Робототехнический набор Двухколёсный Robot Car. Собираем роботов-самоходов на Arduino

Вы понимаете, - втолковывал редактор, - это должно быть занимательно, свежо, полно интересных приключений… Так, чтобы читатель не мог оторваться.
И.Ильф, Е.Петров "Как создавался Робинзон" .


Начинать работу с Arduino, как и с любой другой платформой программной или аппаратной, всегда интереснее с какого-нибудь реального проекта. Программисты при этом пишут код выводящий «Hello, world», ардуинисты моргают светодиодом. И все радуются как дети.


Я же решил начать с продвинутого проекта, в том числе с тайной надеждой оторвать молодое поколение от Counter-Strike (не получилось).


Как можно догадаться из названия RoboCar4W, первым проектом стал робот-машина о четырех колесах. Начиная работу я уже имел опыт программирования, умел когда-то давно паять, но совершенно не знал даже распиновки Arduino и документацию совершенно не читал. Все премудрости изучал по ходу пьесы и Гугл в помощь.


Поскольку сам проект принципиально не нов, подобных описаний в сети достаточно, все компоненты известны, то никаких неожиданностей не предполагалось. Поэтому задумка была сформулирована в самых общих чертах и главной целью являлось погружение в «мир вещей» с помощью Arduino, как платформы для быстрого прототипирования. В этом опусе возможно кто-то узнает себя в самом начале пути.


Всё "железо" приобреталось на ebay, и по своему опыту хочу сказать, что проще приобрести сразу стартер кит (ищите по словам Arduino Starter Kit), а не собирать подетально. Да и приедет все сразу вместе. Решено было не мелочиться, купить нормальное шасси, нормальные колеса, нормальные моторы, чтоб было "дорохобохато".


Главный секрет успешных покупок на eBay - покупать у продавцов с высоким рейтингом и при этом внимательно читать описание товара. Об этом есть много статей в интернете.


Какую плату семейства Arduino выбрать?


Я взял Arduino UNO, под нее много проектов с описаниями. Но сейчас бы взял Arduino Mega 2560, у нее больше цифровых и аналогов выводов и полная совместимость по проектам с UNO.

Общее описание проекта

В мире разработки программного обеспечения это называют еще «требования к системе».


Задумка проекта была следующей. Первый вариант машины-робота под названием RoboCar4W должен выполнять незамысловатые действия:

  • двигаться вперед, назад, выполнять повороты
  • измерять расстояние до препятствий
  • уметь автоматически объезжать препятствия находящиеся впереди.

Второй вариант машины должен управляться вручную по bluetooth с Android телефона.


Чтобы вам лучше работалось вот весь финальный проект RoboCar4W в сборе (тут без блютуза).



Вот видео ходовых испытаний.


На первом видео RoboCar4W ездит в автоматическом режиме с объездом препятствий на двух разных версиях «прошивки», т.е. скетча, поэтому, если кто самый зоркий и заметил, что поведение робота в разных эпизодах немного отличается.



На втором видео RoboCar4W передвигается при помощи команд, передаваемых «водителем» по Bluetooth с мобильного телефона под Android. На телефоне установлена программа «Bluetooth RC Car». Причем, если близко впереди оказывается препятствие, то робот останавливается, т.е. протаранить что-нибудь не получится (однако есть «секретная» кнопка, которая отключает безопасный режим).



На третьем видео RoboCar4W показывает заранее запрограммированную демо-программу движения с поворотами. Демо-программа активируется по команде с того же мобильного телефона под Android. Робот просто едет некоторое время и делает повороты.

Алгоритм управления движением

Ошибочно называть наш способ «алгоритм объезда препятствий» или «поиском пути». Это отдельные математические дисциплины, чистая математика. Если вам очень-очень сильно нравится математика, то погуглите указанные словосочетания, чтивом на полгода будете обеспечены.


Пока же нас интересуют вещи гораздо проще. Поэтому мы назовем это просто - алгоритм управления движением 4-х колёсного робота. Разумеется речь идет об автоматическом управлении без участия человека.


Вот этот простой алгоритм записанный словами, для более сложных алгоритмов придется (хочется или нет) составлять блок-схемы.

  1. Измеряем расстояние до препятствия впереди.
  2. Если это измеренное расстояние меньше значения DST_TRH_BACK (сокращение от distance threshold), то останавливаемся и едем задним ходом одновременно поворачивая. Направление поворота выбираем так: если ранее уже поворачивали влево, то поворачиваем вправо и наоборот.
  3. Если измеренное расстояние больше чем DST_TRH_BACK , но меньше чем DST_TRH_TURN , то просто поворачиваем. Направление поворота выбираем случайно.
  4. Если до препятствия далеко, то просто едем вперед.
  5. Повторяем все сначала.

Чем хорошо, что у нас 4 колеса и все ведущие? Мы можем выполнить (запрограммировать) несколько типов поворотов:

  • Плавный поворот. Все колеса вращаются, но колеса с одной стороны вращаются быстрее.
  • Резкий поворот. Колеса вращаются только с одной стороны.
  • Разворот на месте. Как трактор, колеса одной стороны вращаются назад, а другой - вперед.

Во втором варианте программы, при управлении с Android-телефона безопасный режим, когда робот старается не допускать лобовых столкновений, может быть отключен, если в программе два раза нажать кнопку


и включен обратно однократным её нажатием.


Важное примечание . Вся логика находится под управлением Arduino. Android здесь выступает просто как игровой пульт (без мозгов) от консоли, его задача - тупо передавать нажатия кнопок (т.е. команды) посредством Bluetooth в Arduino RoboCar4W.

Компоненты

Первоначально в состав машины входил сервопривод, который поворачивал ультразвуковой измеритель расстояния на определенный угол для измерений по трем направлениям. Но в ходе испытаний из-за неосторожного обращения сервопривод сгорел, поэтому теперь датчик расстояния просто жестко закреплен впереди корпуса.


Нет худа без добра, зато скетч стал немного проще.


На будущее, сервопривод покупайте самый простой и дешевый, особая мощность, скорость и точность поворота на заданный угол не нужны, а вывести серво из строя довольно легко, как оказалось. Вполне подойдет SG90 стоимостью $2.


Итак составные части проекта RoboCar4W, описание на английском дается для облегчения поиска на ebay и ему подобных:

  • Arduino UNO R3
  • Готовое шасси 4 Wheel Drive Mobile Robot Platform Smart Car Chassis Arduino Compatible
  • Моторы постоянного тока (DC) с вращением в обе стороны - 4 шт.
  • Колеса - 4 шт.
  • Плата для управления 4-мя DC моторами Motor Drive Shield L293D
  • Ультразвуковой измеритель расстояния HC-SR04 Ultrasonic Module Distance Measuring Sensor
  • Аккумуляторы Ni-MH 1.2 В - 8 шт.
  • Пластиковый бокс держатель для батареек, Battery Box holder 4 AA Batteries - 2 шт.
  • Аккумулятор типа «Крона» 8.4 В - 1 шт.
  • Опционально тумблер - выключатель питания

Шасси, DC моторы и колеса приобретались сразу в комплекте и даже с инструкцией по сборке.


Аналоговые входы могут использоваться как цифровые выводы портов ввода/вывода. Выводы Arduino, соответствующие аналоговым входам, имеют номера от 14 до 19. Это относится только к выводам Arduino, а не к физическим номерам выводов микроконтроллера Atmega.


Рисовать не обязательно, можно просто свести все в таблицу. У меня получилось так.



Пины D4, D7, D8, D12 будут заняты, если используются любые DC моторы или шаговые.


Пины D9 (Servo #1 control), D10 (Servo #2 control) будут заняты, только если используются сервомоторы.


Сама по себе плата для управления моторами Motor Drive Shield L293D пины Arduino не занимает.


Пины питания 3.3 В, 5 В и «земля» дублируются на Motor Drive Shield в достаточном количестве. Поэтому об их нехватке не стоит беспокоиться.


Если все-таки хотите красиво нарисовать, то бесплатная программа Fritzing вам в помощь.


