Распространение радиоволн в свободном пространстве

Проблеме распространения внутри зданий и помещений уделяется большое внимание. Это связано с возданием локальных информационных сетей, также обеспечение надёжной радиосвязью сотрудников предприятий с целью оперативного управления и обеспечения безопасности.

Наличие внутри зданий стен, перегородок, мебели, радиоэлектронной аппаратуры и других объектов создаёт сложную среду распространения радиоволн.

Основными эффектами, наблюдаемыми в такой среде являются:

    Многолучевость, за счёт многократного переотражения от стен и других объектов;

    Дифракция на острых кромках предметов внутри комнат;

    Рассеяние радиоволн.

Эти эффекты создают сложную интерференционную структуру электромагнитного поля, которая сильно изменяется при перемещении людей и других объектов.

Модели, используемые для описания условий распространения радиоволн внутри зданий

Прием сигналов от удаленного внешнего источника внутри здания можно прогнозировать только в самых общих чертах. Помимо условий распространения радиоволн от передатчика к приемнику, определяемых высотой расположения пунктов, плотностью 1 характером застройки, на уровень сигнала существенным образом влияет конструкция здания и материал, а также положение приемника внутри здания. Учет вещ этих обстоятельств практически не возможен, так как внутри одного и того же помещения возможны такие расположения приемной аппаратуры, при которых прием может быть как хорошим, так и плохим, а иногда и совсем отсутствовать. Сложный интерференционный характер поля внутри помещения порождает резкие перепады в уровне принимаемого сигнала, превышающие зачастую 20 дБ, даже при небольшом перемещении приемника. Изменение частоты сигнала приводит к перераспределению полей, так что приемлемое ранее расположение аппаратуры может оказаться совершенно неудачным. Результаты измерений, приведенные в различных работах, трудно сопоставимы и могут казаться противоречивыми, если не учитывать крайнюю чувствительность пространственной интерференционной картины поля внутри помещения к изменению каких-либо условий передачи или приема сигнала.

Ослабление сигнала при прохождении внутрь зданий (сравнение уровня сигнала внутри здания с уровнем сигнала вне его на той же высоте) определялось Райсом на частотах 35 и 150 МГц. По оценкам "потери проникновения" составляют в среднем 22-24 дБ при среднеквадратическом отклонении 12-14 дБ. Отмечается также, что изменения, превышающие 20 дБ, иной раз наблюдаются при разнесении точек всего на несколько шагов. В целом же пространственные флуктуации сигнала в пределах одного этажа подчиняются логарифмически нормальному распределению. Наибольшее ослабление сигнала наблюдалось на первом этаже.

Измерения, выполненные Шеффердом в Вашингтоне на частотах 150, 450 и 900 МГц, указывают на почти линейную зависимость среднего уровня сигнала внутри здания от высоты расположения приемного пункта. Сравнивается средний уровень сигнала внутри здания последовательно на разных этажах с амплитудой сигнала на улице вблизи здания на высотах 1-1,5 м над поверхностью земли. На первом этаже сигнал внутри здания был ослаблен на 35 дБ на частоте 150 МГц. При поднятии приемного устройства внутри здания ослабление в среднем уменьшалось до 8 дБ на четырнадцатом этаже. На частотах 450 и 900 МГц соответствующие значения были близки и равнялись 28 дБ на первом и 0 дБ на четырнадцатом этажах.

Высотная зависимость ослабления внутри здания существенно зависит от высоты и плотности застройки. Измерения, выполненные Дьюрантом в Чикаго и Шаумбурге, где антенна базовой станции устанавливалась на высоте примерно 50 м над поверхностью земли на открытом месте (большей частью присутствовал прямой сигнал в точке приема на улице), подтвердили на частоте 900 МГц близкую к линейной высотную зависимость ослабления внутри здания (25 дБ на первом и 0 дБ на двенадцатом этажах) относительно уровня сигнала, зарегистрированного вблизи здания на улице. В то же время измерения в Манхеттене, где высота поднятия антенны была около 180 м (но в окрестности базовой станции в пределах полумили было много высотных зданий, создававших затенения в направлении на приемник, дают меньшее значение высотного градиента ослабления: 22 дБ на первом и 6 дБ на двадцатом этажах. Отмечается, что высота приемного пункта была еще недостаточна для выхода из тени, создаваемой окружающими зданиями. Здания в Манхеттене были 20- 80-этажные, в Чикаго - 8-16-этажные. "Потери проникновения" внутрь здания во всех случаях составляли от 10 до 30 дБ, но, как правило, на нижних этажах были больше (18-30 дБ). Распределение амплитуды сигнала было близким к логарифмически нормальному.

Эксперименты по определению затухания УКВ внутри зданий описаны также в книге . Для измерений выбирались здания с известным уровнем напряженности поля снаружи на уровне 1,5 м от земли. Измерения в помещениях с помощью приемника-анализатора позволили получить значительную выборку затуханий поля УКВ, проникающего в помещения здания, каждое значение которой определялось как

где - медианный уровень напряженности поля снаружи здания уровне 1,5 м от земли,- медианный уровень напряженности поля внутри помещений зданий на уровне 1 м от пола.

Статистическую обработку выборок затуханий проводили для каждого вида помещений (первых и цокольных этажей, подвальных помещений) отдельно по классической схеме: полученные результатов по оценке затуханий для каждого типа помещений зданий группировали винтервалови определяли их среднюю величину, число отсчетов в каждом 1-м интервале и его относительную величину (частность). Далее определяли плотность частности.

На рис 4.12 представлены соответствующие гистограммы. Из приведенных графиков видно, что порядки величин "потерь проникновения" вполне соответствуют данным зарубежных авторов. Четко прослеживается также тенденция уменьшения относительного затухания при подъеме на более высокие этажи.

Во всех экспериментальных работах отмечается относительно слабая зависимость "потерь проникновения" от частоты сигнала для частот выше 30 МГц.

К настоящему времени нет удовлетворительных методов расчета среднего ослабления поля при проникновении его внутрь здания. Обращение к многослойным диэлектрическим структурам не порождает каких-либо надежд. Подгонка квадратичной формулы Введенского путем введения в нее эмпирических коэффициентов также не представляется перспективной, поскольку не может быть физически разумно истолкована.

Естественно предположить, что в среднем высотная зависимость поля внутри здания должна соответствовать высотной зависимости поля вне здания, отличаясь от нее на некоторый коэффициент. Это подтверждается качественным сопоставлением высотной зависимости в описанных работах с высотной зависимостью медианного значения напряженности поля в городе, установленной в общих чертах экспериментально.

1. Большинство моделей для расчёта радиотрасс внутри зданий основано на формуле распространения радиоволн в свободном пространстве

где - мощность передатчика;

Расстояние между передатчиком и приёмником

Однако, наличие стен, пола, предметов, людей и других объектов приводит к применению некоторых эмпирических моделей, основанных на многочисленных экспериментах.

Для таких трасс потери определяются выражением

где - расстояние между передатчиком и приёмником;

Расстояние прямой видимости;

Потери при распространении радиоволн на трассе прямой видимости длиной r 0 .

В некоторых моделях n – постоянная величина и является функцией расстояния между приёмником и передатчиком. Он показывает с какой скоростью возрастают потери передачи от расстояния:

В интервале расстояний

До r = 10 м n = 2,

10 м < r < 20 м n = 3,

20 м < r < 40 м n = 6,

R > 40 м n = 12.

Важно правильно выбрать подходящее расстояние r 0 для исследования условий распространения. В сотовой связи с большими зонами действия обычно используется расстояние 1 км, в микросотовых системах много меньше – 100 м. Это расстояние должно соответствовать дальней зоне антенны для исключения эффектов ближнего поля.

Увеличение значения n с ростом расстояния связано с увеличением числа стен, отделяющих приёмную и передающую антенны.

Показатель n зависит от конкретных параметров среды распространения. Значения n для различных сред приведены в табл. 3.1.

Таблица 3.1

Показатель n

Свободное пространство

Сотовая связь в городе

Сотовая связь в городе в тени

В зданиях при прямой видимости

Препятствия, загромождения в зданиях

Таблица 3.2

Материал

Коэффициент прохождения, %

Коэффициент отражения, %

Гипсовая панель (s=1см)

Фибролит (s=1,9см)

Бетонная плита (s=10см)

2. Явление реверберации

Если передающая антенна расположена внутри комнаты, то независимо от её положения многократное отражение радиоволн от стен, пола, потолка, мебели и других объектов приводит к увеличению мощности принимаемого сигнала по сравнению со свободным пространством. Это напоминает явление реверберации, хорошо изученное в акустике.

