Размер переменной char. Переменные в языке Си. Объявление переменной в Си. Типы чисел с плавающей точкой

Теги: С++ типы данных, auto, decltype, автоматический вывод типов

Типы данных

К ак и в си, переменные в С++ должны иметь валидное имя. То есть, состоять из чисел, букв и знака подчёркивания, не должны начинаться с цифры и не должны совпадать со служебными словами, которых теперь стало больше

alignas alignof and and_eq
asm auto bitand bitor
bool break case catch
char char16_t char32_t class
compl const constexpr const_cast
continue decltype default delete
do double dynamic_cast else
enum explicit export extern
false float for friend
goto if inline int
long mutable namespace new
noexcept not not_eq nullptr
operator or or_eq private
protected public register reinterpret_cast
return short signed sizeof
static static_assert static_cast struct
switch template this thread_local
throw true try typedef
typeid typename union unsigned
using virtual void volatile
wchar_t while xor xor_eq

Как и си, С++ регистрозависимый язык.

Основные типы данных

Б азовые типы данных в C++ можно разбить на несколько групп

Знаковый тип. Переменные знакового типа могут использоваться для хранения одного символа. Самый простой тип char, размер которого равен 1 байт. Также имеются типы для представления знаков, размером больше одного байта

Вообще-то эти типы есть и в си, мы не останавливались подробно на изучении представления строк.

Целочисленные типы данных. Как и в си, могут обладать модификаторами signed и unsigned. Как и в си, основными типами являются char, int, long и long long. Ничего нового здесь не появилось.

Числа с плавающей точкой. Представлены типами float, double и long double. Ничего нового по сравнению с си.

Все описанные выше типы называют также арифметическими. Кроме них существует ещё пустой тип – void (также ничего нового по сравнению с си) и нулевой указатель. Теперь, вместо NULL с его удивительными свойствами, появился новый фундаментальный тип nullptr_t с единственным значением nullptr, который хранит нулевой указатель и равен только сам себе. При этом, он может быть приведён к нулевому указателю нужного типа.

В си++ введён булев тип. Он хранит всего два возможных значения true и false.

Си++ поддерживает также множество составных типов данных, которые будут рассмотрены позднее.

Объявление и инициализация переменных

В С++ переменные могут быть объявлены в любом месте внутри функции, а не только в самом начале блока кода В том числе, переменные могут быть объявлены и внутри цикла for.

Float a; float b; float sum; float step; a = 3.0f; b = 4.3f; sum = 0.0f; step = 0.05f; for (float i = a; i < b; i += step) { sum += i * i; } float mid = sum / (b - a) / step;

Инициализировать переменные можно при создании как в си

Int x = 0;

либо, используя конструктор

Int x(0); double d(3.2);

Кроме того, в С++ 2011 появилась т.н. uniform initialization, универсальная инициализация, которая позволяет использовать один синтаксис для инициализации любых объектов

Struct Point { int x; int y; }; struct Point position = { 3, 4 }; Point *pt = new Point{6, 8}; int length{5};

Вывод типов

В си++ 2011 служебное слово auto используется для автоматического определения типа переменных. Часто тип переменной может быть определён, исходя из правой части инициализации. В том случае, когда компилятор может однозначно определить тип, его можно задавать с помощью служебного слова auto:

Auto x = 3; //эквивалентно int x = 3; auto point = new Point; //эквивалентно Point *point = new Point

Кроме этого, есть возможность задавать тип переменной по уже имеющемуся типу, с помощью служебного слова decltype

Int intX = 42; decltype(intX) intY = 33; //эквивалентно int intY = 33; auto pt1 = new Point; decltype(pt1) p2 = new Point{2, 6}; //эквивалентно //Point *pt1 = new Point; //Point *pt2 = new Point{2, 6}

Строки

В С++ нет базового типа строка. Однако есть стандартная библиотека string, которая предоставляет класс для работы со строками.

#include #include void main() { std::string first_name = "Vasya"; std::string last_name = { "Pupkin" }; //конкатенация строк auto full_name = first_name + " " + last_name; std::string *department = new std::string("Department of copying and scanning"); std::cout << full_name << std::endl; //сравнение строк std::string a = "A"; std::string b = "B"; if (first_name.compare(last_name) > 0) { std::cout << a + " > " + b << std::endl; } else { std::cout << a + " < " + b << std::endl; } //подстрока std::string subs = department->substr(0, 10); std::cout << subs << std::endl; //замена подстроки std::cout << last_name.replace(0, 1, "G") << std::endl; //вставка std::string new_department = department->insert(department->length(), " and shreddering"); std::cout << new_department << std::endl; delete department; system("pause"); }

Со стандартной библиотекой string познакомимся поздее более подробно.