Это второй очень важный момент. От питания зависит очень многое. Например, серво-мотор при повороте вала на заданный угол начинает потреблять большой ток. При этом если серво подключен по питанию на 5 В Arduino, то происходит «просадка» по напряжению и вся остальная схема начинает глючить, а Arduino даже может перезагружаться при этом.


В любом случае, если в поделке используете моторы, то Motor Drive Shield необходим (или подобная ему схема).


Итак, имеем 4 мотора постоянного тока (DC), сервопривод, саму плату Arduino и несколько датчиков. Моторы самые прожорливые, а вот датчики могут успешно запитываться с разъемов самой платы Arduino, поэтому с ними все просто. Для удобства я свел всё хозяйство в одну таблицу.


Напряжение рекомендованное или типовое. Потребляемый ток Максимальное напряжение Чем планируется питать Примечания
Плата Arduino UNO R3 7 - 12V, 200mA (среднее) 6 - 20 «Крона 9V» Li-ion 650mAh, 8.4V Разъем с плюсом в центре
Сервомотор MG-995 5-6 V, 0.1 - 0.3A (пиковое) 4.8 - 7.2 Аккумуляторы (5) шт. Ni-Mh 1.2V = 6V Питание только от отдельного источника. Если запитать вместе с Arduino, то будет глючить всё. Напряжения Ni-Mh аккумуляторов 4шт. * 1.2В = 4.8V не хватает. Некоторые утверждают, что данную серву не стоит использовать на 6 вольтах только 4,8
DC двигатели (4 шт.) 6 - 8V, ток от 70mA до 250mA 3 - 12 аккумуляторы (5+3) шт. Ni-Mh 1.2V = 9.6V Вы не сможете нормально запустить двигатели от 9В батареи, так что даже не тратьте время (и батареи)!
Motor Drive Shield L293D не требуется 4.5 - 36 не требуется
Модуль Bluetooth HC-0506 3.3 V, 50 mA 1.8-3.6 С пина 3.3V платы Arduino
Ультразвуковой измеритель расстояния HC-SR04 5 V, 2 mA 5 С пина 5V платы Arduino

DC/DC преобразователя напряжения у меня не было в наличии. Крона 9V оказался не очень хорошим источником питания, просто у меня он уже был.


А вот от использования Li-ion аккумуляторов большой емкости я отказался. Во-первых, из-за высокой стоимости, во-вторых в китайских интернет-шопах легко нарваться на подделку. Точнее не «легко», а «всегда». Кроме этого Li-ion требует особого обращения, и он не безопасен.


Итак, как видим из таблицы, нам требуется 3 независимых источника питания:

  • Для платы Arduino и датчиков.
  • Для сервомотора.
  • Для 4-х DC моторов.

Где ж столько набрать? Саму плату Arduino в любом случае надо питать от отдельного источника, т.к. при «проседании» напряжения, например от включения моторов, плата может перезагружаться или просто глючить. Здесь применяем аккумулятор форм-фактора «Крона 9В», причем разъем который будет подключаться к Arduino должен быть с «плюсом в центре».


Для сервомотора и 4-х DC моторов можно обойтись одним источником питания. Проблема только в том, что сервомотор рассчитан на напряжение 5-6В (максимум 7.2В) и ток 100 - 300мA (пиковое), а DC моторам требуется 6 - 8В (максимум 12В) и ток 250мА.


Для решения проблемы существуют DC-DC преобразователи, но у меня таких не оказалось. В итоге я применил свою "фирменную" схему соединения (безо всяких понижающих электронных схем, только экологически чистые напряжение и ток!): подключил 8 шт. аккумуляторов на 1.2V последовательно и сделал отводы в нужных местах, как показано на схеме.



6В пошло на сервомотор, а 9.6 на DC моторы. Понятно, что аккумуляторы 1--5 будут испытывать повышенную нагрузку.


Для управления серво и DC моторами использовал 4-х канальный Motor Drive Shield на базе микросхемы L293D.


Собрать готовое шасси небольшая проблема. Но не думайте, что без допиливания у вас всё сразу соберется. Поэтому приготовьте надфили.




Подключить нормально несколько моторов, сервомотор или шаговый напрямую к Arduino не удастся. Так как пины (выводы) Arduino являются слаботочными. Для решения проблемы существует дополнительный модуль управления приводами - Motor Drive Shield на базе микросхемы L293D, которая является одной из самых распространенных микросхем, предназначенных для этой цели. Чип L293D известен также как H-мост (H-Bridge).


Я использовал плату, которая обеспечивает 4 канала для подключения на двух микросхемах L293D и сдвиговом регистре. Приобретается на eBay за $5.


Данная плата модуля управления приводами имеет следующие характеристики.

  • L293D Motor Drive Shield совместим с Arduino Mega 1280 и 2560, UNO, Duemilanove, Diecimila
  • 4-х канальное управление
  • питание моторов от 4.5В до 36В
  • допустимый ток нагрузки 600мА на канал, пиковый ток - 1.2A
  • защита от перегрева
  • 2 интерфейса с точным таймером Arduino (не будет «дрожания») для подключения сервомоторов на напряжение 5В, если напряжение питания нужно повыше, то подключение по питанию нужно переделать как описано ниже
  • можно одновременно управлять 4 двунаправленными DC коллекторными моторами или 2 шаговыми, и 2 сервомоторами
  • 4 двунаправленные DC моторы подключены каждый к 8-битной шине для выбора индивидуальной скорости
  • подключение до 2 шаговых приводов (однополярных или биполярных), с одной катушкой, двойной катушкой или с чередованием шага
  • разъем для подключения внешнего источника для раздельного питания управляющей логики и моторов
  • Кнопка RESET Arduino
  • для управления используется библиотека Adafruit AFMotor.

Motor Drive Shield требует небольшой доработки, чтобы можно было после него хоть что-нибудь подключить. Я подпаял сверху необходимые разъемы, получилось вот что.



Моторы могут быть подключены к дополнительному по отношению к плате Arduino источнику питания. Я рекомендую именно такой способ подключения. Для этого нужно снять, разомкнуть перемычку, как показано на картинке.



В этом случае питание Arduino и питание моторов производится независимо друг от друга.


Светодиод на мотор-шилде светится при наличии питания для моторов, если он не горит, то моторы работать не будут.


Новая проблема.


Сервомоторов положение джампера питания не касается, они по прежнему будут запитаны от 5V Arduino. Так как сервомоторы обычно потребляют большой ток и если питания недостаточно, то всё устройство начинает глючить, в «лучшем» случае будет глючить только сервопривод - не будет поворачиваться на заданный угол, либо все время перед каждым поворотом поворачивать сначала в 0 градусов, а уже потом на заданный угол (и если будет успевать). Поэтому я рекомендую питать сервопривод также от дополнительного источника питания. Для этого придется немного переделать схему подключения: откусить плюсовой провод (обычно красный) от стандартного разъема и соединить его с плюсом источника питания напрямую.



При подключении Motor Drive Shield аналоговые пины не используются. Цифровые пины 2, 13 не используются.


Указанные ниже пины используются, только если подключены и используются соответствующие DC двигатели или шаговые двигатели (Stepper):

  • D11: DC Motor #1 / Stepper #1 (активация и контроль скорости)
  • D3: DC Motor #2 / Stepper #1 (активация и контроль скорости)
  • D5: DC Motor #3 / Stepper #2 (активация и контроль скорости)
  • D6: DC Motor #4 / Stepper #2 (активация и контроль скорости)

Эти пины будут заняты, если используются любые DC/steppers: D4, D7, D8, D12.


Указанные ниже пины будут заняты, только если используются соответствующие сервомоторы:

  • D9: Servo #1 управление
  • D10: Servo #2 управление


Для начала работы с Motor Drive Shield необходимо скачать и установить библиотеку Adafruit AFMotor .


Пример кода для управления моторами:


#include // подключить библиотеку Adafruit #include // подключить библиотеку для сервомотора AF_DCMotor motor(1); // создать объект мотор, указав номер разъема DC мотора на плате Motor Shiled и, опционально, частоту frequency Servo servo; // создать объект сервомотор servo.attach(10); // присоединить серво на пин 9 или 10 (крайний разъем на плате Motor Shiled) motor.setSpeed(speed); // установить скорость DC мотора от 0 (останов) до 255 (полный газ) motor.run(RELEASE); // DC мотор стоп motor.run(FORWARD); // DC мотор вперед motor.run(BACKWARD); // DC мотор назад servo.write(90); // повернуть серво на 90 град.