Реверберация – остаточный звук, при выключенном источнике за счёт переотражений.

Формула расчёта основных потерь имеет вид:

,

где R– коэффициент реверберации (коэффициент отражения)

где S– площадь поглощающей поверхности;

–средний коэффициент поглощения поверхности.

Значение потерь сильно зависит от – коэффициента поглощения строительных материалов и покрытий (табл. 3.2).

Таблица 3.2

Материал

Коэффициент прохождения, %

Коэффициент отражения, %

Гипсовая панель (s=1см)

Фибролит (s=1,9см)

Бетонная плита (s=10см)

В некоторых работах приведены результаты экспериментальных исследований электромагнитных свойств некоторых строительных конструкций (стен, перегородок и т.п.), а также свойства однородных строительных материалов – см. табл. в диапазонах волн 2 – 7 ГГц (табл. 1, 2).

При расчёте характеристик сигналов внутри зданий и помещений используются различные модификации лучевых методов, которые позволяют учитывать отражение радиоволн от стен, потолка, пола, местных предметов,дифракцию волн на дверях, окнах и другие явления, сопутствующие распространению радиоволн.

Таблица 1. Результаты измерений коэффициентов прохождения и отражения для различных материалов на двух частотах 2,3 ГГц и 5,25 ГГц.

Материал

Оргстекло (7,1 мм)

Оргстекло (2,5 мм)

Жалюзи (закрытые)

Жалюзи (открытые)

Красный кирпич (сухой)

Красный кирпич (влажный)

Потолочное покрытие

Стекловолокно

Линолеум

Хвойная доска

Гипсовая плита

Шлакоблок (сухой)

Шлакоблок (влажный)

Таблица 2.Относительная диэлектрическая проницаемость и тангенс потерь при f = 2 – 7 ГГц

Материал

Относительная диэлектрическая

Проницаемость

Тангенс угла потерь

Оргстекло

Жалюзи (закрытые)

Жалюзи (открытые)

Красный кирпич (сухой)

Красный кирпич (влажный)

Потолочное покрытие

Стекловолокно

Линолеум

Хвойная доска

Гипсовая плита

Метод параболического уравнения (по расчёту радиотрасс пролегающих в сильнопересечённой местности)

Donohue D.I., Kutter I.R. Propagation modeling over terrain using the parabolic wave equation. IEEETrans.AntennasPropagat. 2000,vol. 42No.2,pp200 – 277.

Модели, позволяющие учесть дифракцию радиоволн на нескольких препятствиях – это модели Биллингтона, Эйнштейна – Петерсона и др.

Радиотехника исторически развивалась с неуклонной тенденцией к освоению все более высокочастотных диапазонов. Это было связано прежде всего с необходимостью создавать высокоэффективные антенные системы, концентрирующие энергию в пределах узких телесных углов. Дело в том, что антенна с узкой ДН обязательно должна иметь поперечные размеры, существенно превышающие рабочую длину волны. Такое условие легко выполнить в метровом, а тем более, в сантиметровом диапазоне, в то время как остронаправленная антенна для длин волн порядка 10 км имела бы совершенно неприемлемые габариты.

Всякая система передачи сигналов состоит из трех основных частей: передающего устройства, приемного устройства и промежуточного звена - соединяющей линии. Для радиосистем промежуточным звеном является среда - пространство, в котором распространяются радиоволны. При распространении радиоволн по естественным трассам, т.е. в условиях, когда средой служат земная поверхность, атмосфера, космическое пространство, среда является тем звеном радиосистемы, которое практически не поддается управлению.

Вторым фактором, определяющим ценные свойства высокочастотных диапазонов, служит то обстоятельство, что здесь удается реализовать большое число радиоканалов с не пересекающимися полосами частот. Это дает возможность, с одной стороны, широко использовать принцип частотного разделения каналов, а с другой - применять широкополосные системы модуляции, например, частотную модуляцию. При определенных условиях такие системы модуляции способны обеспечить высокую помехоустойчивость работы радиоканала.

При распространении радиоволн в среде происходит изменение амплитуды поля волны (обычно - уменьшение), изменение скорости и направления распространения, поворот плоскости поляризации и искажение передаваемых сигналов. В связи с этим, проектируя линии радиосвязи, необходимо:

  • рассчитать энергетические параметры линии радиосвязи (определить мощность передающего устройства или мощность сигнала на входе приемного устройства);
  • определить оптимальные рабочие волны при заданных условиях распространения;
  • определить истинную скорость и направление прихода сигналов;
  • учесть возможные искажения передаваемого сигнала и определить меры по их устранению.

Для решения этих задач необходимо знать электрические свойства земной поверхности и атмосферы, а также физические процессы, происходящие при распространении радиоволн.

Земная поверхность оказывает существенное влияние на распространение радиоволн: в полупроводящей поверхности Земли радиоволны поглощаются; при падении на земную поверхность они отражаются; сферическая форма земной поверхности препятствует прямолинейному распространению радиоволн.

Радиоволны, распространяющиеся в непосредственной близости от поверхности Земли (в масштабе длины волны), называют земными радиоволнами (1 на рис. 6.1). Рассматривая распространение земных волн, атмосферу считают средой без потерь, с относительной диэлектрической проницаемостью е , равной единице. Влияние атмосферы учитывают отдельно, внося необходимые поправки.

В окружающей Землю атмосфере различают три области, оказывающие влияние на распространение радиоволн: тропосферу, стратосферу и ионосферу. Границы между этими областями выражены не резко и зависят от времени и географического места.

Тропосферой называется приземной слой атмосферы, простирающийся до тропопаузы (переходного слоя между тропосферой и стратосферой), лежащей над экватором на высоте 16-18 км, в умеренных широтах - на 10-12 км и в полярных областях - на 7-10 км. В тропосфере происходит искривление траектории земных радиоволн, называемое рефракцией. Распространение тропосферных радиоволн (2 на рис. 6.1) возможно из-за рассеяния и отражения их от неоднородностей тропосферы. Радиоволны миллиметрового и сантиметрового диапазона в тропосфере поглощаются.

Рис. 6.1.

Стратосфера простирается от тропопаузы до высот 50-60 км. Стратосфера отличается от тропосферы существенно меньшей плотностью воздуха и законом распределения температуры по высоте: до высоты 30-35 км температура постоянна, а далее до высоты 60 км резко повышается. На распространение радиоволн стратосфера оказывает то же влияние, что и тропосфера, но оно проявляется в меньшей степени из-за малой плотности воздуха.

Ионосферой называется область атмосферы на высотах 60-10 000 км над земной поверхностью. На этих высотах плотность воздуха весьма мала и воздух ионизирован, т.е. имеется большое число свободных электронов (примерно 10 3 ... 10 6 электронов в 1 см 3 воздуха). Присутствие свободных электронов существенно влияет на электрические свойства ионосферы и обусловливает возможность отражения от ионосферы радиоволн длиннее 10 м. При однократном отражении радиоволны могут перекрывать расстояние по поверхности Земли до 4000 км. В результате многократного отражения от ионосферы и поверхности Земли радиоволны могут распространяться на любые расстояния по земной поверхности. Радиоволны, распространяющиеся путем отражения от ионосферы или рассеяния в ней, называют ионосферными волнами (3 на рис. 6.1). На условия распространения ионосферных волн свойства земной поверхности и тропосферы влияют мало.

Условия распространения радиоволн (4 , 5 на рис. 6.1) при космической радиосвязи обладают некоторыми специфическими особенностями, а на радиоволны 4 основное влияние оказывает атмосфера Земли.

Радиоволны являются одним из диапазонов электромагнитных волн, поэтому распространение радиоволн подчиняется общим законам распространения электромагнитных колебаний (так же, как и световых волн). Распространение радиоволн в условиях Земли имеет некоторые существенные отличия от распространения радиоволн в свободном пространстве. Поверхностные слои Земли и околоземного пространства представляют собой среды с разными характеристиками для распространения электромагнитного поля. Так же, как и для оптических волн, на границе сред с различными электрическими характеристиками (например, земля - околоземное пространство) возможно отражение и преломление радиоволн. В то же время и сама поверхность Земли и околоземное пространство представляют собой неоднородные среды с различными электрическими параметрами (электропроводностью, диэлектрической проницаемостью и т.д.). Поэтому при распространении электромагнитных волн в неоднородных средах могут изменяться как направление, так и скорость распространения электромагнитной энергии (рефракция). Дополнительное поглощение энергии радиоволн наблюдается при их распространении в средах с потерями.