Типом данных в программировании называют совокупность двух множеств: множество значений и множество операций, которые можно применять к ним. Например, к типу данных целых неотрицательных чисел, состоящего из конечного множества натуральных чисел, можно применить операции сложения (+), умножения (*), целочисленного деления (/), нахождения остатка (%) и вычитания (−).

Язык программирования, как правило, имеет набор примитивных типов данных - типы, предоставляемые языком программирования как базовая встроенная единица. В C++ такие типы создатель языка называет фундаментальными типами . Фундаментальными типами в C++ считаются:

  • логический (bool);
  • символьный (напр., char);
  • целый (напр., int);
  • с плавающей точкой (напр., float);
  • перечисления (определяется программистом);
  • void .

Поверх перечисленных строятся следующие типы:

  • указательные (напр., int*);
  • массивы (напр., char);
  • ссылочные (напр., double&);
  • другие структуры.

Перейдём к понятию литерала (напр., 1, 2.4F, 25e-4, ‘a’ и др.): литерал - запись в исходном коде программы, представляющаясобой фиксированное значение. Другими словами, литерал - это просто отображение объекта (значение) какого-либо типа в коде программы. В C++ есть возможность записи целочисленных значений, значений с плавающей точкой, символьных, булевых, строковых.

Литерал целого типа можно записать в:

  • 10-й системе счисления. Например, 1205 ;
  • 8-й системе счисления в формате 0 + число. Например, 0142 ;
  • 16-й системе счисления в формате 0x + число. Например, 0x2F .

24, 030, 0x18 - это всё записи одного и того же числа в разных системах счисления.
Для записи чисел с плавающей точкой используют запись через точку: 0.1, .5, 4. - либо в
экспоненциальной записи - 25e-100. Пробелов в такой записи быть не должно.

Имя, с которым мы можем связать записанные литералами значения, называют переменной. Переменная - это поименованная либо адресуемая иным способом область памяти, адрес которой можно использовать для доступа к данным. Эти данные записываются, переписываются и стираются в памяти определённым образом во время выполнения программы. Переменная позволяет в любой момент времени получить доступ к данным и при необходимости изменить их. Данные, которые можно получить по имени переменной, называют значением переменной.
Для того, чтобы использовать в программе переменную, её обязательно нужно объявить, а при необходимости можно определить (= инициализировать). Объявление переменной в тексте программы обязательно содержит 2 части: базовый тип и декларатор. Спецификатор и инициализатор являются необязательными частями:

Const int example = 3; // здесь const - спецификатор // int - базовый тип // example - имя переменной // = 3 - инициализатор.

Имя переменной является последовательностью символов из букв латинского алфавита (строчных и прописных), цифр и/или знака подчёркивания, однако первый символ цифрой быть не может . Имя переменной следует выбирать таким, чтобы всегда было легко догадаться о том, что она хранит, например, «monthPayment». В конспекте и на практиках мы будем использовать для правил записи переменных нотацию CamelCase. Имя переменной не может совпадать с зарезервированными в языке словами, примеры таких слов: if, while, function, goto, switch и др.

Декларатор кроме имени переменной может содержать дополнительные символы:

  • * - указатель; перед именем;
  • *const - константный указатель; перед именем;
  • & - ссылка; перед именем;
  • - массив; после имени;
  • () - функция; после имени.

Инициализатор позволяет определить для переменной её значение сразу после объявления. Инициализатор начинается с литерала равенства (=) и далее происходит процесс задания значения переменной. Вообще говоря, знак равенства в C++ обозначает операцию присваивания; с её помощью можно задавать и изменять значение переменной. Для разных типов он может быть разным.

Спецификатор задаёт дополнительные атрибуты, отличные от типа. Приведённый в примере спецификатор const позволяет запретить последующее изменение значение переменной. Такие неизменяемые переменные называют константными или константой.

Объявить константу без инициализации не получится по логичным причинам:

Const int EMPTY_CONST; // ошибка, не инициализована константная переменная const int EXAMPLE = 2; // константа со значением 2 EXAMPLE = 3; // ошибка, попытка присвоить значение константной переменной

Для именования констант принято использовать только прописные буквы, разделяя слова символом нижнего подчёркивания.

Основные типы данных в C++

Разбирая каждый тип, читатель не должен забывать об определении типа данных.

