RA6FOO УКВ антенны T loss

Шумовая температура антенны. Коэффициент шума пассивного устройства.

Рассмотрим понятие шумовой температуры, распространяющейся на характеристику приемных антенн, в частности для характеристики приема шумового излучения из космоса и атмосферы.

Шумовой температурой антенны называется такая абсолютная температура, до которой требуется нагреть полное сопротивление антенны , чтобы мощность шума источника сигнала с данным внутренним сопротивлением было равно на выходе антенны в реальности.

В общем случае на выходе антенны определяется не только мощностью принимаемого шумового излучения, но и мощностью потерь в антенне.

Потери в антенне характеризуются сопротивлением потерь .


шумовая температура антенны.

Коэффициент шума пассивного устройства.

Определим коэффициент шума пассивного устройства в режиме согласования.

В дальнейшем анализ шумовых свойств будем проводить в режиме согласования.

Пассивный четырехполюсник .


Так как эквивалентная схема для расчета на выходе такая же как и эквивалентная схема для расчета на входе, то и мощность шума на выходе:

,

, где - коэффициент передачи по мощности.

Коэффициент шума пассивного устройства обратно пропорционален его коэффициенту передачи по мощности.

Определим коэффициент шума пассивного устройства, когда температура источника сигнала и температура пассивного устройство не равны.

12. Коэффициент шума последовательности шумящих четырехполюсников.

Часто возникает задача, где известны характеристики нескольких шумящих 4х полюсников. Необходимо определить коэффициент шума последовательности этих 4х полюсников.

Для уменьшения Кш ЛТ необходимо обеспечить достаточно большой коэффициент передачи по мощности УРЧ, малые потери в пассивном устройстве и малые значения собственного шума УРЧ. При таких условиях шум всех каскадов стоящих после УРЧ сказывается мало на Кш ЛТ. Если фидер имеет очень большое затухание, то установкой антенного усилителя можно исключить его влияние на чувствительность приемного устройства, при этом Кш ЛТ определяется лишь Кш антенного устройства.

13.Чувствительность приемного устройства.

Чувствительность характеризует способность приемника принимать слабый сигнал на фоне внутриполосных помех. Часто чувствительность приемника задается минимальным уровнем ЭДС сигнала в антенне, при котором качество сигнала на выходе приемника удовлетворяет минимальным требованиям.

Рассмотрим связь чувствительности приемника с параметрами линейного тракта и антенны.

Зададим отношение сигнал-шум на выходе линейного тракта

Считаем, что антенна согласована с приемником и все шумы, созданные антенной, характеризуются шумовой температурой Т А.

Считаем, что Е А соответствует чувствительности приемника. Найдем:

Шумовая температура линейного тракта.

Т.е. чувствительность приемника определяется сумой шумовых температур антенны и линейного тракта.

Для СВЧ приемников чувствительность удобнее характеризовать не минимально возможной ЭДС в антенне, а минимально допустимой мощностью, выделяемой на входе приемника:

Если приемники имеют переменную полосу пропускания, то чувствительность удобно характеризовать минимально допустимой удельной мощностью сигнала на входе приемника:

Где Т 0 – паспортное значение шумовой температуры, - относительная шумовая температура, кТ 0 =4*10 -21 Вт/Гц.

Чувствительность часто задается в единицах кТ 0 (например, чувствительность равна 4кТ 0 =16*10 -21 В/Гц).

14.Основные нелинейные эффекты в линейном тракте.

Мощные внеполосные помехи создают ряд нелинейных эффектов: блокирование сигнала, перекрёстная модуляция и интермодуляция. Блокирование сигнала проявляется в виде снижения коэффициента передачи полезного сигнала в тракте при воздействии мощных внеполосных помех. Существует несколько механизмов воздействия мощной помехи на коэффициент передачи линейного тракта. Рассмотрим наиболее наглядный механизм, который проявляется в схеме усилителя с транзистором, включенным по схеме с общим эмиттером. Наличие мощной помехи увеличивает постоянную составляющую тока коллектора. За счет обратной связи по постоянному току через резистор эмиттера происходит подзапирание транзистора, рабочая точка смещается в область меньших токов, а следовательно в область меньшей крутизны транзистора. Если одновременно с помехой присутствует полезный сигнал, то для него происходит уменьшение коэффициента передачи каскада за счет снижения крутизны транзистора.