Существенной особенностью распространения радиоволн в земных условиях является зависимость характеристик распространения от длины волны. Распространение радиоволн вдоль земной поверхности зависит от ее рельефа и физических свойств. Наиболее важными электрическими параметрами почвы являются ее электропроводность и диэлектрическая проницаемость. Эти характеристики определяют параметры отраженных и преломленных волн на границе раздела двух сред. Электропроводность почвы определяет также потери энергии при распространении волн. Потери энергии при распространении радиоволн отсутствуют, если поверхность Земли можно считать идеальным проводником либо идеальным диэлектриком. В реальных условиях распространяющиеся над поверхностью земли электромагнитные колебания наводят в почве индукционные токи. При протекании этих токов в почве выделяется тепло. В конечном итоге это вызывает безвозвратные потери распространяющейся электромагнитной волны. Эти потери растут с ростом частоты.

Не менее важное влияние на распространение радиоволн в околоземном пространстве играет земная атмосфера (газообразная оболочка Земли). По комплексу физических признаков атмосферу принято делить на три характерных слоя: тропосферу, стратосферу и ионосферу.

Тропосфера представляет собой нижний слой атмосферы, расположенный от поверхности Земли до высот порядка 10 - 20 км. Свойства тропосферы определяются смесью газов (азот, кислород и т.д.) и водяных паров. С высотой температура и давление воздуха, а также содержание водяных паров в тропосфере понижается. Таким образом, тропосфера неоднородна по своим электрическим свойствам. Кроме того, изменение метеоусловий приводит к образованию воздушных течений, вызывающих интенсивные перемешивания слоев тропосферы.

Стратосфера - слой атмосферы, лежащий над тропосферой, простирается до высот порядка 60 - 80 км. Признаком перехода к тропосфере является прекращение понижения ее температуры с высотой (в верхних слоях тропосферы температура опускается до - (50…60)°С). Плотность газов в стратосфере значительно меньше, чем в тропосфере. Электрические свойства тропосферы практически не изменяются, и радиоволны распространяются в ней прямолинейно и почти без потерь.

Ионосферой называется верхний слой ионизированной атмосферы, окружающей Землю (до высот порядка нескольких тысяч километров). Под воздействием космического излучения и ультрафиолетовых лучей солнца из атомов газа, составляющих атмосферу, выбиваются электроны, в результате чего образуются положительные ионы газа и свободные электроны. При встрече свободного электрона с ионизированным атомом происходит их объединение (рекомбинация). На больших высотах плотность атмосферы низка, поэтому вероятность встречи свободного электрона с ионом газа мала, и значительная часть газа оказывается ионизированной. Ионизированный газ обладает электропроводностью и способен изменить характеристики распространения электромагнитных колебаний. Чем больше концентрация свободных электронов, тем сильнее они влияют на распространение радиоволн. Степень ионизации газа определяется многими факторами.

Во-первых, поскольку основной причиной ионизации является излучение Солнца, то понятно, что процессы ионизации активнее происходят на участках земной атмосферы, обращенной к Солнцу. Соответственно, в дневное время в процессе ионизации возникает большее количество свободных электронов и ионизированных молекул, чем в ночные часы. Кроме того, рост интенсивности солнечного излучения в дневное время приводит к ионизации слоев атмосферы, расположенных ближе к поверхности Земли, т.е. к снижению высоты ионизированных газов.

Во-вторых, на высоте в сотни километров от поверхности Земли газовый состав атмосферы перестает быть однородным. На этих высотах наблюдается расслоение газов, составляющих воздух: более тяжелые газы занимают преимущественно нижнюю часть этого диапазона высот, более легкие газы способны подниматься и до более высоких отметок.

Описанные выше процессы приводят к тому, что концентрация заряженных частиц (ионов и электронов) и по географическим координатам, и по высоте оказывается величиной непостоянной. В зависимости концентрации ионизированного газа от высоты наблюдается ряд экстремумов. Появляются слои атмосферы, в которых количество заряженных частиц оказывается больше, чем на соседних высотах. Участки с повышенной концентрацией объединяют в слои, расположенные на разных высотах. Эти слои имеют специальные названия.

Ионизированные слои атмосферы Земли условно показаны на рисунке 6.1. На высотах 60…80 км от поверхности Земли располагается слой D, существующий только днем, когда велика интенсивность ионизирующего излучения Солнца. На высотах 100…120 км над поверхностью Земли располагается слой Е. Поскольку концентрация свободных электронов зависит от времени года и суток и определяется влиянием излучения Солнца: днем слой Е опускается ниже, ночью поднимается выше. Участки с наибольшей концентрацией свободных электронов образуют слой F, расположенный ночью на высотах 250…350 км. Днем этот слой распадается на два подслоя: F1 и F2, располагающихся на высотах от 180 до 450 км от поверхности Земли.

Рис.6.1 Ионизированные слои атмосферы Земли

Представление ионосферы в виде слоев достаточно условно. В реальных условиях нет четких границ между ионизированными и неионизированными областями верхних слоев атмосферы. В любом месте атмосферы можно обнаружить заряженные частицы, но их концентрация на разной высоте будет различной. И переходы от слоя к слою имеют конечную (ненулевую) протяженность. Но все же такая упрощенная картина ионосферы помогает понять процессы распространения радиоволн в верхних слоях атмосферы. Наличие «оболочки» из ионизированного газа вокруг Земли определяет особенности распространения электромагнитных волн. Поскольку с изменением времени и координат изменяются электрофизические свойства атмосферы, то меняются и условия распространения электромагнитных колебаний.

В наибольшей степени это касается изменения направления распространения радиоволн. Отклонение направления распространения радиоволн от прямолинейного имеет ту же природу, что и преломление световых волн при прохождении светом оптических сред с различными показателями преломления.

Искривление направления распространения радиоволн обусловлено изменением параметров среды распространения (в ионосфере - это изменение концентрации ионизированного газа) и зависит, в том числе, от высоты над поверхностью Земли. Показатели преломления ионосферы изменяются с высотой таким образом, что направление распространения радиоволн искривляется в сторону Земли. Такое явление называется нормальной рефракцией. Нередко это искривление становится настолько значительным, что излученные с поверхности Земли радиоволны возвращаются обратно на Землю.
Характеристики искривления направления радиоволн в существенной степени зависят от длины распространяемой волны. Чем короче длина волны, тем меньше степень преломления направления радиоволн. С ростом частоты преломление радиоволн сказывается все в меньшей степени, очень короткие волны проходят сквозь атмосферу и продолжают распространяться в космическом пространстве. Диапазон радиоволн, способных преодолевать ионосферу, используется в системах космической и спутниковой связи. На рисунке 6.2 приведены траектории распространения радиоволн, используемых для космической связи с частотой f1 и наземной связи с частотой f2.


Рис. 6.2 Преломление радиоволн при разных длинах волн

Величина изменения направления распространения радиоволн зависит также от угла падения радиоволн на ионизированный слой. Чем меньше угол падения радиоволн на ионизированный слой, тем меньше он испытывает изменение направления распространения волны в этом слое. На рисунке 6.3 приведены траектории лучей 1 с углом падения на ионизирующий слой, равным γ1, луча 2 с углом падения на ионизирующий слой, равным γ2. Луч 1 с меньшим углом падения получает небольшое искривление направления распространения, а траектория луча 2 искривляется настолько, что луч снова вернется на землю.


Рис. 6.3 Преломление радиоволн при разных углах падения

В ионизированных слоях атмосферы радиоволны затухают гораздо сильнее, чем при распространении в тропосфере, причем ослабление радиоволн растет с уменьшением частоты.

Таким образом, распространение радиоволн зависит от многих факторов. В первую очередь, условия распространения электромагнитных колебаний изменяются с уменьшением длины волны (увеличением частоты колебаний). Рассмотрим особенности распространения радиоволн в зависимости от длины волны электромагнитного излучения.

Линии связи на основе радиоканала

ЛЕКЦИЯ 2

Существующие типы линий связи (ЛС) в зависимости от используемой среды распространения сигналов принято делить на проводные и линии в атмосфере (радиолинии). Начинают использоваться и беспроводные оптические линии связи.