1. Целочисленный тип (char, short (int), int, long (int), long long)

Из названия легко понять, что множество значений состоит из целых чисел. Также множество значений каждого из перечисленных типов может быть знаковым (signed) или беззнаковым (unsigned). Количество элементов, содержащееся в множестве, зависит от размера памяти, которая используется для хранения значения этого типа. Например, для переменной типа char отводится 1 байт памяти, поэтому всего элементов будет:

  • 2 8N = 2 8 * 1 = 256, где N - размер памяти в байтах для хранения значения

В таком случае диапазоны доступных целых чисел следующие:

  • - для беззнакового char
  • [-128..127] - для знакового char

По умолчанию переменная целого типа считается знаковой. Чтобы указать в коде, что переменная должна быть беззнаковой, к базовому типу слева приписывают признак знаковости, т.е. unsigned:

Unsigned long values; // задаёт целый (длинный) беззнаковый тип.

Перечисленные типы отличаются только размерами памяти, которая требуется для хранения. Поскольку язык C++ достаточно машинно-зависимый стандарт языка лишь гарантирует выполнение следующего условия:

  • 1 = размер char ≤ размер short ≤ размер int ≤ размер long.

Обычно размеры типов следующие: char - 1, short - 2, int - 4, long -8, long long - 8 байт.

Со значениями целого типа можно совершать арифметические операции: +, -, *, /, %; операции сравнения: ==, !=, <=, <, >, >=; битовые операции: &, |, xor, <<, >>.
Большинство операций, таких как сложение, умножение, вычитание и операции сравнения, не вызывают проблем в понимании. Иногда, после выполнения арифметических операций, результат может оказаться за пределами диапазона значений; в этом случае программа выдаст ошибку.
Целочисленное деление (/) находит целую часть от деления одного целого числа, на другое. Например:

  • 6 / 4 = 1;
  • 2 / 5 = 0;
  • 8 / 2 = 4.

Символ процента (%) обозначает операцию определение остатка от деления двух целых чисел:

  • 6 % 4 = 2;
  • 10 % 3 = 1.

Более сложные для понимания операции - битовые: & (И), | (ИЛИ), xor (исключающее ИЛИ), << (побитовый сдвиг влево), >> (побитовый сдвиг вправо).

Битовые операции И, ИЛИ и XOR к каждому биту информации применяют соответствующую логическую операцию:

  • 1 10 = 01 2
  • 3 10 = 11 2
  • 1 10 & 3 10 = 01 2 & 11 2 = 01 2
  • 1 10 | 3 10 = 01 2 | 11 2 = 11 2
  • 1 10 xor 3 10 = 01 2 xor 11 2 = 10 2

В обработке изображения используют 3 канала для цвета: красный, синий и зелёный - плюс прозрачность, которые хранятся в переменной типа int, т.к. каждый канал имеет диапазон значений от 0 до 255. В 16-иричной системе счисления некоторое значение записывается следующим образом: 0x180013FF; тогда значение 18 16 соответствует красному каналу, 00 16 - синему, 13 16 - зелёному, FF - альфа-каналу (прозрачности). Чтобы выделить из такого целого числа определённый канал используют т.н. маску, где на интересующих нас позициях стоят F 16 или 1 2 . Т.е., чтобы выделить значение синего канала необходимо использовать маску, т.е. побитовое И:

Int blue_channel = 0x180013FF & 0x00FF0000;

После чего полученное значение сдвигается вправо на необходимое число бит.

Побитовый сдвиг смещает влево или вправо на столько двоичных разрядов числа, сколько указано в правой части операции. Например, число 39 для типа char в двоичном виде записывается в следующем виде: 00100111. Тогда:

Char binaryExample = 39; // 00100111 char result = binaryExample << 2; // сдвигаем 2 бита влево, результат: 10011100

Если переменная беззнакового типа, тогда результатом будет число 156, для знакового оно равно -100. Отметим, что для знаковых целых типов единица в старшем разряде битового представления - признак отрицательности числа. При этом значение, в двоичном виде состоящие из всех единиц соответствует -1; если же 1 только в старшем разряде, а в остальных разрядах - нули, тогда такое число имеет минимальное для конкретного типа значения: для char это -128.

2. Тип с плавающей точкой (float, double (float))

Множество значений типа с плавающей точкой является подмножеством вещественных чисел, но не каждое вещественное число представимо в двоичном виде, что приводит иногда к глупым ошибкам:

Float value = 0.2; value == 0.2; // ошибка, value здесь не будет равно 0.2.

Работая с переменными с плавающей точкой, программист не должен использовать операцию проверки на равенство или неравенство, вместо этого обычно используют проверку на попадание в определённый интервал:

Value - 0.2 < 1e-6; // ok, подбирать интервал тоже нужно осторожно

Помимо операций сравнения тип с плавающей точкой поддерживает 4 арифметические операции, которые полностью соответствуют математическим операциям с вещественными числами.