Перекрестная модуляция.

При перекрестной модуляции происходит перенос закона амплитудной модуляции помехи на сигнал – сигнал приобретает модуляцию помехи. Если помеха амплитудно модулирована, то рабочая точка УРЧ скользит по переходной характеристике транзистора в соответствии с законом модуляции помехой. По такому же закону меняется крутизна транзистора, а следовательно коэффициент передачи УРЧ. Полезный сигнал, проходя через усилитель с переменным во времени коэффициентом передачи, приобретает амплитудную модуляцию помехи.

Интермодуляция.

Явление интермодуляции состоит в том, что сумма 2х и более гармонических внеполосных помех за счет нелинейности амплитудной характеристики функционального узла, создает составляющие в полосе пропускания приемника.

Если сумму 2х гармонических сигналов подставить в выражение для степенного ряда, то можно показать, что на выходе нелинейного элемента присутствует сумма гармоник колебаний. где m и n=0,1,2,… .

Наиболее мощными являются колебания гармоник с малыми значениями m и n. Рассмотрим самую мощную: m=1, n=2, . Пусть имеет место воздействие 2х гармонических помех, которые на частотной оси расположены по 1 сторону от сигнала и находятся на равном расстоянии.

При данной помеховой ситуации происходит прохождение колебаний в полосу пропускания приемника.

Методы борьбы с нелинейными эффектами.

1. Использование усилительных приборов с широким динамическим диапазоном.

2. Повышение избирательности фильтров, стоящих до усилительных приборов.



3. Установка аттенюатора на входе приемника. Данный метод применим, если имеется запас по мощности сигнала.

15.Частотная избирательность приемного устройства. Полоса пропускания.

Избирательность характеризует способность приемника выделять полезный сигнал из окружения мощных внеполосных помех.

Величина избирательности показывает, во сколько раз помеха может превышать оговоренный уровень сигнала на входе приемника, чтобы качество сигнала выходе приемника соответствовало минимальным требованиям.

Где - напряжение помехи, отстроенной от сигнала на величину Δf, - напряжение полезного сигнала.

Так как внеполосные помехи могут быть мощными, возникает задача способности приемника принимать полезные сигналы при одновременном воздействии внеполосных помех, которые вызывают нелинейные эффекты в линейном тракте.

С этой целью оценку избирательности приемника производят имитируя помеховую обстановку в реальности. Т.к. в реальности источников помех должно быть несколько, то при измерении избирательности используют столько генераторов, сколько источников помех ожидается в реальности.

С целью сокращения затрат на измерения используют 2 или 3 генератора. Один из них имитирует сигнал, другой имитирует зеркальную, либо соседние помехи. Если используется 2 помеховых генератора, то исследуется явление интермодуляции. Если уровень внеполосных помех таков, что нелинейные эффекты в линейном тракте незначительны, и ими можно пренебречь, то оценку избирательности приемника можно упростить, используя односигнальную методику измерения. В этом случае один генератор поочередно настраивается на частоту полезного сигнала и на частоты всех помех. В данном случае справедлив метод суперпозиции.

16.Автоматическая подстройка частоты гетеродина. Линейный режим.

Радикальным средством повышения стабильности частоты гетеродина является использование синтезатора частоты. Однако в ряде случаев включение синтезатора в состав приемника настолько повышает его стоимость, что теряется целесообразность его использования. В этом случае целесообразно использовать систему АПЧГ. Рассмотрим обобщенную структуру АПЧГ.