DC мотор у меня начал крутиться только при указании скорости больше 100, если меньше - просто жужжит. Минимальную скорость вашего мотора вам придется определить экспериментально.


Для моторов, подключенных к M1 и M2 можно задать частоту: MOTOR12_64KHZ, MOTOR12_8KHZ, MOTOR12_2KHZ, MOTOR12_1KHZ. Наибольшая скорость вращения достигается при 64KHz эта частота будет слышна, меньшая частота и скорость на 1KHz но и использует меньше энергии. Моторы 3 и 4 всегда работают на 1KHz другие значения игнорируются. По умолчанию везде 1KHz.


После этого необходимо прогнать тест моторов. . В начале скетча измените номер мотора в строке (или в строках) типа:


AF_DCMotor motor(…);

Скетч некоторое время вращает мотор(ы) вперед по ходу движения робота, а затем назад. Посмотрите внимательно в ту ли сторону вращается мотор, и измените полярность подключения если нужно.


Подключаем ультразвуковой измеритель расстояния HC-SR04 Ultrasonic Module. Распиновка выводов:

  • Trig (T)
  • Echo (R)

Время затрачиваемое ультразвуковым дальномером на измерения (определено опытным путем):

  • максимум 240 мсек, если расстояние слишком велико (out of range)
  • минимум 1 мсек, если расстояние слишком мало
  • расстояние в 1.5 м определяется примерно за 10 мсек


Ультразвуковой датчик дальномер, в силу своей физической природы, а не потому что Китай, в некоторых случаях плохо определяет расстояние до препятствия:

  • если препятствие сложной формы, то ультразвук отражается под разными углами и датчик ошибается,
  • ультразвук отлично поглощается (т.е. не отражается) мягкой мебелью или игрушками, и датчик считает что перед ним ничего нет.

Другими словами, для ультразвукового дальномера в идеале было бы отлично, если бы все препятствия имели вид твёрдой плоскости, перпендикулярной направлению излучения ультразвука.


Некоторые проблемы можно решить с помощью инфракрасного датчика расстояния. Но он тоже не идеален:

  • небольшая максимальная дальность по сравнению с ультразвуковым: 0,3-0,8 м против 4 м
  • большое минимальное расстояние по сравнению с ультразвуковым: 10 см против 2 см
  • зависимость чувствительности датчика от общей освещенности.

Хотя если установить эти дальномеры в паре, то эффективность их работы заметно повысилась бы.

Подключаем Bluetooth HC-05

Как видим из даташита основные пины «голого» HC-05:

  • TX (pin 1) передача
  • RX (pin 2) прием
  • 3,3V (pin 12) питание 3.3В
  • GND (pin 13) земля
  • PIO8 (pin 31) индикатор режима
  • PIO9 (pin 32) статус соединения, если соединение установлено, то на выходе будет высокий уровень
  • PIO11 (pin 34) для включения режима AT-команд

Наш модуль припаян к плате Breakout/Base Board, где уже есть делитель напряжения, поэтому диапазон рабочих напряжений у него от 3.3В до 6В.


Подключаем наш Bluetooth модуль в сборе:

  • Arduino (TX) - (RX) HC-05
  • Arduino (RX) - (TX) HC-05
  • Arduino (+5В) - (VCC) Bluetooth
  • Arduino (GND) - (GND) Bluetooth
  • пины LED, KEY не используются

После подачи питания на модуль Bluetooth HС-05 на нем должен заморгать светодиод, что означает работоспособность блютуза.


Включаем bluetooth на мобиле, находим устройство с именем HC-05 и подключаемся, пароль 1234.


Для тестирования заливаем в Arduino простой скетч:


int count = 0; void setup() { Serial.begin(9600); Serial.println("Test Arduino + Bluetooth. http://localhost"); } void loop() { count++; Serial.print("Count = "); Serial.println(count); delay(1000); }

На Android телефон устанавливаем Bluetooth Terminal. Подключаемся к устройству HC-05 и наблюдаем на экране телефона бегущие строки с увеличивающимся счетчиком.


Чтобы модуль мог принимать AT-команды, нужно его перевести в соответствующий режим - для этого нужно установить вывод KEY (PIO11) в логическую 1. На некоторых Breakout/Base Board вместо вывода KEY есть вывод EN (ENABLE), который может или не может быть припаян к выводу на самом чипе. Это касается только чипов HC05. Вот как раз у меня вывод EN платы никуда не припаян. Поэтому его можно припаять отдельным проводом к выводу KEY(PIO11) чипа. Либо во время работы, чтобы перевести HC05 в режим AT-команд на пару секунд закоротить вывод чипа KEY(PIO11) на вывод питания Vcc. Для HC06 вывод KEY не нужен.

Программное обеспечение

Примечание. Каждый раз перед загрузкой программы в Arduino, убедитесь, что модуль Bluetooth не подключен к Arduino. Это вызовет проблемы заливки скетча. Просто отсоедините питание от Bluetooth модуля или провода, соединяющие Arduino и RX, TX контакты модуля.


В начале скетча измените номера моторов в строках типа:


AF_DCMotor motor(…);

Если заменить строку


byte debug = 0;

byte debug = 10;

то включится режим отладки.


В режиме отладки робот RoboCar4W реально ездить или крутить колесами не будет. Вместо этого активируйте монитор последовательного порта и там увидите как он «ездит» виртуально. Вместо реальной езды вперед в монитор последовательного порта будет писаться строка «Forward», вместо заднего хода с поворотом влево - «Turn Back L(eft)» и т.д. Датчик ультразвукового измерения расстояния тоже ничего не делает, вместо этого расстояния до препятствий генерируются программно и случайно.

Добавить метки

Давайте поговорим о том как можно использовать Ардуино для создания робота, который балансирует как Сигвей.

Сигвей от англ. Segway – двухколесное средство передвижения стоя, оснащенное электроприводом. Еще их называют гироскутерами или электрическими самокатами.

Вы когда-нибудь задумывались, как работает Сигвей? В этом уроке мы постараемся показать вам, как сделать робота Ардуино, который уравновешивает себя точно так же, как Segway.

Чтобы сбалансировать робота, двигатели должны противодействовать падению робота. Это действие требует обратной связи и корректирующих элементов. Элемент обратной связи - , который обеспечивает как ускорение, так и вращение во всех трех осях (). Ардуино использует это, чтобы знать текущую ориентацию робота. Корректирующим элементом является комбинация двигателя и колеса.

В итоге должен получиться примерно такой друг:

Схема робота

Модуль драйвера двигателя L298N:

Мотор редуктора постоянного тока с колесом:

Самобалансирующийся робот по существу является перевернутым маятником. Он может быть лучше сбалансирован, если центр массы выше относительно колесных осей. Высший центр масс означает более высокий момент инерции массы, что соответствует более низкому угловому ускорению (более медленное падение). Вот почему мы положили батарейный блок на верх. Однако высота робота была выбрана исходя из наличия материалов 🙂

Завершенный вариант самостоятельно балансирующего робота можно посмотреть на рисунке выше. В верхней части находятся шесть Ni-Cd-батарей для питания печатной платы. В промежутках между моторами используется 9-вольтовая батарея для драйвера двигателя.

Теория

В теории управления, удерживая некоторую переменную (в данном случае позицию робота), требуется специальный контроллер, называемый ПИД (пропорциональная интегральная производная). Каждый из этих параметров имеет «прирост», обычно называемый Kp, Ki и Kd. PID обеспечивает коррекцию между желаемым значением (или входом) и фактическим значением (или выходом). Разница между входом и выходом называется «ошибкой».

ПИД-регулятор уменьшает погрешность до наименьшего возможного значения, постоянно регулируя выход. В нашем самобалансирующем роботе Arduino вход (который является желаемым наклоном в градусах) устанавливается программным обеспечением. MPU6050 считывает текущий наклон робота и подает его на алгоритм PID, который выполняет вычисления для управления двигателем и удерживает робота в вертикальном положении.