3. Булевый (логический) тип (bool)

Состоит всего из двух значений: true (правда) и false (ложь). Для работы с переменными данного типа используют логические операции: ! (НЕ), == (равенство), != (неравенство), && (логическое И), || (логическое ИЛИ). Результат каждой операции можно найти в соответствующей таблицы истинности. например:

X Y XOR 0 0 0 0 1 1 1 0 1 1 1 0

4. Символьный тип (char, wchar_t)

Тип char - не только целый тип (обычно, такой тип называют byte), но и символьный, хранящий номер символа из таблицы символом ASCII . Например код 0x41 соответствует символу ‘A’, а 0x71 - ‘t’.

Иногда возникает необходимость использования символов, которые не закреплены в таблицы ASCII и поэтому требует для хранения более 1-го байта. Для них существует широкий символ (wchar_t).

5.1. Массивы

Массивы позволяют хранить последовательный набор однотипных элементов. Массив хранится в памяти непрерывным блоком, поэтому нельзя объявить массив, не указав его размер . Чтобы объявить массив после имени переменной пишут квадратные скобки () с указанием его размера. Например:

Int myArray; // Массив из 5-и элементов целого типа

Для инициализации массива значения перечисляют в фигурных скобках. Инициализировать таким образом можно только во время объявления переменной. Кстати, в этом случае необязательно указывать размер массива:

Int odds = {1, 3, 7, 9, 11}; // Массив инициализируется 5-ю значениями

Для доступа к определённому значению в массиве (элемента массива) используют операцию доступа по индексу () с указанием номера элемента (номера начинаются с 0). Например:

Odds; // доступ к первому элементу массива. Вернёт значение 1 odds; // доступ к третьему элементу. Вернёт значение 7 odds = 13; // 5-му элементу массива присваиваем новое значение odds; // ошибка доступа

5.3. Строки

Для записи строки программисты используют идею, что строка - последовательный ряд (массив) символов. Для идентификации конца строки используют специальный символ конца строки: ‘\0’. Такие специальные символы, состоящие из обратного слэша и идентифицирующего символа, называют управляющими или escape-символами. Ещё существуют, например, ‘\n’ - начало новой строки, ‘\t’ - табуляция. Для записи в строке обратного слэша применяют экранирование - перед самим знаком ставят ещё один слэш: ‘\’. Экранирование также применяют для записи кавычек.

Создадим переменную строки:

Char textExample = {‘T’, ‘e’, ‘s’, ‘t’, ‘\0’}; // записана строка «Test»

Существует упрощённая запись инициализации строки:

Char textExample = “Test”; // Последний символ не пишется, но размер всё ещё 5

Не вдаваясь в подробности, приведём ещё один полезный тип данных - string. Строки
такого типа можно, например, складывать:

String hello = "Привет, "; string name = "Макс!"; string hello_name = hello + name; // Получится строка «Привет, Макс!»

6. Ссылка

Int a = 2; // переменная «a» указывает на значение 2 int &b = a; // переменная «b» указывает туда же, куда и «a» b = 4; // меняя значение b, программист меняет значение a. Теперь a = 4 int &c = 4; // ошибка, так делать нельзя, т.к. ссылка нельзя присвоить значение

7. Указатель

Чтобы разобраться с этим типом данных, необходимо запомнить, что множество значений этого типа - адреса ячеек памяти, откуда начинаются данные. Также указатель поддерживает операции сложения (+), вычитания (-) и разыменовывания (*).

Адреса 0x0 означает, что указатель пуст, т.е. не указывает ни на какие данные. Этот адрес имеет свой литерал - NULL:

Int *nullPtr = NULL; // пустой указатель

Сложение и вычитание адреса с целым числом или другим адресом позволяет
передвигаться по памяти, доступной программе.

Операция получения данных, начинающихся по адресу, хранящемуся в указателе, называется разыменовывания (*). Программа считывает необходимое количество ячеек памяти и возвращает значение, хранимое в памяти.

Int valueInMemory = 2; // задаём переменну целого типа int *somePtr = &valueIntMemory; // копируем адрес переменной, здесь & - возвращает адрес переменной somePtr; // адрес ячейки памяти, например, 0x2F *somePtr; // значение хранится в 4-х ячейках: 0x2F, 0x30, 0x31 и 0x32

Для указателей не доступна операция присваивания, которая синтаксически совпадает с операцией копирования. Другими словами, можно скопировать адрес другого указателя или адрес переменной, но определить значение адреса самому нельзя.

Сам указатель хранится в памяти, как и значения переменных других типов, и занимает 4 байта, поэтому можно создать указатель на указатель.