Если под воздействие дестабилизирующих факторов меняется частота гетеродина (ГУН), то на эту же величину меняется f ПЧ. Это отклонение фиксируется дискриминатором, на выходе которого формируется напряжение, знак и величина которого соответствуют отклонению частоты. После фильтрации в ФНЧ напряжение воздействует на управляющий элемент (часто варикап), который компенсирует отклонение частоты ГУН.

Если дискриминатор является частотным, то имеет место ЧАП, если отклонение частоты фиксируется с точностью до фазы и дискриминатор фазовый, то это ФАПЧ, и в этом случае в состав системы входит кварцевый генератор.

Проанализируем простейший вариант в виде ЧАП. Различают 2 режима работы ЧАП- линейный и нелинейный. Если отклонение частоты гетеродина от требуемого значения мало и нелинейные свойства частотного дискриминатора проявляются слабо, то имеет место линейный режим, в противном случае – нелинейный.

Линейный режим.

Пусть под воздействием дестабилизирующих факторов f г отклонилась на Δf гетеродина. С целью упрощения f ПЧ =f Г - f С – т.е. верхняя настройка гетеродина. За счет действия системы АПЧ расстройка гетеродина уменьшается.

Δf Гост. =Δf ПЧост. – отклонение ПЧ от требуемого значения.

Δf Гост. = Δf Г - Δf Грег. , где Δf Гост. – регулирующее воздействие с выхода управляющего элемента.

Δf Гост ≈S упр. U дискр. , где S упр. – крутизна управляющего элемента (считаем характеристику управляющего элемента линейной), . U дискр ≈ S д Δf ост. , S д крутизна дискриминатора.

где - коэффициент частотной автоподстройки (К ЧАП).

К ЧАП показывает, во сколько раз уменьшается отклонение частоты гетеродина при использовании ЧАП. Увеличение К ЧАП приводит к снижению устойчивости системы АПЧ. Для её повышения увеличивают постоянную времени ФНЧ – растёт инерционность системы. Система не успевает отрабатывать быстрые изменения частоты гетеродина, поэтому К ЧАП, также как постоянная времени ФНЧ выбирают исходя из условий компромисса между противоречивыми требованиями: увеличение точности и быстродействия.

Обычно в расчетах К ЧАП не более 20-25. Если рассматривать воздействие дестабилизирующих факторов как некое возмущение, прикладываемое ко входу ГУН, то относительно этого возмущения система ведёт себя как ФНЧ, то есть НЧ возмущения подавляются, а ВЧ проходят на выход системы без изменений.

Приемный тракт состоит из ряда последовательно соединенных каскадов выполняющих различные функции. Это усилители, соединительные пассивные тракты, фильтры, смесители и т.п. Все каскады харакетризуются коэффициентом передачи по мощности как отношение мощности сигнала на выходе каскада к мощности сигнала на его входе, включая и смесители, у которых сигнал на входе на одной частоте, а на выходе на другой. Если коэффициент передачи каскада не меняется при изменении мощности сигнала на его входе, то будем считать, что он в линейном режиме. Аналогично, если последовательно соединенные каскады тракта находятся в линейном режиме, то и весь тракт называется линейным трактом. Следствием из этого свойства является то, что для линейного тракта отношение мощности сигнала к мощности шумов на входе и на выходе одно и тоже.

В общем случае характеристика (усилителя, смесителя и т.п.) представлена на рис.5. По оси абсцис показана величина мощноси сигнала на входе каскада – Р вх. По оси ординат величина коэффициента передачи каскада – К.

При определенной величине входной мощности Р нас. наблюдается уменьшение коэффициента передачи на величину DК. Уровень мощности сигнала на входе каскада, при котором наблюдается уменьшение коэффициента передачи на величину DК, называется уровнем насыщения каскада.
DК задается в зависимости от назначения тракта равным 0,1 дБ, 0,5 дБ, 1,0 дБ, 3 дБ или другой величине. При заданном допустимом критерии уменьшения коэффициента передачи каскада считается, что каскад работает в линейном режиме до тех пор, пока мощность сигнала на его входе не привысила величину Р нас.