К линиям связи предъявляются следующие основные требования:

· осуществление связи на требуемые расстояния;

· широкополосность и пригодность для передачи различных видов сообщений;

· защищенность цепей от взаимных влияний и внешних помех, а также от физических воздействий (атмосферных явлений, коррозии и пр.);

· стабильность параметров линии, устойчивость и надежность связи;

· экономичность системы связи в целом.

Рассмотрим особенности распространения электромагнитных колебаний различных диапазонов радиоволн.

Электромагнитные колебания, применяемые для целей связи без проводов подразделяются на радиоволны и оптические волны, характеризуются частотой колебаний и длиной волны и делятся на 9 диапазонов радиоволн и 3 диапазона оптических волн.

Радиоволны, излучаемые передающей антенной, прежде чем попасть в приемную антенну, проходят в общем случае сложный путь. На величину напряженности поля в точке приема оказывает влияние множество факторов. Основные из них:

  • отражение электромагнитных волн от поверхности Земли;
  • преломление (отражение) в ионизированных слоях атмосферы (ионосфере);
  • рассеяние на диэлектрических неоднородностях нижних слоев атмосферы (тропосфере);
  • дифракция на сферической выпуклости Земли.

Кроме того напряженность поля в точке приема зависит от длины волны, освещенности земной атмосферы Солнцем и ряда других факторов.

Классификация и способы распространения радиоволн приведены в табл. 2.1 и табл. 2. 2. Деление радиоволн на диапазоны установлено Международным регламентом радиосвязи МСЭ-Р.

Таблица 2.1 – Классификация диапазонов радиоволн

Вид радиоволн Тип радиоволн Диапазон радиоволн (длина волны) Но-мер диа-пазо-на Диапазон частот Вид радиочастот
Мириаметровые Сверхдлинные 10..100 км 3..30 кГц Очень низкие (ОНЧ)
Километровые Длинные 1..10 км 30..300 кГц Низкие (НЧ)
Гектометровые Средние 100..1000 м 300..3000 кГц Средние (СЧ)
Декаметровые Короткие 10..100 м 3..30 МГц Высокие (ВЧ)
Метровые 1..10 м 30..300 МГц Очень высокие (ОВЧ)
Дециметровые Ультракорот-кие 10..100 см 300.3000 МГц Ультравысокие (УВЧ)
Сантиметровые 1..10 см 3..30 ГГц Сверхвысокие (СВЧ)
Миллиметровые 1..10 мм 30..300 ГГц Крайне- высокие (КВЧ)
Децимиллиметро-вые 0.1..1 мм 300..3000 ГГц Гипервысокие (ГВЧ)

Таблица 2 .2 - Способы распространения радиоволн



Частота колебаний связана с длиной волны соотношением:

f = c /λ , где f - частота, Гц; c = 3·10 8 м/с - скорость распространения электромагнитных волн в свободном пространстве; λ - длина волны, м.

Из таблицы 2.1 видно, что длина волны в 5 диапазоне (длинные волны) исчисляется километрами, в 10-11 диапазонах (диапазоны СВЧ) - сантиметрами и миллиметрами. В оптических диапазонах длины волн исчисляются микрометрами.

Длина волны определяет специфику распространения электромагнитной энергии в условиях Земли. Вспомним, что дифракция радиоволн, явления, возникающие при встрече радиоволн с препятствиями. Радиоволна, встречая при распространении в однородной среде препятствие, изменяется по амплитуде и фазе и проникает в область тени, отклоняясь от прямолинейного пути. В реальных случаях распространения радиоволн препятствия могут иметь произвольную форму и быть как непрозрачными, так и полупрозрачными для радиоволн.

Волны каждого из диапазонов имеют свои особенности распространения, но на границах диапазонов не существует резких изменений этих особенностей.

В свободном пространстве радиоволны распространяются прямолинейно и не испытывают поглощения. Потери при распространении электромагнитных колебаний в свободном пространстве объясняются уменьшением плотности мощности излучения при увеличении расстояния и могут быть найдены по следующей формуле

L 0 = 20 lg (4.189 ·10 4 R 0 · f ) , дБ,

где R 0 - расстояние, км, f - частота, ГГц.

В радиолиниях связи (радиоканалах) средой распространения электромагнитных волн в подавляющем большинстве случаев (за исключением случая связи между космическими аппаратами) является атмосфера Земли. На рис. 2.1 приведено упрощенное строение атмосферы Земли. Реально строение атмосферы более сложно и приведенное деление на тропосферу, стратосферу и ионосферу достаточно условно. Высота слоев приведена приблизительно и различна для разных географических точек Земли. В тропосфере сосредоточено около 80% массы атмосферы и около 20% - в стратосфере. Плотность атмосферы в ионосфере крайне мала, граница между ионосферой и космическим пространством является условным понятием, так как следы атмосферы встречаются даже на высотах более 400 км. Считается, что плотные слои атмосферы заканчиваются на высоте около 120 км.

Влияние среды на распространение электромагнитных волн проявляется в изменении (большей частью уменьшении) амплитуды поля волны, изменении скорости и направления распространения волны, в повороте плоскости поляризации и в искажении передаваемых сигналов.

Радиоволны, распространяющиеся в непосредственной близости (в масштабе длины волны) от поверхности Земли, будем называть земными, поверхностными радиоволнами (рис. 2.2).

Рисунок 2.1 - Строение атмосферы Земли

Условия распространения радиоволн по естественным трассам вблизи Земли определяются многими факторами: влиянием земной поверхности и различных препятствий, наличием атмосферы, поглощением электромагнитной энергии в гидрометеорах (дожде, снеге, тумане, смоге и пр.). Земная поверхность оказывает существенное влияние на распространение радиоволн, являясь полупроводящей средой, поглощающей энергию.

Рисунок 2.2 - Земные, поверхностные радиоволны

В окружающей земной шар атмосфере различают две области, оказывающие влияние на распространение радиоволн: тропосферу и ионосферу.

Тропосфера неоднородна как в вертикальном направлении, так и вдоль земной поверхности, кроме того, ее электрические параметры меняются при изменении метеорологических условий.

Распространение тропосферных волн связано с рефракцией (искривлением траектории волны) в неоднородной среде, а также с рассеянием и отражением радиоволн от различных неоднородностей.

В ионосфере плотность газа весьма мала и газ ионизирован, т. е. имеется большое число свободных электронов. Присутствие свободных электронов существенно влияет на электрические свойства газа и обусловливает возможность отражения радиоволн от ионосферы. Путем последовательного отражения от ионосферы и поверхности Земли радиоволны распространяются на очень большие расстояния (например, короткие волны могут несколько раз огибать земной шар). Ионосфера является неоднородной средой, и радиоволны рассеиваются в ней, что также обусловливает возможность распространения радиоволн на большие расстояния. Радиоволны, распространяющиеся путем отражения от ионосферы или рассеяния в ней, будем называть ионосферными, пространственными волнами.

За пределами ионосферы плотность газа и электронная плотность уменьшаются и на расстоянии, равном 3-4,5 радиусам земного шара, атмосфера Земли переходит в космическое пространство, где газ полностью ионизирован, плотность протонов равна плотности электронов и составляет всего 2-20 эл/см 3 . Условия распространения радиоволн в космосе близки к условиям распространения в свободном пространстве. Таким образом, оказывается возможным рассматривать раздельно влияние на распространение радиоволн земной поверхности, тропосферы, ионосферы и космического пространства.

Кривизна земной поверхности, неровности рельефа местности и различные искусственные преграды также сильно влияют на распространение электромагнитных волн. В случае соизмеримости длины волны и размеров препятствий волны могут огибать их. К примеру, радиоволны 4 - 5 диапазонов (длинные и сверхдлинные волны) обладают способностью огибать поверхность Земли и могут распространяться на расстояния в несколько тысяч километров поверхностными лучами (рис. 2.3).

Качество связи мало зависит от сезонов или времени суток. Однако каналы связи в этих диапазонах обладают очень узкой полосой пропускания и могут обеспечивать передачу ограниченного объема радиовещательных, телефонных, телеграфных и фототелеграфных сообщений.

Длинные и особенно сверхдлинные волны мало поглощаются при прохождении в толще суши или моря. Так, волны длиной 20-30 км могут проникать в глубину моря на несколько десятков метров и, следовательно, могут использоваться для связи с погруженными подводными лодками, а также для подземной радиосвязи.