8. Перечисления

Перечисления единственный базовый тип, задаваемый программистом. По большому счёту перечисление - упорядоченный набор именованных целочисленных констант, при этом имя перечисления будет базовым типом.

Enum color {RED, BLUE, GREEN};

По умолчанию, RED = 0, BLUE = 1, GREEN = 2. Поэтому значения можно сравнивать между собой, т.е. RED < BLUE < GREEN. Программист при объявлении перечисления может самостоятельно задать значения каждой из констант:

Enum access {READ = 1, WRITE = 2, EXEC = 4};

Часто удобно использовать перечисления, значения которых являются степенью двойки, т.к. в двоичном представлении число, являющееся степенью 2-и, будет состоять из 1-й единицы и нулей. Например:

8 10 = 00001000 2

Результат сложения этих чисел между собой всегда однозначно указывает на то, какие числа складывались:

37 10 = 00100101 2 = 00000001 2 + 00000100 2 + 00100000 2 = 1 10 + 4 10 + 32 10

Void

Синтаксически тип void относится к фундаментальным типам, но использовать его можно лишь как часть более сложных типов, т.к. объектов типа void не существует. Как правило, этот тип используется для информирования о том, что у функции нет возвращаемого значения либо в качестве базового типа указателя на объекты неопределённых типов:

Void object; // ошибка, не существует объектов типа void void &reference; // ошибка, не существует ссылов на void void *ptr; // ok, храним указатель на неизвестный тип

Часто мы будем использовать void именно для обозначения того, что функция не возвращает никакого значения. С указателем типа void работают, когда программист берёт полностью на себя заботу о целостности памяти и правильном приведении типа.

Приведение типов

Часто бывает необходимо привести значение переменной одного типа к другому. В случае, когда множество значений исходного типа является подмножеством большего типа (например, int является подмножеством long, а long - double), компилятор способен неявно (implicitly ) изменить тип значения.

Int integer = 2; float floating = integer; // floating = 2.0

Обратное приведение типа будет выполнено с потерей информации, так от числа с плавающей точкой останется только целая часть, дробная будет потеряна.

Существует возможность явного (explicitly) преобразования типов, для этого слева от переменной или какого-либо значения исходного типа в круглых скобках пишут тип, к которому будет произведено приведение:

Int value = (int) 2.5;

Унарные и бинарные операции

Те операции, которые мы выполняли ранее, называют бинарными: слева и справа от символа операции находятся значения или переменные, например, 2 + 3. В языках программирования помимо бинарных операций также используют унарные операции, которые применяются к переменным. Они могу находится как слева, так и справа от переменной, несколько таких операций встречались ранее - операция разыменовывания (*) и взятие адреса переменной (&) являются унарными. Операторы «++» и «—» увеличивают и уменьшают значение целочисленной переменной на 1 соответственно, причём могу писаться либо слева, либо справа от переменной.

В C++ также применяется сокращённая запись бинарных операций на тот случай, когда в левой и правой частях выражения находится одна и та же переменная, т.е. выполняется какая-либо операция со значением переменной и результат операции заносится в ту же переменную:

A += 2; // то же самое, что и a = a + 2; b /= 5; // то же самое, что и b = b / 5; c &= 3; // то же самое, что и c = c & 3;

В этом уроке вы узнаете алфавит языка C++ , а также какие типы данных может обрабатывает программа на нем. Возможно, это не самый увлекательный момент, но эти знания необходимы!Кроме того, начав изучать любой другой язык программирования, Вы с большей уверенностью пройдете аналогичную стадию обучения. Программа на языке C++ может содержать следующие символы:

  • прописные, строчные латинские буквы A, B, C…, x, y, z и знак подчеркивания;
  • арабские цифры от 0 до 9;
  • специальные знаки: { } , | , () + - / % * . \ ‘ : ? < > = ! & # ~ ; ^
  • символы пробела, табуляции и перехода на новую строку.

В тесте программы можно использовать комментарии . Если текст с двух символов «косая черта» // и заканчивается символом перехода на новую строку или заключен между символами /* и */, то компилятор его игнорирует.

Данные в языке C++

Для решения задачи в любой программе выполняется обработка каких-либо данных. Они могут быть различных типов: целые и вещественные числа, символы, строки, массивы. Данные в языке C++ принято описывать в начале функции. К основным типам данных языка относят:

Для формирования других типов данных используют основные и так называемые спецификаторы. В C++ определенны четыре спецификатора типов данных:

  • short - короткий;
  • long - длинный;
  • signed - знаковый;
  • unsigned - беззнаковый.