PID требует, чтобы значения Kp, Ki и Kd были настроены на оптимальные значения. Инженеры используют программное обеспечение, такое как MATLAB, для автоматического вычисления этих значений. К сожалению, мы не можем использовать MATLAB в нашем случае, потому что это еще больше усложнит проект. Вместо этого мы будем настраивать значения PID. Вот как это сделать:

  1. Сделайте Kp, Ki и Kd равными нулю.
  2. Отрегулируйте Kp. Слишком маленький Kp заставит робота упасть, потому что исправления недостаточно. Слишком много Kp заставляет робота идти дико вперед и назад. Хороший Kp сделает так, что робот будет совсем немного отклоняться назад и вперед (или немного осциллирует).
  3. Как только Kp установлен, отрегулируйте Kd. Хорошее значение Kd уменьшит колебания, пока робот не станет почти устойчивым. Кроме того, правильное Kd будет удерживать робота, даже если его толькать.
  4. Наконец, установите Ki. При включении робот будет колебаться, даже если Kp и Kd установлены, но будет стабилизироваться во времени. Правильное значение Ki сократит время, необходимое для стабилизации робота.

Поведение робота можно посмотреть ниже на видео:

Код Ардуино самобалансирующего робота

Нам понадобилось четыре внешних библиотеки, для создания нашего робота. Библиотека PID упрощает вычисление значений P, I и D. Библиотека LMotorController используется для управления двумя двигателями с модулем L298N. Библиотека I2Cdev и библиотека MPU6050_6_Axis_MotionApps20 предназначены для чтения данных с MPU6050. Вы можете загрузить код, включая библиотеки в этом репозитории .

#include #include #include "I2Cdev.h" #include "MPU6050_6Axis_MotionApps20.h" #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE #include "Wire.h" #endif #define MIN_ABS_SPEED 20 MPU6050 mpu; // MPU control/status vars bool dmpReady = false; // set true if DMP init was successful uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU uint8_t devStatus; // return status after each device operation (0 = success, !0 = error) uint16_t packetSize; // expected DMP packet size (default is 42 bytes) uint16_t fifoCount; // count of all bytes currently in FIFO uint8_t fifoBuffer; // FIFO storage buffer // orientation/motion vars Quaternion q; // quaternion container VectorFloat gravity; // gravity vector float ypr; // yaw/pitch/roll container and gravity vector //PID double originalSetpoint = 173; double setpoint = originalSetpoint; double movingAngleOffset = 0.1; double input, output; //adjust these values to fit your own design double Kp = 50; double Kd = 1.4; double Ki = 60; PID pid(&input, &output, &setpoint, Kp, Ki, Kd, DIRECT); double motorSpeedFactorLeft = 0.6; double motorSpeedFactorRight = 0.5; //MOTOR CONTROLLER int ENA = 5; int IN1 = 6; int IN2 = 7; int IN3 = 8; int IN4 = 9; int ENB = 10; LMotorController motorController(ENA, IN1, IN2, ENB, IN3, IN4, motorSpeedFactorLeft, motorSpeedFactorRight); volatile bool mpuInterrupt = false; // indicates whether MPU interrupt pin has gone high void dmpDataReady() { mpuInterrupt = true; } void setup() { // join I2C bus (I2Cdev library doesn"t do this automatically) #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE Wire.begin(); TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz) #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE Fastwire::setup(400, true); #endif mpu.initialize(); devStatus = mpu.dmpInitialize(); // supply your own gyro offsets here, scaled for min sensitivity mpu.setXGyroOffset(220); mpu.setYGyroOffset(76); mpu.setZGyroOffset(-85); mpu.setZAccelOffset(1788); // 1688 factory default for my test chip // make sure it worked (returns 0 if so) if (devStatus == 0) { // turn on the DMP, now that it"s ready mpu.setDMPEnabled(true); // enable Arduino interrupt detection attachInterrupt(0, dmpDataReady, RISING); mpuIntStatus = mpu.getIntStatus(); // set our DMP Ready flag so the main loop() function knows it"s okay to use it dmpReady = true; // get expected DMP packet size for later comparison packetSize = mpu.dmpGetFIFOPacketSize(); //setup PID pid.SetMode(AUTOMATIC); pid.SetSampleTime(10); pid.SetOutputLimits(-255, 255); } else { // ERROR! // 1 = initial memory load failed // 2 = DMP configuration updates failed // (if it"s going to break, usually the code will be 1) Serial.print(F("DMP Initialization failed (code ")); Serial.print(devStatus); Serial.println(F(")")); } } void loop() { // if programming failed, don"t try to do anything if (!dmpReady) return; // wait for MPU interrupt or extra packet(s) available while (!mpuInterrupt && fifoCount < packetSize) { //no mpu data - performing PID calculations and output to motors pid.Compute(); motorController.move(output, MIN_ABS_SPEED); } // reset interrupt flag and get INT_STATUS byte mpuInterrupt = false; mpuIntStatus = mpu.getIntStatus(); // get current FIFO count fifoCount = mpu.getFIFOCount(); // check for overflow (this should never happen unless our code is too inefficient) if ((mpuIntStatus & 0x10) || fifoCount == 1024) { // reset so we can continue cleanly mpu.resetFIFO(); Serial.println(F("FIFO overflow!")); // otherwise, check for DMP data ready interrupt (this should happen frequently) } else if (mpuIntStatus & 0x02) { // wait for correct available data length, should be a VERY short wait while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount(); // read a packet from FIFO mpu.getFIFOBytes(fifoBuffer, packetSize); // track FIFO count here in case there is > 1 packet available // (this lets us immediately read more without waiting for an interrupt) fifoCount -= packetSize; mpu.dmpGetQuaternion(&q, fifoBuffer); mpu.dmpGetGravity(&gravity, &q); mpu.dmpGetYawPitchRoll(ypr, &q, &gravity); input = ypr * 180/M_PI + 180; } }

Значения Kp, Ki, Kd могут работать или не работать. Если они этого не делают, выполните шаги, описанные выше. Обратите внимание, что наклона в коде установлен на 173 градуса. Вы можете изменить это значение, если хотите, но обратите внимание, что это угол наклона, которым должен поддерживаться роботом. Кроме того, если ваши двигатели слишком быстры, вы можете отрегулировать значения motorSpeedFactorLeft и motorSpeedFactorRight.

На этом пока всё. До встречи.

В этой статье мы займемся постройкой своего робота с нуля. То, что у нас получится, смотрите на фото ниже. Робот будет ездить как самостоятельно, так и под управлением смартфона. А еще мы рассмотрим постройку своего мобильного робота с нуля.

3 D принтер

Если я хочу построить робота я должен определиться с выбором платформы, на которую я буду устанавливать двигатели, платы, аккумуляторы. Я, конечно, могу приобрести готовый вариант, но интереснее сделать платформу самому. Такая платформа точно будет соответствовать вашим требованиям. Платформу можно сделать из орг. Стекла, фанеры, а я сделаю ее из пластика.

Вы можете сказать, что платформу самому делать неудобно и потребуется множество инструментов, начиная от кернера и заканчивая шлифовальным станком. А я говорю, что нам понадобится воображение и 3D принтер.

3D принтер? Всем, наверное, знаком обычный офисный принтер, который может распечатать на А4 нужный нам текст. Так вот, 3D принтер – это принтер, который может распечатать нужную деталь. Есть разные 3d принтеры. У меня принтер с технологией FDM (послойное наплавление). Какие еще есть технологии 3d печати, можно узнать в интернете.

Многие 3D принтеры работают на Arduino. При желании, можно собрать свой 3D принтер. Главная идея 3D принтера в том, что можно печатать абсолютно любую вещь, мы же напечатаем корпус для робота.

Для начала определимся с описанием платформы. Я хочу, чтобы платформа была двухколесной и в нее должны помещаться Arduino, питание, моторы и несколько датчиков.

Теперь нужно нарисовать макет платформы на бумаге и разместить на ней нужные компоненты. Например, вот так.

Когда макет будет готов, нужно будет сделать 3D модель платформы. Для этого существует множество программ. Я, обычно, пользуюсь . Я не буду учить работать с Компасом, но если вам интересно, можете посмотреть в интернете или попросить в комментариях сделать урок по Компасу.