Для пассивных каскадов (фильтров построенных на пассивных элементах, фидерных и волноводных трактов) коэфициент передачи не зависит от одной мощности сигнала. Эфект сгорания пассивных каскадов в данном случае не рассматривается.

Все каскады генерируют шумы, мощность которых на выходе каскада может быть вычислена по следующей формуле:

,

где - постоянная Больцмана; - эквивалентная шумовая температура шумов на выходе каскада; - полоса рабочих частот каскада, которую ограничивают с помощью селективных элментов до полосы частот в которой сосредоточен спектр сигнала.

Эквивалентная шумовая температура входа каскада - такая температура шумов, при которой - мощность шумов поданная на вход идеального (не шумящего) каскада, пройдя через идеальный каскад с усилением К, образвала бы на его входе мощность шумов равную . Тогда . Отсюда: .

Для активных каскадов либо устройств (усилителе, смесителей, приемников и т.п.) в паспортных данных имеется величина эквивалентной шумовой температуры входа каскада либо устройства. Для больших значений мощности шумов в паспорте на такие каскады либо устройства дается величина N – коэффициент шума (безразмерная величина выраженная в разах). Связь коэффициента шума и эквивалентной шумовой температуры входа устройства определяется выражением:


, где - температура окружающей среды, обычно при нормальной температуре .

Из общей теории радиотехнических цепей суммарный коэффициент передачи последовательно соединенных n каскадов (при отсуствии рассогласования и насыщения) и эквивалентная шумовая температура на входе последовательно соединенных n каскадов вычисляется по следующим формулам:

;

где: - коэффициенты предачи первого, второго, … , n -го каскадов, соответственно;

- эквивалентные шумовые температуры на входе соответствующих каскадов.

Здесь коэффициенты передачи данных в разах, а эквивалентные шумовые температуры в Кельвинах.

Для пассивных элементов (волновод, фидерный тракт и т.п.) генерируемая мощность шумов на выходе тракта вычисляется из следующего выражения.

Cтраница 3


В литературе опубликованы многочисленные сообщения о разработках охлаждаемых параметрических усилителей. В частности, в работах приводятся результаты изучения влияния охлаждения диодов на эффективную шумовую температуру усилителя. На рис. 11.4 приведены полученные экспериментально зависимости шумовой температуры усилителя от температуры диодов из германия, кремния и арсенида галлия.  

Наряду с этим известно много случаев, когда фактические шумы значительно превышают шумы, вычисленные по этим формулам. Для того чтобы избежать несоответствия между опытом и расчетом, вводят понятия об эффективной шумовой температуре или об эффективном сопротивлении (проводимости) взамен соответствующих реальных величин. Такие представления являются неудачными и даже вредными, так как хотя и дают возможность численно свести опыт с расчетом, но не соответствуют существу дела, а поэтому и не указывают на правильные пути борьбы с шумами.  

В уравнении (5.26) понятие коэффициента шума использовано для описания шумовых характеристик усилителя. Уравнение (5.28) - это альтернативная (и при этом эквивалентная) характеристика, именуемая эффективной шумовой температурой. Напомним, что шум-фактор - это измерение относительно эталона. Шумовая температура такого ограничения не имеет.  


Такое разделение просто осуществляется с помощью циркулятора, как показано на рис. 17.23, а. При этом достигается еще и то преимущество, что шумы нагрузки приемника с комнатной температурой не проходят непосредственно в мазер. Помимо собственной шумовой температуры мазера TNM в эффективную шумовую температуру входят слагаемые: TNR / gp, учитывающее шумы приемника; TLA, учитывающее шумы согласованной нагрузки, отраженные от антенны; TLM, обусловленное шумами, проходящими между плечами 2 и 4 циркулятора; TRM, обусловленное щуками приемника, проходящими между плечами 3 и 2 аТ0, определяемое диссипативными потерями в фидере между антенной и мазером.  