Целочисленный тип

Переменная типа int в памяти компьютера может занимать либо 2, либо 4 байта. Это зависит разрядности процессора. По умолчанию все целые типы считаются знаковыми, то есть спецификатор signed можно не указывать. Спецификатор unsigned позволяет представлять только положительные числа. Ниже представлены некоторые диапазоны значений целого типа

Тип Диапазон Размер
int -2147483648…2147483647 4 байта
unsigned int 0…4294967295 4 байта
signed int -2147483648…2147483647 4 байта
short int -32768…32767 2 байта
long int -2147483648…2147483647 4 байта
unsigned short int 0…65535 2 байта

Вещественный тип

Число с плавающей точкой представлено в форме mE +- p, где m - мантисса (целое или дробное число с десятичной точкой), p - порядок (целое число). Обычно величины типа float занимают 4 байта, а double 8 байт. Таблица диапазонов значений вещественного типа:

float 3,4E-38…3,4E+38 4 байта
double 1,7E-308…1,7E+308 8 байт
long double 3,4E-4932…3,4E+4932 8 байт

Логический тип

Переменная типа bool может принимать только два значения true (истина) или fasle (ложь). Любоезначение, не равное нулю, интерпретируется как true. Значение false представлено в памяти как 0.

Тип void

Множество значений этого типа пусто. Он используется для определения функций, которые не возвращают значения, для указания пустого списка аргументов функции, как базовый тип для указателей и в операции приведения типов.

Преобразование типов данных

В C++ различают два вида преобразования типов данных: явное и неявное.

  • Неявное преобразование происходит автоматически. Это выполняется во время сравнения, присваивания или вычисления выражения различных типов. Например, следующая программа выведет на консоль значение типа float.

#include "stdafx.h" #include using namespace std; int main() { int i=5; float f=10.12; cout<>void"); return 0; }

#include "stdafx.h"

#include

using namespace std ;

int main ()

int i = 5 ; float f = 10.12 ;

cout << i / f ;

system ("pause>>void" ) ;

return 0 ;

Наивысший приоритет получает тот тип, при котором информация теряется менее всего. Не стоит злоупотреблять неявным преобразованием типов, так как могут возникнуть разного рода непредвиденные ситуации.

  • Явное преобразование в отличие от неявного осуществляется программистом. Существует несколько способов такого преобразования:
  1. Преобразование в стили C : (float ) a
  2. Преобразование в стили C++ : float ()

Также приведения типов может осуществляться при помощи следующих операций:

static_cast <> () const_cast <> () reinterpret_cast <> () dynamic_cast <> ()

static_cast <> ()

const_cast <> ()

reinterpret_cast <> ()

dynamic_cast <> ()

static_cas - осуществляет преобразование связанных типов данных. Этот оператор приводит типы по обычным правилам, что может потребоваться в случае, когда компилятор не выполняет автоматическое преобразование. Синтаксис будет выглядеть так:

Тип static_cast <Тип> (объект);

С помощью static_cast нельзя убрать константность у переменной, но это по силам следующему оператору. const_cast - применяется только тогда, когда нужно снять константность у объекта. Синтаксис будет выглядеть следующим образом:

Тип const_cast < Тип > (объект );

reinterpret_cast - применяется для преобразования разных типов, целых к указателю и наоборот. Если вы увидели новое слово «указатель» - не пугайтесь! это тоже тип данных, но работать с ним Мы будем не скоро. Синтаксис тут такой же как, у ранее рассмотренных операторах:

Тип reinterpret _cast < Тип > (объект );

dynamic_cast - используется для динамического преобразования типов, реализует приведение указателей или ссылок. Синтаксис:

Тип dynamic _cast < Тип > (объект );

Управляющие символы

С некоторыми из этих самых «управляющих символов» Вы уже знакомы (например, с \n ). Все они начинаются с обратного «слеша», а также обрамляются двойными кавычками.

Изображение

Шестнадцатеричный код

Наименование

Звуковой сигнал бипера

Возврат на шаг

Перевод страницы (формата)

Перевод строки

Возврат каретки

Горизонтальная табуляция

Вертикальная табуляция

Типы данных

Типы данных имеют особенное значение в C#, поскольку это строго типизированный язык. Это означает, что все операции подвергаются строгому контролю со стороны компилятора на соответствие типов, причем недопустимые операции не компилируются. Следовательно, строгий контроль типов позволяет исключить ошибки и повысить надежность программ. Для обеспечения контроля типов все переменные, выражения и значения должны принадлежать к определенному типу. Такого понятия, как "бестиповая" переменная, в данном языке программирования вообще не существует. Более того, тип значения определяет те операции, которые разрешается выполнять над ним. Операция, разрешенная для одного типа данных, может оказаться недопустимой для другого.

