safe-server\backup\", иначе копирование завершится с ошибкой. Если MSSQL Server запущен от имени системы, то доступ нужно давать пользователю домена "имя_сервера$", но лучше всё-таки корректно настроить запуск MS SQL от имени специально созданного пользователя.

Если не указать MIRROR TO , то это будет не 2 зеркальных копии, а одна копия, разбитая на 2 файла, по принципу чередования. И каждая из них в отдельности будет бесполезна.

sqlcmd -S DECLSERVER\SQLGTD -E -Q «declare @s varchar(255) set @s=’E:\backup\GTD_’ + convert(varchar(1), datepart(dw, getdate())) + ‘.bak’ backup database GTD to disk = @s with init, noformat, skip, nounload»

sqlcmd позволяет вводить инструкции Transact-SQL, системные процедуры и файлы скриптов из командной строки в редактор запросов в режиме SQLCMD,

  • -S - задает имя сервера, server[\instance_name] ;
  • DECLSERVER\SQLGTD - имя сервера/имя экземпляра, на котором крутится база;
  • -E - использует для соединения с SQL server вместо имени пользователя и пароля доверительное соединение;
  • -Q «cmdlinequery « - при запуске программы sqlcmd выполняет запрос, но выход из программы по завершении его выполнения не производится. Может быть выполнено несколько запросов, разделенных точкой с запятой. Заключайте запрос в кавычки, как показано выше;
  • declare - объявляем переменную s ,имя переменной всегда начинается с @, поэтому @s . В нашем случае @s - это папка (диск) хранения бэкапов;
  • varchar(n) - задает тип переменной @s как строковый с длинной строки n, в примере 255 символов;
  • set - задает значение переменной @s ,в примере это папка backup на диске E (E:\backup\ ), далее задается имя бэкап файла, где набор функций convert(varchar(1), datepart(dw, getdate())) возвращает в текстовом формате с длиной в 1 символ текущий день недели (понедельник – 1 , вторник – 2 , и т.д.) и добавляется расширение bak . На выходе получим файл с именем GTD_НомерДняНедели.bak ;
  • backup - создает бэкап;
  • database - указывает на создание бэкапа всей базы;
  • GTD - в нашем примере имя базы на SQL-сервере;
  • to disk - указывает на тип устройства резервного хранения, файл жесткого диска, и указана переменная @s , которой присвоено путь и имя создаваемого файла;
  • with init, noformat, skip, nounload - указывает на то, что необходимо произвести перезапись данных по кругу с переопределением заголовков, что позволит нам иметь 7 файлов бэкапа на каждый день недели, перезаписываемые по кругу.

При необходимости можно использовать и другие функции, например сжатие, см. справку по запросам и функциям Transact-SQL.

Шаг 2. Меняем расширение текстового файла на.cmd

В итоге получаем файл backupGTD.cmd . Запускать созданный командный файл необходимо с той машины, где установлена БД MS SQL.

Шаг 3. Автоматизируем данный процесс

Рассмотрим данный шаг на примере MS Windows Server 2008: Диспетчер сервера -> Конфигурация -> Планировщик заданий -> Библиотека планировщика заданий.

Несмотря на то, что в наших предыдущих материалах мы уже касались вопроса резервного копирования баз Microsoft SQL Server, читательский отклик показал необходимость создания полноценного материала с более глубокой проработкой теоретической части. Действительно, выполненные с упором на практические инструкции статьи позволяют быстро настроить резервное копирование, но не объясняют причины выбора тех или иных настроек. Постараемся исправить этот пробел.

Модели восстановления

Перед тем как браться за настройку резервного копирования, следует выбрать модель восстановления. Для оптимального выбора следует оценить требования к восстановлению и критичность потери данных, сопоставив их с накладными расходами на реализацию той или иной модели.