Рисунок 2.3 – Сверхдлинные и длинные волны, огибающие поверхность Земли

В 6 диапазоне (средние волны) поверхностный луч претерпевает более сильные поглощения и может распространяться на расстояние 500-1500 километров. Однако, при увеличении плотности ионосферы (в ночные часы) в диапазоне средних волн возможно распространение сигналов пространственным лучом, который может обеспечить связь на расстояние в несколько тысяч километров (рис. 2.4).

Рисунок 2.4 – Распространение гектометровых, средних волн (6 диапазон)

Радиоволны 7 диапазона (короткие волны) поверхностными лучами распространяются на небольшие расстояния из-за поглощения энергии поверхностью Земли (рис. 2.5). Однако пространственные волны могут многократно отражаться от ионосферы и земной поверхности проходить очень значительные расстояния, вплоть до глобальных, обеспечивая передачу сигналов радиовещания, радиотелефонии и радиотелеграфии.

Рисунок 2.5 – Распространение коротких волн

Распространение волн таким способом довольно неустойчиво и подвержено сильным замираниям как медленным (в течение года, сезона, времени суток и пр.), так и быстрым, с периодом в доли и единицы секунд. Медленные замирания объясняются изменениями состояния ионосферы, а быстрые - взаимодействием множества лучей, которые могут попадать в точки приема.

В общем случае короткие волны лучше распространяются ночью и, иногда, способны, последовательно отражаясь от ионосферы и поверхности земли, огибать земной шар.

Радиоволны 8-12 диапазонов (рис. 2.6) позволяют передавать значительно более объемную информацию, включая телевизионные сигналы, сигналы многоканальной телефонии, высокоскоростные цифровые потоки.

Однако пространственные волны этих диапазонов проходят через ионосферу в космическое пространство и для целей наземной связи почти не пригодны, а поверхностные волны распространяются почти прямолинейно, практически не огибая земную поверхность.

Рисунок 2.6 – Распространение сверхкоротких волн

Поэтому они устойчиво проходят только на расстояние прямой видимости между антеннами передающего и приемного оборудования. Это расстояние составляет десятки километров (при реальной высоте подвеса антенн в несколько десятков метров) и для передачи сигналов на большие расстояния приходиться строить цепочки ретрансляторов, образующих радиорелейные линии (РРЛ).

Важным способом передачи сигналов этих диапазонов на большие расстояния является использование для ретрансляции связных спутников. Спутниковые системы позволяют передавать информацию на десятки тысяч километров и перекрывать большие площади на поверхности Земли, вплоть до организации глобальных систем связи.

Возможна также передача сигналов 8 - 9 диапазонов на большие расстояния (значительно превышающие прямую видимость) за счет рассеяния электромагнитной энергии в неоднородностях тропосферы. Этот принцип используется в тропосферных радиолиниях связи (ТРЛ).

С увеличением частоты (больше 10 ГГц) радиоволны ослабляются в газах атмосферы и, особенно сильно - в дожде, снеге, граде. Поэтому в этих диапазонах устойчивое распространение электромагнитных волн возможно на расстоянии меньшем, чем расстояние прямой видимости.

В оптических диапазонах волн можно передавать гигантские объемы информации. В основном для целей связи применяется 3 диапазон оптических волн (инфракрасные волны). При распространении в открытом пространстве они подвержены большим ослаблениям в атмосфере и, практически, обеспечивают связь на расстояние до 4-5 км, однако при использовании таких систем связи нет необходимости получать какие-либо разрешения от инспекций по электросвязи.

Полное ослабление света в атмосфере обусловлено несколькими факторами. Различают ослабление света в атмосфере, свободной от облаков и тумана, и ослабление света в тумане. Первый вид ослабления складывается из рассеяния света на молекулах газа и водяного пара и селективного поглощения. Селективное поглощение в газах и водяных парах атмосферы объясняется взаимодействием их электронной, колебательной и вращательной энергий с электромагнитными колебаниями определенной частоты. Основное поглощающее действие оказывает водяной пар, поскольку его содержание намного превышает содержание углекислого газа и озона. Прозрачность атмосферы для инфракрасных лучей сильно зависит от влажности атмосферы. Измерения показали, что сравнительно хорошей прозрачностью для инфракрасных волн атмосфера обладает на следующих диапазонах: 0,95-1,05; 1,2-1,3; 1,5-1,8; 2,1-2,4; 3,3-4,0; 8,0-11,0 мкм.

Для передачи на большие расстояния применяются закрытые оптические системы , в которых свет распространяется по стеклянным волокнам. К достоинствам волоконно-оптических систем связи (ВОЛС) можно отнести возможность передачи чрезвычайно больших объемов информации, не достижимых для других структур. Достигнуты скорости передачи цифровых сигналов в волоконно-оптических системах связи более 1 терабита в секунду!

Излучение и прием электромагнитных волн осуществляется при помощи антенн. Антенны характеризуются многими параметрами, главными из которых являются рабочие частоты, их ширина и направленные свойства излучения и приема. Более подробно об антенных системах мы поговорим на практических занятиях.

Направленные свойства или способность антенны принимать или передавать сигналы в заданном направлении зависят от соотношения между длиной волны и геометрическими размерами элементов антенн. Чем больше размеры антенны по сравнению с длиной волны электромагнитных колебаний, тем лучше направленные свойства антенны.

Одна из простых антенн - симметричный вибратор, который эффективно работает при условии, что его длина равна половине длины волны λ / 2. Для улучшения направленных свойств антенн применяются дополнительные структуры, образующие антенну под названием «волновой канал», получившую широкое распространение для приема телевизионных сигналов.

В диапазонах 9-12, в основном, применяются различные модификации параболических антенн.

Антенны оптических диапазонов представляют собой линзовые и зеркальные системы.

Радиолинии используют в тех случаях, когда возникают трудности прокладки проводных линий связи . Принципиальное отличие радиосистем передачи информации заключается в том, что условия распространения радиоволн в радиолинии нестационарны, т.е. подвержены непрерывным случайным изменениям, зависящим от времени и частоты. Однако передача с помощью радиоволн в некоторых случаях является единственным методом связи (например, связь с подвижными объектами). При этом применяются различные системы радиосвязи: радиорелейные прямой видимости и тропосферные, спутниковые, на декаметровых волнах, ионосферные и пр.

Типичный вид построения радиолинии (радиоканала) показан на рис. 2.7.

Рисунок 2.7 - Типичный вид радиолинии

Для обеспечения односторонней радиосвязи (рис.2. 8) в пункте, из которого ведется передача сигналов, размещают радиопередающее устройство, содержащее радиопередатчик РПер и передающую антенну А ПЕР, а в пункте, в котором ведется прием сигналов - радиоприемное устройство, содержащее приемную антенну А ПР и радиоприемник РПр. Антенны подключаются к приемопередающему оборудованию при помощи фидерных трактов Ф. Для двухстороннего обмена сигналами нужно иметь два комплекта такого оборудования. Двухсторонняя радиосвязь может быть симплексной или дуплексной. При симплексной радиосвязи передача и прием ведутся поочередно. Радиопередатчики в конечных пунктах в этом случае могут работать на одинаковой частоте, на эту же частоту настроены и радиоприемники. Радиопередатчик включается только на время передачи.

Рисунок 2.8 - Структура системы радиосвязи

При дуплексной радиосвязи передача осуществляется одновременно с приемом. Для такой связи должны быть выделены две разные частоты для передачи в разных направлениях. Радиопередатчики и радиоприемники абонентов включены в течение всего сеанса связи.

Министерство образования Российской Федерации

Уральский государственный технический университет

РАСПРОСТРАНЕНИЕ РАДИОВОЛН

В МОБИЛЬНОЙ СВЯЗИ

Методические указания по курсу

“Распространение радиоволн и антенно-фидерные устройства в системах мобильной связи”

для студентов всех форм обучения

радиотехнических специальностей

Екатеринбург 2000

Составители,

Научный редактор доц., канд. техн. наук

РАСПРОСТРАНЕНИЕ РАДИОВОЛН В МОБИЛЬНОЙ СВЯЗИ: Методические указания по курсу “Распространение радиоволн и антенно-фидерные устройства в системах мобильной связи”/ , . Екатеринбург: УГТУ, 20с.

Методические указания содержат краткое описание расчета радиолиний связи с подвижными объектами на открытой местности и в сложных условиях городской и промышленной застройки. Приведены выражения для расчета ослабления сигнала в свободном пространстве, а также с учетом влияния земной поверхности и затеняющих препятствий. Рассмотрены эффекты отражения, дифракции и рассеяния радиоволн. В каждом разделе приведены практические упражнения.

Библиогр.: 6 назв. Рис.14. Табл.1.Прил.1.