В C# имеются две общие категории встроенных типов данных: типы значений и ссылочные типы . Они отличаются по содержимому переменной. Концептуально разница между ними состоит в том, что тип значения (value type) хранит данные непосредственно, в то время как ссылочный тип (reference type) хранит ссылку на значение.

Эти типы сохраняются в разных местах памяти: типы значений сохраняются в области, известной как стек , а ссылочные типы - в области, называемой управляемой кучей .

Давайте разберем типы значений.

Целочисленные типы

В C# определены девять целочисленных типов: char, byte, sbyte, short, ushort, int, uint, long и ulong . Но тип char применяется, главным образом, для представления символов и поэтому рассматривается отдельно. Остальные восемь целочисленных типов предназначены для числовых расчетов. Ниже представлены их диапазон представления чисел и разрядность в битах:

Целочисленные типы C#
Тип Тип CTS Разрядность в битах Диапазон
byte System.Byte 8 0:255
sbyte System.SByte 8 -128:127
short System.Int16 16 -32768: 32767
ushort System.UInt16 16 0: 65535
int System.Int32 32 -2147483648: 2147483647
uint System.UInt32 32 0: 4294967295
long System.Int64 64 -9223372036854775808: 9223372036854775807
ulong System.UInt64 64 0: 18446744073709551615

Как следует из приведенной выше таблицы, в C# определены оба варианта различных целочисленных типов: со знаком и без знака. Целочисленные типы со знаком отличаются от аналогичных типов без знака способом интерпретации старшего разряда целого числа. Так, если в программе указано целочисленное значение со знаком, то компилятор C# сгенерирует код, в котором старший разряд целого числа используется в качестве флага знака. Число считается положительным, если флаг знака равен 0, и отрицательным, если он равен 1.

Отрицательные числа практически всегда представляются методом дополнения до двух, в соответствии с которым все двоичные разряды отрицательного числа сначала инвертируются, а затем к этому числу добавляется 1.

Вероятно, самым распространенным в программировании целочисленным типом является тип int . Переменные типа int нередко используются для управления циклами, индексирования массивов и математических расчетов общего назначения. Когда же требуется целочисленное значение с большим диапазоном представления чисел, чем у типа int, то для этой цели имеется целый ряд других целочисленных типов.

Так, если значение нужно сохранить без знака, то для него можно выбрать тип uint , для больших значений со знаком - тип long , а для больших значений без знака - тип ulong . В качестве примера ниже приведена программа, вычисляющая расстояние от Земли до Солнца в сантиметрах. Для хранения столь большого значения в ней используется переменная типа long:

Using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleApplication1 { class Program { static void Main(string args) { long result; const long km = 149800000; // расстояние в км. result = km * 1000 * 100; Console.WriteLine(result); Console.ReadLine(); } } }

Всем целочисленным переменным значения могут присваиваться в десятичной или шестнадцатеричной системе обозначений. В последнем случае требуется префикс 0x:

Long x = 0x12ab;

Если возникает какая-то неопределенность относительно того, имеет ли целое значение тип int, uint, long или ulong, то по умолчанию принимается int. Чтобы явно специфицировать, какой другой целочисленный тип должно иметь значение, к числу можно добавлять следующие символы:

Uint ui = 1234U; long l = 1234L; ulong ul = 1234UL;

U и L можно также указывать в нижнем регистре, хотя строчную L легко зрительно спутать с цифрой 1 (единица).

Типы с плавающей точкой

Типы с плавающей точкой позволяют представлять числа с дробной частью. В C# имеются две разновидности типов данных с плавающей точкой: float и double . Они представляют числовые значения с одинарной и двойной точностью соответственно. Так, разрядность типа float составляет 32 бита, что приближенно соответствует диапазону представления чисел от 5E-45 до 3,4E+38. А разрядность типа double составляет 64 бита, что приближенно соответствует диапазону представления чисел от 5E-324 до 1,7Е+308.

Тип данных float предназначен для меньших значений с плавающей точкой, для которых требуется меньшая точность. Тип данных double больше, чем float, и предлагает более высокую степень точности (15 разрядов).