Как известно, база данных MS SQL состоит из двух частей: собственно, базы данных и лога транзакций к ней. База данных содержит пользовательские и служебные данные на текущий момент времени, лог транзакций включает в себя историю всех изменений базы данных за определенный период, располагая логом транзакций мы можем откатить состояние базы на любой произвольный момент времени.

Для использования в производственных средах предлагается две модели восстановления: простая и полная . Существует также модель с неполным протоколированием , но она рекомендуется только как дополнение к полной модели на период крупномасштабных массовых операций, когда нет необходимости восстановления базы на определенный момент времени.

Простая модель предусматривает резервное копирование только базы данных, соответственно восстановить состояние БД мы можем только на момент создания резервной копии, все изменения в промежуток времени между созданием последней резервной копии и сбоем будут потеряны. В тоже время простая схема имеет небольшие накладные расходы: вам необходимо хранить только копии базы данных, лог транзакций при этом автоматически усекается и не растет в размерах. Также процесс восстановления наиболее прост и не занимает много времени.

Полная модель позволяет восстановить базу на любой произвольный момент времени, но требует, кроме резервных копий базы, хранить копии лога транзакций за весь период, для которого может потребоваться восстановление. При активной работе с базой размер лога транзакций, а, следовательно, и размер архивов, могут достигать больших размеров. Процесс восстановления также гораздо более сложен и продолжителен по времени.

При выборе модели восстановления следует сравнить затраты на восстановление с затратами на хранение резервных копий, также следует принять во внимание наличие и квалификацию персонала, который будет выполнять восстановление. Восстановление при полной модели требует от персонала определенной квалификации и знаний, тогда как при простой схеме достаточно будет следовать инструкции.

Для баз с небольшим объемом добавления информации может быть выгоднее использовать простую модель с большой частотой копий, которая позволит быстро восстановиться и продолжить работу, введя потерянные данные вручную. Полная модель в первую очередь должна использоваться там, где потеря данных недопустима, а их возможное восстановление сопряжено со значительными затратами.

Виды резервных копий

Полная копия базы данных - как следует из ее названия, представляет собой содержимое базы данных и часть активного лога транзакций за то время, которое формировалась резервная копия (т.е. сведения обо всех текущих и незавершенных транзакциях). Позволяет полностью восстановить базу данных на момент создания резервной копии.

Разностная копия базы данных - полная копия имеет один существенный недостаток, она содержит всю информацию базы данных. Если резервные копии нужно делать довольно часто, то сразу возникает вопрос неэкономного использования дискового пространства, так как большую часть хранилища будут занимать одинаковые данные. Для устранения этого недостатка можно использовать разностные копии базы данных, которые содержат только изменившуюся со времени последнего полного копирования информацию.

Обращаем внимание, разностная копия - это данные от момента последнего полного копирования, т.е. каждая последующая разностная копия содержит в себе данные предыдущей (но при этом они могут быть изменены) и размер копии будет постоянно расти. Для восстановления достаточно одной полной и одной разностной копии, обычно последней. Количество разностных копий следует выбирать исходя из прироста их размера, как только размер разностной копии сравнится с размером половины полной, имеет смысл сделать новую полную копию.

Резервная копия журнала транзакций - применяется только при полной модели восстановления и содержит копию журнала транзакций начиная с момента создания предыдущей копии.

Важно помнить следующий момент - копии журнала транзакций никак не связаны с копиями базы данных и не содержат информацию предыдущих копий, поэтому для восстановления базы вам необходимо иметь непрерывную цепочку копий того периода, в течении которого вы хотите иметь возможность откатывать состояние базы. При этом момент последнего успешного копирования должен быть внутри этого периода.

Посмотрим на рисунок выше, если будет утрачена первая копия файла журнала, то вы сможете восстановить состояние базы только на момент полного копирования, что будет аналогично простой модели восстановления, восстановить состояние базы на любой момент времени вы сможете только после следующего разностного (или полного) копирования, при условии, что цепочка копий журналов начиная с предшествующего копированию базы и далее будет непрерывна (на рисунке - от третьего и далее).