Подготовлено кафедрой «Высокочастотные средства

радиосвязи и телевидения».

радиосвязи и телевидения”.

Ó Уральский государственный

технический университет, 2000

Целью данных методических указаний является научить студентов рассчитывать радиоканал связи между передающей и приемной антеннами в свободном пространстве и реальных условиях и связывать принятую мощность с напряжением в приемнике и амплитудой электрического поля, изучить технику анализа отражения, рассеяния и дифракции радиоволн, научиться учитывать влияние земной поверхности с помощью двухлучевой модели распространения радиоволн, уметь проводить оценку напряженности электромагнитного поля в условиях города.

ВВЕДЕНИЕ

Путь радиоволны от передатчика к приемнику в системах мобильной связи крайне разнообразен: от их прямой видимости до сильно закрытого препятствиями, домами, деревьями пути. В отличие от проводной связи, где параметры постоянны, в беспроводной связи радиоканалы имеют существенно случайные параметры, часто сложно анализируемые. Моделирование радиолинии - наиболее сложная задача проектирования радиосистем. Оно в основном выполняется статистически с использованием данных экспериментов, выполненных порой именно для такой же или аналогичной системы.

Механизм распространения радиоволн в системах связи различен, но в основном может быть представлен отражением, дифракцией и рассеянием. Большинство сотовых систем работают в городах, где нет прямой видимости антенн передатчика и приемника, а наличие высоких зданий вызывает большие дифракционные потери. Благодаря многократным переотражениям от различных объектов, радиоволны проходят различный путь. Интерференция этих волн вызывает сильное изменение уровня сигнала от положения абонента.

Моделирование распространения радиоволн основано на предсказании среднего уровня принимаемого сигнала на заданном расстоянии от излучателя, а также в определении разброса его значений в зависимости от конкретной ситуации на трассе. Расчет радиолинии позволяет определить зону обслуживания передатчика. Моделирование среднего уровня сигнала в зависимости от расстояния между передатчиком и приемником называется крупномасштабным моделированием, поскольку позволяет определить сигнал на большом удалении (несколько сотен и тысяч метров). С другой стороны, модели характеризуют быстроменяющиеся значения уровня принимаемого сигнала на малых смещениях (несколько длин волн) или за короткое время (секунды) - они называются мелкомасштабными моделями.

При перемещении мобильного приемника на малые расстояния принимаемый сигнал может меняться очень сильно. Это происходит из-за того, что принимаемый сигнал представляет собой сумму многих волн, приходящих с различных направлений, проходящих разное расстояние и имеющих различную амплитуду и фазу. Суммарный сигнал подчиняется закону Релея. В зависимости от трассы радиоканала мелкомасштабная девиация может меняться на 3-4 порядка, т. е. уровень сигнала может меняться на 30-40 дБ (рис.1). Если мобильный приемник будет достаточно далеко, средний уровень сигнала убывает. Ниже будет рассматриваться крупномасштабная зависимость сигнала на входе приемника.

Рис.1. Изменение напряженности поля в зависимости от расстояния до передающей антенны с учетом влияния случайных факторов на частоте 1800 МГц

2. РАСПРОСТРАНЕНИЕ ВОЛН В СВОБОДНОМ ПРОСТРАНСТВЕ

Модель распространения волн в свободном пространстве используется для расчета принятого сигнала в условиях, когда передающая и приемная антенны находятся на открытой незатененной препятствиями радиолинии. Эта модель применяется для анализа радиоканалов связи через спутники и для наземных радиолиний, работающих в диапазоне сверхвысоких частот. Мощность, принятая приемной антенной с усилением Gr, которая излучается антенной передатчика мощностью Pt c коэффициентом усиления Gt на длине волны l на расстоянии d на открытом неограниченном пространстве, рассчитывается по формуле

. (1)

Коэффициент усиления антенны определяется следующим образом:

, (2)

где Аэ - эффективная площадь поверхности антенны, м2.

Длина волны связана с несущей частотой соотношением

где с - скорость света.

Принимаемая антенной мощность в соответствии с (1) убывает с ростом расстояния d со скоростью 20 дБ на декаду, т. е. пропорционально множителю .

Потери передачи в радиоканале (отношение принятой и излученной мощностей)

, дБ. (4)

Для изотропных антенн (коэффициент усиления каждой из них G=1)

, дБ. (5)

Предыдущие выражения верны только для дальней зоны (или зоны Фраунгофера). Граница дальней зоны определяется условием:

где D - наибольший размер антенны.

Дополнительным условием дальней зоны должно быть выполнение соотношений:

На больших расстояниях при расчете напряженности поля в точке приема иногда используют значение принимаемой мощности на некотором фиксированном расстоянии d0 - Pr (d0). Тогда на ином расстоянии d:

, . (7)

Т. к. изменение уровня принимаемой мощности от расстояния очень велико, используют отсчет мощности в дБмВт (дБ по отношению к 1 милливатту) и дБВт (дБ по отношению к 1 ватту):

, , (8)

где Pr (d 0) подставляется в Вт.


Опорное расстояние d0 обычно выбирается равным 100 м или 1 км для связи вне зданий. Для радиоканалов внутри зданий типичное значение опорного расстояния d 0 = 1 м.

Иногда в расчетах используется параметр - эффективная излучаемая мощность (), который показывает, во сколько раз плотность потока мощности в точке расположения приемной антенны при излучении мощности Pt будет больше при использовании антенны с коэффициентом усиления Gt по сравнению с изотропной антенной. Выражение

(9)

показывает максимальную излучаемую мощность в направлении максимального излучения.

Плотность потока мощности на расстоянии d от передающей антенны:

где 377 Ом - характеристическое сопротивление свободного пространства,

Е - амплитуда электрического поля на расстоянии d, В/м.

Принимаемая мощность (мощность, перехватываемая приемной антенной из падающей плоской волны)

где AЭ - эффективная площадь поверхности приемной антенны, м2.

Эквивалентная схема приемной антенны, включенной на вход приемника, показана на рис.2. При условии согласования входного сопротивления антенны и приемника () напряжение на входе последнего будет равно половине ЭДС антенны. Действующее напряжение U связано с принятой мощностью выражением

. (12)

Рис.2. Эквивалентная схема приемной антенны, включенной на вход приемника

Напряжение на входе приемника определяется по формуле

, В. (13)


3. ТРИ ОСНОВНЫХ СПОСОБА РАСПРОСТРАНЕНИЯ РАДИОВОЛН

1. Отражение - имеет место при падении волны на объекты с размерами много больше длины волны. Наблюдаются, например, отражения от земли, стен зданий и т. п.

2. Дифракция - явление возникновения вторичных волн при падении радиоволны на препятствие с острыми кромками. Дифракцией обусловлено наличие поля за препятствиями в зоне геометрической тени. На высоких частотах дифракция, как и отражение, существенно зависит от геометрии объекта, а также амплитуды, фазы и поляризации поля.

3. Рассеяние - имеет место при распространении волны в среде с мелкими объектами (меньше длины волны).

3.1. Отражение радиоволн

3.1.1. Отражение радиоволн от плоской границы раздела двух сред

Если волна падает на границу раздела сред с разными параметрами, наблюдается частичное прохождение волны во вторую среду.

Амплитуды поля падающей Ei и отраженной Er волн связаны через коэффициенты отражения Френеля Г, а прошедшая Et волна - через коэффициент прохождения Т:

Рис.3. Отражение и преломление волн на границе раздела сред

Падающая волна произвольной поляризации раскладывается на две: с вертикальной и горизонтальной поляризацией.

В диэлектрике с потерями диэлектрическая проницаемость имеет комплексный характер:

, (14)

где er - относительная диэлектрическая проницаемость cреды, s - проводимость среды, Cм/м. В хороших проводниках, когда выполняется условие f < s/e0er, вещественной частью в (14) можно пренебречь.

Коэффициент отражения для поля вертикальной поляризации

. (15)

Коэффициент отражения для поля горизонтальной поляризации

, (16)

где Zi - характеристическое сопротивление 1-й или 2-й среды.

.

Граничные условия требуют выполнения соотношений:

E r = Г. E i, (18а)

E t = (1 + Г) . E i. (18б)

Если первая среда - свободное пространство (e1=1), а вторая среда не обладает магнитными свойствами (m1 = m0), то выражения (15), (16) упрощаются:

, (19)

. (20)

Для углов падения, близких к скользящим , коэффициенты отражения .