Вот такая платформа получилась у меня.

После этого нужно преобразовать 3D модель в G-код, понятный 3d принтеру. Для этого существуют специальные программы - слайсеры. Я использую программу Repetier-Host со слайсером Sli3er. Вот как выглядит деталь, готовая к распечатке.

А вот распечатанная модель.

Только недавно у нас была идея, а готовая деталь уже перед нами. С помощью 3D принтера можно создавать уникальные вещи в единичных экземплярах. 3D принтер – классная штука. Советую всем!

Моторы

Теперь нужно подумать о том, как наш мобильный робот будет двигаться. Первое, что приходит на ум – колеса. Так и поступим.

Если кто помнит, мы уже пробовали подключать мотор к Arduino. Кто не помнит, не знает или не читал – смотрим . В подключении мотора с помощью MOSFET есть существенные недостатки – невозможно оперативно менять скорость и направление вращения. Пришло время научить Arduino управлять моторчиками по-настоящему!

Для этого можно использовать микросхему L293D. L293D позволяет управлять сразу двумя моторами, с током 600 мА на канал и пиковым до 1000 мА, а если объединить каналы – то до 1200 мА и 2000 мА пикового тока. Про объединение расскажу ниже.

Для начала, как всегда, следует посмотреть на Datasheet, чтобы разобраться, куда и что подключать. Если вы не знаете о микросхемах, то стоит прочитать статью.

Приступим. Соберем простенькую схему с одним мотором и порулим им. Внимание на схему сборки.

Если не знаете английский или просто не разобрались в Datasheet, то вот описание подключения. Нумерацию микросхем, надеюсь, все знают или узнали из статьи про микросхемы.

  • Пин 1 – Отвечает за скорость вращения мотора. Аналогичный - на пине 9. Принимает значения от 0 до 255, что без проблем можно организовать с помощью PWM.Я подсоединил EN к пятому пину Arduino, который поддерживает PWM.
  • Пины 2 и 7 – Отвечают за направление движения мотора. Аналогичные - на пинах 10 и 15. Подача логической единицы на один из этих пинов заставит мотор крутиться в одну сторону (зависит от подключения мотора), подача логической единицы на другой – заставит мотор крутиться в обратную сторону.
  • Пины 3 и 6 – К ним нужно подключать мотор. Полярность не важна, от подключения будет зависеть только направление вращения. Аналогичные - на пинах 11 и 14.
  • Пины 4 и 5 – Это земля. Думаю, не нуждается в пояснении. Аналогичные – 12 и 13.
  • Пин 8 – Питание для моторов. На него нужно подать питание в диапазоне от 4.5 до 36 Вольт
  • Пин 16 – на него подается логическая единица с Arduino. 5 Вольт, если что.

Отлично! Мотор подключили. Теперь можно и покодить.

#define FRW_BUT 7 //Кнопка "вперед" #define BCW_BUT 6 //Кнопка "назад" #define SPD 5 //Управление скоростью вращения... #define FRW 4 //...направлением вращения(вперед)... #define BCW 3 //...направлением вращения(назад) #define SPD_POT A5 int xspeed = 0; //Переменная для определения скорости вращения мотора int frw_move = 0; //Переменная для команды "вперед" int bcw_move = 0; //Переменная для команды "назад" void setup() { //Обозначаем пины pinMode(SPD, OUTPUT); pinMode(FRW, OUTPUT); pinMode(BCW, OUTPUT); pinMode(SPD_POT, INPUT); pinMode(FRW_BUT, INPUT_PULLUP); pinMode(BCW_BUT, INPUT_PULLUP); } void loop() { //Считываем показания с потенциометра //и приводим их в нужный диапазон - от 0 до 255 //После - передаем на пин регулировки скорости xspeed = analogRead(SPD_POT); constrain(xspeed, 0, 1023); xspeed = map(xspeed, 0, 1023, 0, 255); //Определяем нажатие кнопки "вперед" if(!digitalRead(FRW_BUT)) { frw_move = 1; } else { frw_move = 0; } //Определяем нажатие кнопки "назад" if(!digitalRead(BCW_BUT)) { bcw_move = 1; } else { bcw_move = 0; } //Вызываем функцию по отправке данных на L293D motor(); } void motor() { //Отправляем данные на L293D analogWrite(SPD, xspeed); digitalWrite(FRW, frw_move); digitalWrite(BCW,bcw_move); }

Как работает? Работает просто. При нажатии на левую кнопку колесо крутится в одну сторону, а при нажатии на правую – в другую. Поворотом ручки потенциометра можно регулировать скорость вращения моторчика. Действие нашей испытательной установки для моторчиков показано на видео.

З.Ы. Да, знаю, что качество видео не супер, но постараюсь найти нормальную камеру и организовать место для съемки как можно скорее.

Теперь про соединение каналов L293. Если хочется подключить более мощный моторчик, то можно объединить каналы.

Первый способ – параллельно соединить аналогичные выводы микросхемы, что даст прибавку к максимальной силе тока в два раза. Минус – к одной микросхеме можно подключить только один моторчик.

Второй способ – сверху на L293 напаять другую L293. Берем и напаиваем пин 1 к пину 1, пин 2 к пину 2 и так далее. Этот способ так же дает прибавку к силе тока в два раза, но, в отличие от первого – оставляет возможность управлять сразу двумя моторчиками. У вас может возникнуть идея – а не напаять ли мне еще парочку L293? К сожалению, последующая напайка микросхем не приведет к увеличению силы тока еще на 600 мА. Прибавка будет незначительна.

“Э-эх, придется убирать мой 12-Вольтовый мотор… “ Не спешите расстраиваться. Для более мощных моторов подойдет старший брат L293 - L298, но сейчас мы не будем его рассматривать. Это мы сделаем чуть позже.

Motor Shield

Согласитесь, что с таким пучком проводов выглядит это все не очень. Чтобы избавиться от него можно спаять схему с L293 на печатной или макетной плате для пайки, но что делать, если паять не хочется или не умеется? Для этого существуют готовые решения в виде шилдов для Arduino, например. Я расскажу про один из них – Motor Shield V1 от DK Electronics.

Вот, собственно, фото шилд.

На этом шилде установлены две L293D, что позволяет управлять сразу четырьмя моторами. Еще там есть два контакта для сервомоторов. Питание подается либо на клемник, либо, при установленной перемычке, с питания Arduino. Перемычка так же позволяет брать питание для Arduino с шилда. Для работы с этим шилдом существует специальная библиотека. Скачать ее можно .

К минусам платы. Для работы с шилдом используются почти все цифровые пины, кроме 0, 1, 2, 13. Как мы знаем, пины 0 и 1 используются Arduino для прошивки, поэтому их лучше не использовать.

Есть тут и хорошая сторона. Если не подключать сервы, например, освобождаются пины 9 и 10, а если не использовать какой-либо из моторов, то освободятся пины 3, 5, 6, 11, в зависимости от неиспользуемого мотора. И еще. Нам остаются доступны шесть аналоговых выходов, которые при желании можно использовать как цифровые.

Начнем подключение моторов. Ради эксперимента сделаем робота, который ездит вперед, назад, а также вращается вокруг собственной оси. В качестве платформы я взял собственную разработку, описанную выше. Вы можете взять, что душе угодно, главное – подходящее по характеристикам.

Нам понадобятся

  • Arduino UNO – Можно использовать любую другую форм фактора Arduino UNO. Leonardo или Iskra, например.
  • Motor Shield – Подойдут и другие версии этого шилда.
  • Моторчики на 6В – Можно взять любые, подходящие по характеристикам к Motor Shield.
  • Колеса диаметром 42мм – Колеса подходящие к моторчикам и платформе
  • Крепления для моторчиков – Моторчики нужно прикрепить к платформе. Возьмите подходящие к вашей.
  • Питание – Я взял блок аккумуляторов и получил на выходе около 5 Вольт, что недостаточно для питания моторов и Arduino, поэтому я подключил DC/DC преобразователь и поднял напряжение до 9В. Если нет преобразователя, то можно воспользоваться обычной кроной, подключив ее к питанию Arduino.

Пришло время собрать нашего робота.

Шаг 1

Соединяем Arduino и Motor Shield.