Журнал транзакций

Для понимания процессов восстановления и назначения разных видов резервных копий следует более подробно рассмотреть устройство и работу журнала транзакций. Транзакция - это минимально возможная логическая операция, которая имеет смысл и может быть выполнена только полностью. Такой подход обеспечивает целостность и непротиворечивость данных при любых ситуациях, так как промежуточное состояние операции недопустимо. Для контроля над любыми изменениями в базе предназначен журнал транзакций.

При выполнении любой операции в журнал транзакций добавляется запись о начале транзакции, каждой записи присваивается уникальный номер (LSN) из неразрывной последовательности, при любом изменении данных в журнал вносится соответствующая запись, а после завершения операции в журнале появляется отметка о закрытии (фиксации) транзакции.

При каждом запуске система анализирует журнал транзакций и откатывает все незафиксированные транзакции, одновременно с этим происходит накат изменений, которые зафиксированы в журнале, но не были записаны на диск. Это дает возможность использовать кэширование и отложенную запись, не опасаясь за целостность данных даже при отсутствии систем резервного питания.

Та часть журнала, которая содержит активные транзакции и используется для восстановления данных называется активной частью журнала. Она начинается с номера, который называется минимальным номером восстановления (MinLSN).

В простейшем случае MinLSN - это номер записи первой незавершенной транзакции. Если посмотреть на рисунок выше, то открыв синюю транзакцию мы получим MinLSN равную 321, после ее фиксации в записи 324, номер MinLSN изменится на 323, что будет соответствовать номеру зеленой, еще не зафиксированной, транзакции.

На практике все немного сложнее, например, данные закрытой синей транзакции могут быть еще не сброшены на диск и перемещение MinLSN на 323 сделает восстановление этой операции невозможной. Для того, чтобы избежать таких ситуации было введено понятие контрольной точки. Контрольная точка создается автоматически при наступлении следующих условий:

  • При явном выполнении инструкции CHECKPOINT. Контрольная точка срабатывает в текущей базе данных соединения.
  • При выполнении в базе данных операции с минимальной регистрацией, например, при выполнении операции массового копирования для базы данных, на которую распространяется модель восстановления с неполным протоколированием.
  • При добавлении или удалении файлов баз данных с использованием инструкции ALTER DATABASE.
  • При остановке экземпляра SQL Server с помощью инструкции SHUTDOWN или при остановке службы SQL Server (MSSQLSERVER). И в том, и в другом случае будет создана контрольная точка каждой базы данных в экземпляре SQL Server.
  • Если экземпляр SQL Server периодически создает в каждой базе данных автоматические контрольные точки для сокращения времени восстановления базы данных.
  • При создании резервной копии базы данных.
  • При выполнении действия, требующего отключения базы данных. Примерами могут служить присвоение параметру AUTO_CLOSE значения ON и закрытие последнего соединения пользователя с базой данных или изменение параметра базы данных, требующее перезапуска базы данных.

В зависимости от того, какое событие произошло раньше, MinLSN будет присвоено значение либо номера записи контрольной точки, либо начала самой старой незавершенной транзакции.

Усечение журнала транзакций

Журнал транзакций, как и любой журнал, требует периодической очистки от устаревших записей, иначе он разрастется и займет все доступное место. Учитывая, что при активной работе с базой размер лога транзакций может значительно превышать размер базы, то этот вопрос актуален для многих администраторов.

Физически файл журнала транзакций является контейнером для виртуальных журналов, которые последовательно заполняются по мере роста лога. Логический журнал, содержащий запись MinLSN является началом активного журнала, предшествующие ему логические журналы являются неактивными и не требуются для автоматического восстановления базы.