Для некоторого угла коэффициент отражения для волны вертикальной поляризации . Этот угол называется углом Брюстера qБР (угол, для которого нет отраженной волны вертикальной поляризации):

. (21)

Если первая среда - воздух, а диэлектрическая проницаемость второй среды er, то

. (22)

Рис.4. Зависимость коэффициента отражения волны вертикальной

и горизонтальной поляризации от угла падения ,

падающей на поверхность сухой земли (er = 4)


Угол Брюстера имеет место только для вертикальной поляризации поля.

3.1.2. Отражение от поверхности идеального проводника

В случае падения плоской волны на поверхность идеального проводника происходит полное отражение.

Если вектор лежит в плоскости падения (вертикальная поляризация), то

Для случая, когда вектор перпендикулярен плоскости падения (горизонтальная поляризация),

Из (следует, что для углов падения, близких к скользящим, коэффициенты отражения и .

3.1.3. Отражение от поверхности земли (2- лучевая модель)

В задачах мобильной связи прямое распространение радиоволн между передающей и приемной антеннами встречается достаточно редко, поэтому модель распространения волн в свободном пространстве имеет ограниченное применение. Полезная для практики двухлучевая модель распространения волн (рис.5) основана на законах геометрической оптики.

Рис.5. Прямой и отраженный лучи в точке приема радиоволн

Суммарное поле в точке приема обусловлено влиянием прямого и отраженного от земной поверхности лучей:

.

Из рис.6 видно, что разность хода прямого луча и луча с отражением от земли

Рис.6. Мнимый излучатель поля

Если расстояние , то (27) может быть упрощено с помощью разложения Тейлора:

, м. (28)

Тогда разность фаз прямого и отраженного лучей

. (29)

Суммарное электрическое поле в точке приема прямого и отраженного лучей при сделанных допущениях вычисляется по формуле

, , (30)

где Е0 - напряженность поля, создаваемая излучающей антенной на некотором опорном расстоянии d0 в свободном пространстве (без учета отражения), .

На больших удалениях, когда выполняется соотношение ,

. (31)

Суммарное поле в этом случае может быть аппроксимировано выражением

, , (32)

где К - константа, связанная с амплитудой поля Е0 , высотами подвеса антенн и длиной волны. Мощность, принятая приемной антенной, пропорциональна квадрату напряженность поля:

. (33)

Из формулы (33) видно, что на больших расстояниях принятая мощность убывает обратно пропорционально d4 или 40 дБ на декаду. Это существенно быстрее, чем в свободном пространстве.

Для двухлучевой модели в соответствии с (33) потери мощности в радиоканале определяются выражением


3.2. Дифракция радиоволн

Явление дифракции позволяет радиоволнам распространяться вокруг сферической земной поверхности за горизонт и за различные препятствия. Несмотря на перекрытие прямой видимости и существенное уменьшение уровня сигнала, он все таки остается достаточным для приема.

Феномен дифракции объясняется принципом Гюйгенса - вторичного переизлучения точек фронта волны с различной фазой (зон Френеля). Напряженность поля определяется векторной суммой вклада вторичных излучателей.

3.2.1. Геометрия зон Френеля

Пусть между излучателем и приемником расположено препятствие - экран высотой h бесконечных размеров в поперечном сечении. Расстояние от экрана до излучателя - d1 , до приемника - d2 .

Рис.7. Дифракция радиоволн на клиновидном препятствии

Ясно, что путь через кромку препятствия больше прямого. Полагая, что h<>l, разность хода прямого и через кромку лучей будет:

. (35)

Соответствующая ему разность фаз

, (36)

где используется приближение для малого аргумента tg x » x, а угол a аппроксимирован выражением

.

Выражение (36) может быть аппроксимировано с использованием безразмерного дифракционного параметра Френеля - Кирхгофа:

, (37)

где a подставляется в радианах, все остальные параметры в метрах. Таким образом, разность фаз Ф может быть вычислена из выражения

Из выражения (38) следует, что сдвиг фазы между прямым и дифракционным лучами является функцией высоты h и взаимного расположения препятствия, излучателя и приемника.

Дифракционные потери мощности в радиоканале могут быть объяснены с помощью зон Френеля. Зоны Френеля представляют собой области, разность хода через которые от излучателя до приемника составляет nl/2 по сравнению с прямым лучом (l - длина волны, n - целое число).

В мобильной связи обычно наблюдается затенение части зон (источников вторичных волн) и, следовательно, уменьшение доли принятой мощности. В зависимости от геометрии препятствия принятая энергия определяется через векторное суммирование вторичных волн.

Рис.8. Формирование зон Френеля

Если препятствие не затеняет первую зону Френеля, то дифракционные потери минимальны и ими пренебрегают. Используют следующее свойство: если открыто не менее 55% первой зоны Френеля, то дальнейшее открытие первой зоны Френеля не уменьшает дифракционные потери.

3.2.2. Модель дифракции радиоволн на одиночном клине

Определение степени ослабления поля холмами и зданиями является достаточно сложной задачей при расчете зон обслуживания. Обычно точный расчет ослабления невозможен, поэтому используют методы расчета поля с необходимыми экспериментальными поправками.

Препятствие в виде одиночного холма или горы может быть обсчитано с использованием модели клина. Это простейшая модель препятствия, и быстрый расчет ослабления возможен с использованием классического решения Френеля для дифракции поля на полуплоскости.

Рис.9. Варианты перекрытия видимости антенн препятствием

Напряженность поля в точке расположения приемной антенны определяется векторной суммой вторичных источников, лежащих в плоскости, расположенной над препятствием. Напряженность поля при дифракции на клине определяется выражением

, (39)

где Е0 - напряженность поля в точке расположения приемной антенны при отсутствии препятствия и земли, а F(n) - комплексный интеграл Френеля. Значение интеграла F(n) определяется из графиков и таблиц.

Коэффициент дифракционного усиления с препятствием (обычно он меньше 1) по сравнению со свободным пространством

, дБ. (40)

График этой функции показан на рис.10.

Рис.10. Зависимость коэффициента дифракционного усиления

от значения параметра дифракции n

(41д)


2.2.3. Дифракция на нескольких клиньях

Если на пути между излучателем и приемником имеется несколько препятствий, то все они аппроксимируются одним эквивалентным препятствием (рис.11).

Рис.11. Эквивалентное клиновидное препятствие в задаче связи

с двумя препятствиями

Эта модель хорошо работает для двух препятствий, для нескольких - возникают определенные математические трудности.

2.3. РАССЕЯНИЕ РАДИОВОЛН

Потери от рассеяния радиоволн на препятствиях обычно много меньше потерь отражения и дифракции. Это объясняется тем, что рассеяние волн происходит во всех направлениях (на таких объектах, как мачты, лампы, деревья и т. д.).

Плоские поверхности с размерами много больше длины волны могут моделироваться как отражающие поверхности. Однако наличие неровностей изменяет отражение. Неровность поверхности определяется критерием Релея, который определяет критическую высоту hc неровностей при падении волны под углом qi:

. (42)

Поверхность считается гладкой, если разброс минимальных и максимальных высот меньше hc. Для неровных поверхностей коэффициент отражения Г умножается на коэффициент потерь рассеяния ps.

Полагая, что высота неровностей h распределена случайным образом с гауссовым законом распределения, коэффициент потерь рассеяния

, (43)

где sh - стандартная девиация высоты поверхности вокруг среднего значения высоты. После некоторых уточнений коэффициент потерь рассеяния с хорошим совпадением с практикой определяется выражением

где I0 - функция Бесселя первого рода нулевого порядка. Коэффициент отражения электромагнитного поля для неровностей h>hc определяется выражением

. (45)

Степень рассеяния радиоволн от препятствий больших размеров, например, крупных домов, может характеризоваться поперечником рассеяния. Поперечник рассеяния объекта (RCS) определяется как отношение плотности потока мощности рассеянного поля в направлении приемника к плотности потока мощности, падающей на рассеивающий объект, и имеет размерность м2. Анализ основан на геометрической теории дифракции и физической оптике и может быть использован для задач расчета поля, рассеянного большими зданиями. Для городских условий используется бистатическое уравнение излучения, описывающее распространение волны в свободном пространстве и поле, рассеянное между объектами и затем переизлученное в направлении приемника.

где dt и dr - расстояние от рассеивающего объекта до излучателя и приемника. Это уравнение корректно для дальней зоны излучателя и приемника.