Шаг 2

Собираем моторы и прикручиваем их на платформу.

Шаг 3

Собираем питание через повышающий преобразователь.

Для тех, у кого Крона. Не забудьте перемычку!

Шаг 4

Прикручиваем моторы к Motor шилду с Arduino.

Шаг 5

Добавляем питание.

Шаг 6 (Опционально)

Прикрепим крышку – для эстетики.

У нас есть готовый робот. Теперь пришло время его запрограммировать. Смотрим на код.

//Подключаем библиотеку для работы с Motor Shield #include //Определяем левый мотор на клеммник номер 2 AF_DCMotor l_motor(2); //Определяем правый мотор на клеммник номер 3 AF_DCMotor r_motor(3); //Переменные для определения скорости //и времени движения int spd = 50; int time(1000); void setup() { //Задаем начальную скорость и выключаем моторы l_motor.setSpeed(spd); l_motor.run(RELEASE); r_motor.setSpeed(100); r_motor. run(RELEASE); } void loop() { // Едем вперед l_motor.run(FORWARD); r_motor.run(FORWARD); l_motor.setSpeed(spd); r_motor.setSpeed(spd); delay(time); // Едем назад l_motor.run(BACKWARD); r_motor.run(BACKWARD); l_motor.setSpeed(spd); r_motor.setSpeed(spd); delay(time); // Крутимся против часовой стрелки l_motor.run(FORWARD); r_motor.run(BACKWARD); l_motor.setSpeed(spd); r_motor.setSpeed(spd); delay(time); // Крутимся по часовой стрелке r_motor.run(FORWARD); l_motor.run(BACKWARD); l_motor.setSpeed(spd); r_motor.setSpeed(spd); delay(time); }

Отлично! Время проверять. Вот видео с моей проверки. А у вас как?

“Ты что-то говорил про робототехнические платы?” – могут сказать те, кто читал вводный урок 2 части курcа. Да, такие платы есть. Рассмотрим робототехническую платформу Strela.

Мечта робототехника. (Почти). Преимущества платы я описывал . Сразу к делу.

На ней- то и установлен старший брат L293 – L298. А еще пины выведены тройками, что как раз подходит для подключения многих датчиков.

Эту плату можно подключить вместо Arduino UNO и Motor Shield. Кроме того, ребята из Амперки написали библиотеку для работы со Стрелой, что делает управление моторами достаточно тривиальной задачей.

Для тех, кто не знал, рассказываю. К каждой нормальной библиотеке существуют примеры по ее использованию и библиотека для Стрелы не исключение. Для того чтобы их найти, заходим во вкладку Файл -> Примеры -> Strela. Там выбираем пример StrelaMotors, где выполняется скетч, похожий на скетч с использованием Motor Shield. Кстати, к Motor Shield тоже есть примеры. Если интересно – смотрите.

Что еще можно сделать со Стрелой – смотрите ниже.А мы переходим к беспроводной связи по Bluetooth.

Bluetooth

Робот, который сам ездит по комнате это, конечно, хорошо, но хотелось бы порулить роботом самостоятельно. Для этого нужно организовать связь между Arduino и управляющим устройством.

В качестве управляющего устройства я выбрал смартфон. Связь мы будем организовывать по протоколу Bluetooth, поэтому пришло время знакомиться.

Это модуль HC-06. Я не буду особо вдаваться в подробности, но кому интересно, переходим . Наша цель – порулить роботом со смартфона. Начнем, пожалуй.

Для начала нужно подключить HC-06 к Arduino. Подключение будем осуществлять при помощи Software Serial. Эта библиотека позволяет эмулировать Serial Port на нужных нам пинах. Ради эксперимента попробуем сделать это на пинах A0(RX) и A1(TX). Зачем? Помним, что я рассказывал про Motor Shield.

Подключаем так:

  • Vcc – к 5V
  • GND – к GND
  • RX – к TX
  • TX – к RX

Я подключу HC-06 к роботу, которого мы собирали выше. Для этого воспользуемся тремя полосами на Motor Shield.

Робот готов. Осталось его запрограммировать.

Прежде чем читать код, вы должны кое-что узнать. Моторы не идеальны, как и все в этом мире. Даже два мотора из одной партии, идущие друг за другом, будут немного отличаться, что скажется на разнице в количестве оборотов при одном и том же напряжении. Если моторы просто подключить к motor Shield и подать на них одинаковую скорость, а это и есть одинаковое напряжение, то робот поедет не прямо, а немного, или много, в сторону. Это можно увидеть в видео выше.

Для того чтобы этого избежать, мы будем применять корректировочные коэффициенты. У меня левое колесо крутится намного быстрее, чем правое, поэтому я поставил коэффициент 0.62 для компенсации. Значение коэффициента подбирается экспериментальным путем.

// Подключаем библиотеки для работы с Motor Shield и Software Serial #include #include //Определяем пины для эмуляции SoftwareSerial mySerial(A0, A1); // RX, TX //Определяем левый мотор на клеммник номер 2 AF_DCMotor l_motor(2); //Определяем правый мотор на клеммник номер 3 AF_DCMotor r_motor(3); //Переменные для определения скорости //и корректировки вращения float spd = 70.0; float corr_l = 0.62; float corr_r = 1; float rot = 50.0; void setup() { //Задаем начальную скорость и выключаем моторы l_motor.setSpeed(spd); l_motor.run(RELEASE); r_motor.setSpeed(spd); r_motor. run(RELEASE); //Устанавливаем соединение с HC-06 mySerial.begin(9600); } void loop() { //Если появились данные, //вызываем функцию управления if (mySerial.available()) { drive(); } } void drive() { //Переменная для пришедших данных char control = mySerial.read(); //Для начала установим скорость if (((control - "0") >= 0) && ((control - "0") <= 9)) { spd = (control - "0") * 25.0; //сохраняем новое значение скорости } else if (control == "q") { spd = 255.0; } //Сравниваем команды, пришедшие со смартфона else if (control == "S") //Если пришла команда "S", стоим { l_motor.run(RELEASE); r_motor. run(RELEASE); } else if (control == "F") //Если пришла команда "F", едем вперед { l_motor.setSpeed(spd * corr_l); r_motor.setSpeed(spd * corr_r); r_motor.run(FORWARD); l_motor.run(FORWARD); } else if (control == "B") //Если пришла команда "B", едем назад { l_motor.setSpeed(spd * corr_l); r_motor.setSpeed(spd * corr_r); r_motor.run(BACKWARD); l_motor.run(BACKWARD); } else if (control == "I") //Если пришла команда "I", едем вперёд и направо { l_motor.setSpeed(spd * corr_l); r_motor.setSpeed(spd * corr_r + rot); r_motor.run(FORWARD); l_motor.run(FORWARD); } else if (control == "J")//Если пришла команда "J", едем назад и направо { l_motor.setSpeed(spd * corr_l); r_motor.setSpeed(spd * corr_r + rot); r_motor.run(BACKWARD); l_motor.run(BACKWARD); } else if (control == "G") //Если пришла команда "G", едем вперёд и налево { l_motor.setSpeed(spd * corr_l + rot); r_motor.setSpeed(spd * corr_r); r_motor.run(FORWARD); l_motor.run(FORWARD); } else if (control == "H") //Если пришла команда "H", едем назад и налево { l_motor.setSpeed(spd * corr_l + rot); r_motor.setSpeed(spd * corr_r); r_motor.run(BACKWARD); l_motor.run(BACKWARD); } else if (control == "R") //Если пришла команда "R", крутимся вправо { l_motor.setSpeed(spd * corr_l); r_motor.setSpeed(spd * corr_r); r_motor.run(FORWARD); l_motor.run(BACKWARD); } else if (control = "L") //Если пришла команда "L", крутимся влево { l_motor.setSpeed(spd * corr_l); r_motor.setSpeed(spd * corr_r); l_motor.run(FORWARD); r_motor.run(BACKWARD); } }

Робота прошили. Теперь займемся смартфоном.

RC controller

Для связи Arduino и смартфона через Bluetooth есть множество различных приложений. В поиске ключевыми словами будут: Arduino, Bluetooth, RC.