Если выбрана простая модель восстановления, то при достижении логическими журналами размера равного 70% физического файла происходит автоматическая очистка неактивной части журнала, т.н. усечение. Однако это не приводит к уменьшению физического файла журнала, усекаются только логические журналы, которые после этой операции могут использоваться повторно.

Если количество транзакций велико и к моменту достижения 70% размера физического файла не окажется неактивных логических журналов, то размер физического файла будет увеличен.

Таким образом файл лога транзакций при простой модели восстановления будет расти согласно активности работы с базой до тех пор, пока не будет надежно вмещать всю активную часть журнала. После чего его рост прекратится.

При полной модели неактивную часть журнала нельзя усечь до тех пор, пока она полностью не попадет в резервную копию. Усечение журнала производится при условии, что выполнена резервная копия журнала транзакций, после чего была создана контрольная точка.

Неправильная настройка резервного копирования журнала транзакций при полной модели способно привести к неконтролируемому росту файла журнала, что часто составляет проблему для неопытных администраторов. Также часто попадаются советы по ручному усечению журнала транзакций. При полной модели восстановления делать этого не следует категорически, так как тем самым вы нарушите целостность цепочки копий журнала и сможете восстановить базу только на момент создания копий, что будет соответствовать простой модели.

В этом случае самое время вспомнить то, о чем мы говорили в начале статьи, если затраты на полную модель превышают затраты на восстановление следует отдать предпочтение простой модели.

Простая модель восстановления

Теперь, после получения необходимого минимума знаний, можно перейти к более подробному рассмотрению моделей восстановления. Начнем с простой. Допустим, на момент сбоя у нас имеется одна полная и две разностные копии:

Резервное копирование выполнялось раз в сутки и последняя копия была создана ночью с 21-го на 22-е. Сбой происходит вечером 22-го до создания очередной копии. В этом случае нам потребуется последовательно восстановить полную и последнюю разностные копии, при этом данные за последний рабочий день будут утеряны. Если по каким-либо причинам копия от 21-го также окажется повреждена, то мы можем восстановить предыдущую копию, потеряв еще день работы, в тоже время повреждение копии за 20-е число никак не помешает успешно восстановить данные на вечер 21-го, при наличии соответствующей копии.

Полная модель восстановления

Рассмотрим аналогичную ситуацию, но с применением полной модели восстановления. Резервные копии у нас также делаются ежесуточно, по принципу полная + разностные, а также несколько раз в сутки копируется лог транзакций.

Процесс восстановления в этом случае будет более сложен. Прежде всего потребуется создать вручную резервную копию заключительного фрагмента журнала (показана красным), т.е. часть журнала с момента прошлого создания копии и до аварии.

Если этого не сделать, то восстановить базу можно будет только до состояния на момент создания последней копии журнала транзакций.

При этом повреждение файла копии журнала за предыдущий день не помешает нам восстановить актуальное состояние базы, но ограничит нас моментом создания последней копии, т.е. текущими сутками.

Затем последовательно восстанавливаем полную и разностную копию и цепочку копий журнала, созданную после последнего резервного копирования, последней восстанавливаем копию заключительного фрагмента журнала, что даст нам возможность восстановить базу прямо на момент аварии или произвольный, предшествовавший ему.

Если последняя разностная копия будет повреждена, то в случае с простой моделью это приведет к потере еще одного рабочего дня, полная модель позволяет восстановить предпоследнюю копию, после чего нужно будет восстановить всю цепочку копий лога транзакций от момента предпоследней копии и до сбоя. Глубина восстановления зависит только от глубины непрерывной цепочки логов.

С другой стороны, если одна из копий лога транзакций будет повреждена, скажем, предпоследняя, то восстановить данные мы сможем только на момент последней резервной копии + период в неповрежденной цепочке копий журналов. Например, если журналы делались в 12, 14 и 16 часов и поврежден журнал, созданный в 14 часов, то располагая суточной копией мы сможем восстановить базу до момента окончания непрерывной цепочки, т.е. до 12 часов.




Top