3. ПРАКТИЧЕСКИЕ МОДЕЛИ, ИСПОЛЬЗУЕМЫЕ ДЛЯ РАСЧЕТА ОСЛАБЛЕНИЯ СИГНАЛА В РАДИОКАНАЛАХ

Большинство моделей, используемых при решении задач распространения радиоволн, учитывают одновременно аналитические и экспериментальные данные. Экспериментальный подход основан на использовании графиков и аналитических выражений, описывающих данные предварительных измерений. Преимущество этого подхода состоит в учете большинства факторов, влияющих на распространение радиоволн. Иногда в задачах мобильной связи используются классические модели радиолиний, которые позволяют моделировать в крупном масштабе линии связи. Например, двухлучевая модель позволила предсказать работоспособность сотовых систем до их появления. Ниже представлены некоторые модели радиолиний.

3.1. Потери передачи в удаленных линиях

Как теоретические, так и экспериментальные исследования подтвердили, что принимаемая мощность изменяется по логарифмическому закону. Этот закон выполняется как для радиолиний вне зданий, так и внутри их. Средние крупномасштабные потери при произвольном расстоянии излучатель - приемник описываются выражением

(47)

или в логарифмическом масштабе

, дБ, (48)

где n - показатель степени, который показывает, с какой скоростью возрастают потери передачи от расстояния; d0 - расстояние от излучателя до границы отсчета, d - расстояние между излучателем и приемником. Черта в (47), (48) означает среднее из возможных значений потерь для данного расстояния d. На диаграмме в логарифмическом масштабе график ослабления описывается наклонной прямой с коэффициентом наклона 10.n дБ на декаду. Показатель n зависит от конкретных параметров среды распространения.

Показатель n ослабления поля для различных условий распространения радиоволн

Важно правильно выбрать подходящее расстояние d0 для исследования условий распространения. В сотовой связи с большими зонами действия обычно используется расстояние 1 км, в микросотовых системах много меньше - 100 м. Это расстояние должно соответствовать дальней зоне антенны для исключения эффектов ближнего поля. Эталонное значение ослабления рассчитывается с помощью формулы распространения в свободном пространстве (4) или через поля, измеренные на расстоянии d0 .

Уравнение (48) не учитывает того, что параметры среды могут быстро изменяться между измерениями. Измерения показали, что величина ослабления мощности в радиоканале описывается нормально-логарифмическим (равномерным в дБ) законом:

где xs - случайная величина c нормально-логарифмическим законом распределения со стандартной девиацией s, дБ.

Данные формулы могут быть использованы для расчета поля в реальных системах связи при наличии случайных ослабляющих сигнал факторов. На практике величины n и s обычно определяются из экспериментальных исследований (рис. 12).

Поскольку значение PL(d) - случайная величина с нормальным распределением по шкале дБ от расстояния d, также случайно распределена и функция Pr(d). Для определения вероятности того, что принятый сигнал будет выше (или ниже) особого уровня, может быть использована функция Q:

, (50а)

где выполняется условие . (50б)

Вероятность того, что принятый сигнал будет выше некоторой заданной величины g, может быть вычислена из накопительной функции плотности как

. (51)

Аналогично вероятность того, что принятая мощность будет меньше g:

(52)


Рис.12. Экспериментальные данные, иллюстрирующие ослабление радиоволн в условиях города (приведены данные измерений ослабления мощности радиоканалов для 6 городов Германии, из этих экспериментальных данных определены параметры n=2.7, s=11.8 дБ)

3.2. Модели радиолиний вне зданий

Радиолинии в мобильной связи часто проходят по неровным местностям. В этом случае следует учитывать реальный профиль трассы. Трасса может изменяться от гладкой до сильно пересеченной местности. Также следует учесть наличие зданий, деревьев и других препятствий при связи в условиях города. Негладкие трассы рассчитываются разными методами. Существующие методы расчета поля в реальных условиях связи сильно отличаются по подходу, сложности и точности. Большинство основано на использовании экспериментальных данных для обслуживаемого района. Ниже описаны некоторые методы.

3.2.1. Метод Okumura

Этот метод является одним из широко используемых методов для расчета радиолиний в условиях города. Он пригоден для частот МГц (хотя может быть экстраполирован до 3000 МГц) и расстояний от 1 до 100 км. Данный метод может быть использован, если эффективная высота подвеса базовой антенны составляет от 01.01.01 м.

Okumura предложил сетку кривых для расчета среднего ослабления относительно ослабления в свободном пространстве Amu в условиях города с квазигладким профилем с изотропной передающей антенной, поднятой на эффективную высоту hte = 200 м и мобильной антенной высотой hre = 3 м. Графики получены в результате многих измерений с ненаправленными антеннами базовой станции и мобильного приемника и представлены в виде графика для диапазона частот МГц как функция дальности от 1 до 100 км.

Для определения потерь на радиолинии рассчитывается ослабление поля в свободном пространстве, затем по кривым графика (рис.13) определяется величина Ama(f, d) и добавляются к ослаблению в свободном пространстве с корректирующей поправкой, зависящей от степени неровности профиля трассы:

где L50 - средняя величина потерь,

LF - потери в свободном пространстве,

Ama - усредненное дополнительное ослабление, обусловленное влиянием земной поверхности,

G(hte) - эффективное усиление передающей антенны,

G(hre) - эффективное усиление приемной антенны,

GAREA - поправочный коэффициент из графика на рис.14.

Рис.13. Частотная зависимость усредненного ослабления

сигнала по отношению к свободному пространству

для квазигладкого профиля трассы

Рис.14. Поправочный коэффициент, обусловленный профилем радиотрассы

Кроме того, Okumura нашел, что величина G(hte) изменяется по закону 20 дБ/декада, а G(hre) для высот менее 3 м - 10 дБ/декада:

, 1000 м > h te> 10 м; (54а)

, hre < 3 м; (54б)

, 10 м > hre >3 м. (54в)

Модель Okumura полностью построена на экспериментальных данных. Графики, полученные Okumura, можно экстраполировать. Модель Okumura наиболее простая и достаточно точная для расчета потерь в сотовых системах связи и мобильной связи. Она является стандартом при расчете сот для мобильной связи в Японии.

Главный недостаток модели - работа с графиками и невозможность полноценно учесть быстроизменяющиеся условия в профиле трассы.

В основном рассмотренный метод используется для расчета радиолиний в урбанизированных и сверхурбанизированных районах. Разница расчетных и экспериментально измеренных напряженностей поля обычно не превышает 10-13 дБ.


3.2.2. Модель Hata

Hata обработал экспериментальные данные Okumura для частот МГц и предложил рассчитывать потери распространения в условиях города по стандартной формуле с учетом корректирующих уравнений для иных условий. Стандартная формула для расчета средних потерь мощности в условиях города:

где fc - частота от 150 до 1500 МГц,

hte - эффективная высота базовой антенны (от 30 до 200 м),

hre - эффективная высота мобильной антенны (от 1 до 10 м),

d - расстояние от передатчика до приемника, км,

a(hre) - корректирующий фактор для эффективной высоты мобильной антенны, который является функцией величины зоны обслуживания.

Для небольших и среднего размера населенных пунктов:

Для крупных городов:

Для fc<300 МГц; (57a)

Для fc>300 МГц. (57б)

В сверхурбанизированных районах стандартная (основная) формула Hata (55) модифицируется следующим образом:

, дБ, (58)

а для открытых районов:

Хотя формулы Hata не позволяют учесть все специфические поправки, которые доступны в методе Okumura, они имеют существенное практическое значение. Расчеты по формулам Hata хорошо совпадают с данными модели Okumura для дальностей, больших 1 км.

3.2.3. Уточнение метода Hata

Европейская ассоциация EVRO-COST предложила новую версию метода Hata, верную для частот до 2 ГГц. Стандартная формула для расчета средних потерь мощности в условиях города записывается следующим образом:

где a(hre) определяется формулами (56) и (57),

Gm = 0 дБ для городов средних и крупных размеров,

Gm = 3 дБ для столиц.

Допустимые границы параметров в (60): fc 1500...2000 МГц,

hte 30...200 м,

Использование вышезаписанных выражений позволяет рассчитывать широкий класс радиоканалов связи с учетом конкретных условий распространения волн. Выбор конкретной модели, описывающей распространение радиоволн, существенно зависит от частоты несущей, высоты подвеса передающей и приемной антенн, окружающего пространства. Адекватность расчетов и экспериментальных данных определяется корректностью используемых методов, а также сильно зависит от практического опыта специалиста.




Top