Я выбрал приложение под названием Bluetooth RC Controller. Оно идеально подойдет для нашей цели. При нажатии на кнопку приложение отправляет значение типа char на HC-06, который, в свою очередь, передает пришедшее значение Arduino. Значение, отправляемое при нажатии кнопки, устанавливается самостоятельно.

Чтобы установить соединение с роботом, нужно нажать на шестерню и выбрать пункт “Settings” В “Settings” нужно убедиться, что кнопки соответствуют этим отсылаемым символам, либо изменяем код Arduino.

После настройки символов можно устанавливать соединение с HC-06. Жмем на шестерню и заходим в “Connect to car” Открывается окно с сопряженными устройствами. В нем выбираем HC-06. Если его нет, то ищем с помощью “Scan for devices”. Если устройство найдено, но не хочет сопрягаться, то заходим в Bluetooth на смартфоне и сопрягаем, как обычно. Пароль стандартный – 1234. После этого заходим в “Scan for devices” и соединяемся.

Когда соединение установится, загорится зеленый огонек сверху, а HC-06 перестанет моргать. Можно начинать рулить. Полоска сверху отвечает за скорость движения.

Вернемся к Стреле. Еще одним преимуществом Стрелы является возможность установить Bluetooth XBee формата, а хорошо это тем, что другие пины остаются свободными. А так как для Стрелы есть готовая библиотека, которая помогает сократить код для управления моторами, то использовать Стрелу для управления роботом по Bluetooth очень даже стоит.

Для этого нужно подключить XBee к Стреле, прошить ее скетчем из примеров под названием “ArduinoBluetoothRCCarOnStrela” и подключиться к XBee через RC controller.

Советы

Робот у меня готов и даже ездит по команде со смартфона. Но не все может пройти гладко. Я расскажу о некоторых проблемах и их решениях, а также дам несколько советов начинающим робототехникам.

Колеса крутятся не в те стороны, в какие хотелось бы – эта проблема легко устраняется путем перестановки проводов в клемниках или программно.

Bluetooth модуль не работает – нужно проверить наличие горящего красного светодиода на модуле. Если он не горит, то проверить правильность подключения Bluetooth модуля. Если светодиод горит, но соединение ну устанавливается, нужно убедиться в том, что RX модуля соединен с TX платы и наоборот, а так же попробовать способ с сопряжением модуля с Arduino через стандартный Bluetooth интерфейс.

Робот не едет прямо – я описывал эту проблему чуть выше, когда рассказывал про Bluetooth и Motor Shield.

При езде робот неожиданно останавливается и теряется соединение с HC-06 – проблема в источнике питания. Мы знаем, что Arduino нужно не менее 7В для стабильной работы, а еще мы знаем, что моторчики очень хорошо кушают. Если поднести щупы мультиметра к клеммникам подачи напряжения и измерить напряжение при выключенных моторах, а потом их включить, то можно увидеть, что напряжение на мультиметре упадет. Причем упасть напряжение может по-разному.

Если подключен источник питания, который не может обеспечить достаточный ток для моторов, то напряжение может упасть сильно, с 9 до 5 Вольт, например, а 5В уже не будет хватать для Arduino и она перезапустится. Решение – подключить более мощное питание. Как рассчитать, я расскажу ниже.

Если подключить источник питания мощнее, то просадка напряжения может быть только в течение нескольких миллисекунд, но и их может оказаться достаточно для перезапуска контроллера. Решение – параллельно проводам питания установить конденсатор не менее чем на 1000мкФ, емкость можно определить экспериментально. Я ставил конденсатор на 3300 мкФ и на 16В. Не забываем смотреть на максимальное напряжение конденсатора.

Когда источник питания достаточно мощный, просадки напряжения не более 0.2В.

Несколько советов для начинающих робототехников

Начиная планировку робота, первым делом желательно позаботиться о расчёте мощности силовой части и подборе соответствующего источника питания. Будет обидно, если 4 батарейки ААА не потянут твои 4 6-вольтовых мотора, а места для более источника питания не останется.

Для расчета мощности ищем характеристики моторов, плат, датчиков. Из курса физики знаем, что мощность можно рассчитать по формуле P = IU, где I – сила тока, U – напряжение. С помощью этой формулы и характеристик легко рассчитать потребляемую мощность готового устройства, а зная потребляемую мощность и рабочее напряжение питания, можно узнать оптимальную силу тока, необходимую для работы устройства, зная силу тока, можно определиться с необходимой емкостью аккумулятора и время работы устройства от выбранного аккумулятора.

Как я и говорил, всегда следует ставить конкретную цель, при достижении которой проект можно считать выполненным. В этой мысли есть нюансы. Если проект достаточно большой, то добраться до цели не так-то просто, особенно, когда пишешь код. Написал я однажды большой код, думал - «Вот сейчас напишу все и проверю! », при попытке скомпилировать код, он не сразу скомпилировался, так как было несколько ошибок. Ошибки я убрал, да вот только код не работал, как я хотел. Пришлось переписывать все почти с нуля, понемногу добавляя код и проверяя на работоспособность получившийся код. Так советую поступить и вам.

Если есть цель сделать “пароль” из трех символов, то не стоит программировать все три сразу. Лучше сделать пароль из одного символа, проверить его, потом из двух, а после проверки – из трех. Мне помогает.

Робот создается методом проб и ошибок. Не получится один раз запрограммировать, чтобы действие выполнялось идеально. Те же подстроечные коэффициенты на колесах, поэтому не стоит опускать руки если что-то не получается, а если совсем-совсем не получается, то можно обратиться к добрым людям на форумы или написать мне, обязательно поможем!

Заключение

Робототехника – классная штука! В скором времени, я думаю, роботы займут, а то и уже заняли место в жизни людей. Мы сделали простейшего робота-машинку с управлением со смартфона, позже займемся более серьезными проектами, ну а пока – до скорого!

Всем привет. Эта статья небольшой рассказ о том, как сделать робота своими руками . Почему именно рассказ, спросите вы? Всё из-за того, что для изготовления подобной поделки необходимо использовать значительный багаж знаний, который очень трудно изложить в одной статье. Мы пройдёмся по процессу сборки, заглянем одним глазом в программный код и в конечном счете оживим детище «силиконовой долины». Советую посмотреть видео, чтобы иметь представление о том, что в итоге должно получится.

Перед тем, как двигаться дальше прошу отметить следующее, что при изготовлении поделки использовался лазерный резак. От лазерного резака можно отказаться, обладая достаточным опытом работы руками. Точность выступает тем ключом, что поможет завершить проект успешно!

Шаг 1: Как это работает?

Робот имеет 4 ноги, с 3 сервоприводами на каждой из них, что позволяют ему перемещать конечности в 3-х степенях свободы. Он передвигается «ползучей походкой». Пусть она медленная, зато одна из самых плавных.

Для начала нужно научить робота двигаться вперед, назад, влево и вправо, затем добавить ультразвуковой датчик, что поможет обнаруживать препятствия/преграды, а после этого Bluetooth модуль, благодаря которому управление роботом выйдет на новый уровень.

Шаг 2: Необходимые детали

Скелет изготавливается из оргстекла толщиной 2 мм.

Электронная часть самоделки будет состоять из:

  • 12 сервоприводов;
  • arduino nano (можно заменить любой другой платой arduino);

  • Шилда для управления сервоприводами;
  • блока питания (в проекте использовался БП 5В 4А);

  • ультразвукового датчика;
  • hc 05 bluetooth модуля;

Для того, чтобы изготовить шилд понадобится:

  • монтажная плата (предпочтительно с общими линиями (шинами) питания и земли);
  • межплатные штыревые соединители — 30 шт;
  • гнезда на плату – 36 шт;

  • провода.

Инструменты :

  • Лазерный резак (или умелые руки);
  • Суперклей;
  • Термоклей.

Шаг 3: Скелет

Воспользуемся графической программой, чтобы начертить составные части скелета.

После этого в любой доступный способ вырезаем 30 деталей будущего робота.

Шаг 4: Сборка

После резки снимаем защитное бумажное покрытие с оргстекла.

Далее приступаем к сборке ног. Крепежные элементы встроенные в части скелета. Всё, что остаётся сделать — это соединить детали воедино. Соединение довольно плотное, но для большей надежности можно нанести по капле суперклея на элементы крепежа.