Если нецелочисленное значение жестко кодируется в исходном тексте (например, 12.3), то обычно компилятор предполагает, что подразумевается значение типа double. Если значение необходимо специфицировать как float, потребуется добавить к нему символ F (или f):

Float f = 12.3F;

Десятичный тип данных

Для представления чисел с плавающей точкой высокой точности предусмотрен также десятичный тип decimal , который предназначен для применения в финансовых расчетах. Этот тип имеет разрядность 128 бит для представления числовых значений в пределах от 1Е-28 до 7,9Е+28. Вам, вероятно, известно, что для обычных арифметических вычислений с плавающей точкой характерны ошибки округления десятичных значений. Эти ошибки исключаются при использовании типа decimal, который позволяет представить числа с точностью до 28 (а иногда и 29) десятичных разрядов. Благодаря тому что этот тип данных способен представлять десятичные значения без ошибок округления, он особенно удобен для расчетов, связанных с финансами:

Using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleApplication1 { class Program { static void Main(string args) { // *** Расчет стоимости капиталовложения с *** // *** фиксированной нормой прибыли*** decimal money, percent; int i; const byte years = 15; money = 1000.0m; percent = 0.045m; for (i = 1; i

Результатом работы данной программы будет:

Символы

В C# символы представлены не 8-разрядным кодом, как во многих других языках программирования, например С++ , а 16-разрядным кодом, который называется юникодом (Unicode) . В юникоде набор символов представлен настолько широко, что он охватывает символы практически из всех естественных языков на свете. Если для многих естественных языков, в том числе английского, французского и немецкого, характерны относительно небольшие алфавиты, то в ряде других языков, например китайском, употребляются довольно обширные наборы символов, которые нельзя представить 8-разрядным кодом. Для преодоления этого ограничения в C# определен тип char , представляющий 16-разрядные значения без знака в пределах от 0 до 65 535. При этом стандартный набор символов в 8-разрядном коде ASCII является подмножеством юникода в пределах от 0 до 127. Следовательно, символы в коде ASCII по-прежнему остаются действительными в C#.

Кроме разделения данных на переменные и константы, существует классификация данных по типу. Описание переменных прежде всего состоит в объявлении их типа. Тип данных характеризует область их значений и форму представления в памяти компьютера. Каждый тип характеризуется набором выполняемых над данными операций. Традиционно в универсальных языках программирования существуют такие стандартные типы, как целый, вещественный, символьный и логический 3 . Сразу отметим, что логического типа в Си нет. Выражение (в частном случае, переменная) считается истинным, если оно отлично от нуля, в противном случае оно считается ложным.

Существование двух числовых типов (целого и вещественного) связано с двумя возможными формами представления чисел в памяти компьютера.

Данные целого типа хранятся в форме представленияс фиксированной точкой . Для нее характерны абсолютная точность представления чисел и выполнения операций над ними, а также ограниченный диапазон значений чисел. Целый тип используется для данных, которые в принципе не могут иметь дробной части (количество людей, машин, и т.д., номера и счетчики).

Тип вещественный соответствует форме представления чиселс плавающей точкой , для которой характерны приближенное представление числа с заданным количеством значащих цифр (знаков мантиссы) и большим диапазоном порядка числа, что обеспечивает возможность представления как очень больших, так и очень малых по абсолютной величине чисел. В силу приближенного представления данных вещественного типа ихнекорректно сравнивать на равенство .

В современных реализациях универсальных языков программирования обычно существует несколько целых и несколько вещественных типов, каждый их которых характеризуется своим размером отводимой под одно значение памяти и, соответственно, своим диапазоном значений чисел, а для вещественных типов - и своей точностью (числом цифр мантиссы).

Данные символьного типа принимают значения на всем множестве допустимых для данного компьютера символов. Для хранения одного символьного значения отводится один байт, кодирование символов осуществляется в соответствии со стандартной таблицей кодирования (обычноASCII).

В Си имеется 4 базовых типа:

char - символьный тип;

int - целый тип,

float - вещественный тип одинарной точности,

double - вещественный тип двойной точности.

Для задания производных типов используются квалификаторы :short (короткий) - используется с типомint ,long (длинный) - используется с типамиint иdouble ;signed (со знаком),unsigned (без знака) - применимы к любому целому типу. При отсутствии словаunsignedзначение считается знаковым,т. е. по умолчанию принятоsigned. В силу допустимости произвольного соединения квалификаторов и названий базовых типов один тип может иметь несколько обозначений. Сведения о стандартных типах Си представлены в таблицах 1 и 2. Через запятую в клетках первого столбца перечислены описатели-синонимы.

Таблица 1. Стандартные целые типы данных Си

Тип данных

Диапазон значений

char, signed char

unsigned int, unsigned

int, signed int, short int, short

2147483648...2147483647

Интересно, что в Си тип charв зависимости от контекста может использоваться как символьный или как целый тип.

Таблица 2. Стандартные вещественные типы данных Си

Замечание. Для написания программ первой части пособия нам потребуются в основномдва типа: float и int .




Top