Затем нужно доработать сервоприводы (приклеить по винту напротив валов сервоприводов).

Этой доработкой мы сделаем робота более устойчивым. Доработку нужно выполнить только для 8 сервоприводов, остальные 4 будут крепиться непосредственно на тело.

Прикрепляем ноги к связующему элементу (изогнутая деталь), а его в свою очередь к сервоприводу на теле.

Шаг 5: Изготавливаем шилд

Изготовление платы довольно простое, если следовать представленным в шаге фотографиям.

Шаг 6: Электроника

Закрепим выводы сервоприводов на плате arduino. Выводы следует соединять в правильной последовательности, иначе ничего не будет работать!

Шаг 7: Программирование

Пришло время оживить Франкенштейна. Сначала загрузим программу legs_init и убедимся в том, что робот находится в таком положении, как на картинке. Далее загрузим quattro_test, чтобы проверить реагирует ли робот на базовые движения, такие как движение вперед, назад, влево и вправо.

ВАЖНО: Вам необходимо добавить дополнительную библиотеку в программную среду arduino IDE. Ссылка на библиотеку представлена ниже:

Робот должен сделать 5 шагов вперед, 5 шагов назад, повернутся влево на 90 градусов, повернутся вправо на 90 градусов. Если Франкенштейн делает всё правильно, мы двигаемся в верном направлении.

P . S : установите робота на чашку, как на стенд, чтобы каждый раз не выставлять его на первоначальную точку. Как только тесты показали нормальную работу робота, можем продолжать испытания, поставив его на землю/пол.

Шаг 8: Инверсная кинематика

Инверсная (обратная) кинематика – именно она в действительности и управляет роботом (если вам не интересна математическая сторона этого проекта и вы торопитесь закончить проект можете пропустить данный шаг, но знание того, что движет роботом всегда будут полезны).

Простыми словами инверсная кинематика или сокращенно ик – «часть» тригонометрических уравнений, что определяют положение острого конца ноги, угла каждого сервоприводи и т.д., что в итоге определяют пару предварительных установочных параметров. Для примера, длина каждого шага робота или высота на которой будет располагаться тело во время движения/покоя. Используя эти предопределенные параметры, система будет извлекать величину, на которую следует сдвинуть каждый сервопривод, для того чтобы управлять роботом при помощи задаваемых команд.

Робототехнический набор Двухколёсный Robot Car

Робототехнический набор Двухколесный Robo Car - набор для сборки робота на базе контроллера Arduino. Набор содержит всё необходимое чтобы собрать и запрограммировать робота без работы паяльником.

Основная платформа из (прозрачного акрила с защитной бумагой) размером -------x------ мм предназначена для монтажа на нее ходовой части, микроконтроллера, датчиков, батарейного блока.
Ходовая часть робота, состоящая из 2 ведущих колес (пластиковый мотор-редуктор с колесом на резиновой покрышке) и заднего колеса на шарикоподшипнике, которое свободно вращается на 360 градусов, позволяет роботу свободно и быстро менять направление движения.

Напряжение питания пластиковых моторов-редукторов 3-6 В. Моторы-редукторы при питании 5 В обеспечивают момент 0,9кгс*см, обороты на выходном валу редуктора 200 об/мин, что при диаметре колеса 65 мм позволяет разгонять робота до скорости 0,5 м/сек.
В комплекте идут колеса для оптических сенсоров, что позволит при добавлении соответствующих датчиков измерять скорость движения, а также использовать данные о движении приводов для оценки перемещения робота (одометрии).

Сверху платформы крепится держатель батарей 4AA, обеспечивающий питание всей электроники напряжением 6В.

Плата Arduino UNO - мозг нашего робота, крепится сверху платформы.

Для управления моторами используется L298 драйвер двигателей, который позволяет управлять двумя моторами постоянного тока с потребляемым током до 2 Ампер.

Подключая входы ENA и ENB к PWM выходам Arduino мы можем регулировать скорость вращения каждого мотора, что позволит роботу совершать повороты.
Для обнаружения препятствий по ходу робота предназначен ультразвуковой модуль расстояния HC-SR04.

Диапазон измерения расстояния модуля 2-400 см с
разрешением 0.3 см, эффективный угол <15°. Результат обнаружения не зависит от цвета или отражающей способностью объекта в оптическом диапазоне. Однако, обнаружение мягких материалов, таких как ткань, может быть затруднено.
Для измерения расстояния в различных направлениях модуль HС SR-04 должен вращаться по кругу. Для вращения используется сервопривод SG90 и мобильная платформа для его крепления.




Вот платформа для крепления сервопривода в сборе. В таком виде это крепится с помощью болтов к основной платформе.

В набор входит плата Arduino Sensor Shield V5.0, которая предназначена для расширения функциональности контроллеров на платформе Arduino UNO.
Плата позволяет подключить различные вариации внешних устройств, таких как датчики, сервомашинки, реле, кнопки, потенциометры и т.д. На плате расположено множество интерфейсов для подключения различных внешних устройств и питания. Для данного робота нас интересуют:
Для подключения HC SR-04 - Ultrasonic interface (интерфейс для подключения ультразвуковых датчиков) - имеет 4 вывода, первый вывод обозначен на плате знаком «+». Обозначение выводов: VCC, A0, A1, GND.
Для подключения сервопривода и драйвера моторов - Digital IO ports (колодка цифровых входов-выходов) имеет 16 выводов. Обозначение выводов: D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, GND, AREF. Каждый вход-выход имеет 3 контакта GND, VCC, Signal.
После сборки робота можно приступать к программированию.

Напишем простой скетч для движения робота, при обнаружении препятствий робот останавливается, отьезжает назад, начинает крутиться пока не обнаружит свободное направление и опять движется вперед.
Для написания скетча нам понадобятся библиотеки (для работы с модулем HC SR-04 скачать) и Servo (стандартная Arduino библиотека).
Вот код данного скетча

// добавить библиотеки
#include "Ultrasonic.h"
#include "Servo.h"

// HC SR-04 подключение
// Trig - A0, Echo - A1
Ultrasonic ultrasonic(A0, A1);
// L298 driver
int MotorRight1 = 5;
int MotorRight2 = 4;
int SpeedRight = 3;
int MotorLeft1 = 8;
int MotorLeft2 = 7;
int SpeedLeft = 6;

Float dist_cm; // переменная для хранения расстояния
boolean flag;

Void setup() {
// настроить выводы для моторов в OUTPUT
pinMode (SpeedRight, OUTPUT);
pinMode (MotorRight11, OUTPUT);
pinMode (MotorRight2, OUTPUT);
pinMode (SpeedLeft, OUTPUT);
pinMode (MotorLeft1, OUTPUT);
pinMode (MotorLeft2, OUTPUT);
// вперед
robot_forward();
}

Void loop() {
// получить данные с HC SR-04
if(dist_cm<20)
{
robot_stop();
flag=false;
while(flag==false)
{
robot_rotation();
dist_cm = ultrasonic.Ranging(CM);
if(dist_cm>50)
flag=true;
delay(100);
}
robot_forward();
}
}
// движение вперед
void robot_forward() {
digitalWrite(MotorRight1,HIGH);

analogWrite(SpeedRight,127);
analogWrite(SpeedLeft,127);
}
// движение назад
void robot_forward() {

digitalWrite(MotorLeft2, HIGH);
analogWrite(SpeedRight,127);
analogWrite(SpeedLeft,127);
delay(1000);
}
// остановить робота
void robot_stop() {
digitalWrite(MotorRight1,LOW);
digitalWrite(MotorRight2,LOW);
digitalWrite(MotorLeft1, LOW);
digitalWrite(MotorLeft2, LOW);
}
// вращение робота
void robot_rotation() {
digitalWrite(MotorRight2,HIGH);
digitalWrite(MotorRight1,LOW);
digitalWrite(MotorLeft2, LOW);
digitalWrite(MotorLeft1, HIGH);
analogWrite(SpeedRight,64);
analogWrite(SpeedLeft,64);
delay(200);
}

Схема сборки шасси

Описание Робототехнического набора "Двухколёсный Robot Car"




Top