Отличия между сетями усилителей и сетями с потерями в линии можно рассматривать в контексте механизмов потерь и шумов, описанных ранее. Впрочем, и в этом случае ухудшение будет выражено через увеличение коэффициента шума или эффективной шумовой температуры.  

Например, теория Петритца ведет к закону вида v - 1 с отклонениями 3 56 почти в пятидекадном диапазоне частот. Были проведены некоторые измерения шума мерцания ; Никол обнаружил, что на частоте 45 Мгц этот шум может оказаться больше дробового и быть значительным на частотах до 1 Ггц. Эти дополнительные источники шума должны учитываться при анализе характеристик диодов с точечным контактом, относя такие шумы к эффективной шумовой температуре.  

Параметрические усилители чаще всего используются в аппаратуре ТРРЛ. Они представляют собой устройства, в которых нсдользуется переменный реактивный элемент, в качестве которого применяется параметрический диод, обладающий свойствами нелинейной емкости и изменяющий свое реактивное сопротивление за счет внешних источников энергии. Так как чисто реактивные элементы не обладают собственными шумами, то ПУ обеспечивают низкие уровни шумов, позволяя уменьшить эффективную шумовую температуру приемника до требуемого значения 100 - 150 К. В них для накапливания энергии используется емкость р-й-иерехода диода, а изменение этой емкости осуществляется за счет подачи от генератора накачки (ГН) переменного напряжения, частота которого выше частоты усиливаемого сигнала.  

Для криогенно охлаждаемых приемников миллиметровых и субмиллиметровых волн приближение Рэлея-Джинса может давать значительную ошибку. Для определения эффективной шумовой температуры теплового источника в случае, когда нужно учитывать квантовые эффекты, используются две формулы.  

Принимая эффективную температуру газа равной 500 К, для Ne n доп-плеровски уширенной линии (9.9) получаем, что полоса усилителя равна 315 Мгц, а по формуле (9.20) находим полную выходную мощность шумов на моду 12 3 10 - 9 вт. Формула (9.6) дает, что эффективная шумовая температура в этом случае равна 8550 К, тогда как идеальное значение этой величины равно 6120 К.  

Диапазон температур для коммерческих систем обычно находится между 30 и 150 К. Недостатком использования шум-факторов для подобных малошумящих сетей является то, что все получаемые значения близки к единице (0 5 - 1 5 дБ), что создает определенные затруднения при сравнении устройств. Для приложений космической связи эталонная температура в 290 К не является настолько подходящей, как для наземных приложений. Эффективная входная шумовая температура просто сравнивается с эффективной шумовой температурой источника. Вообще, приложения, в которых фигурируют малошумящие устройства, лучше описывать с помощью эффективной температуры, а не шум-фактора.  

Для осуществления одноплечего варианта усилителя использован циркулятор. В усилителях такого рода применяются диоды с резкими, плавными и точечно-контактными переходами. Выходные мощности равны 5 - 500 мет, выше этих значений наступает насыщение; внутри этого диапазона мощностей произведение коэффициента усиления на полосу пропускания возрастает. Эффективная шумовая температура обычно не превышает 300 К; в известных пределах шумовую температуру можно снизить за счет использования более высокой мощности накачки.  

На рис. 4.11 изображен график, позволяющий сравнить шумовые свойства различных типов усилителей. Из графика следует, что шумовая температура кристаллических смесителей весьма быстро растет с увеличением частоты и при / 300 МГц превышает 1000 К. Схемы усилителей высокой частоты на триодах обладают более низкой шумовой температурой. Однако с увеличением частоты усиливаемых колебаний она также очень быстро возрастает. Эффективная шумовая температура усилителей на туннельных диодах остается практически постоянной (Тэ 800 К) до частоты / 6000 МГц. Параметрические усилители (ПУ) обладают шумовой температурой, близкой к 100 К. На рисунке для сравнения указана шумовая температура некоторых источников шумов.  

Шумовая температура антенны

Шумовая температура антенны - характеристика мощности шумов приёмной антенны. Шумовая температура не имеет никакого отношения к физической температуре антенны. Она задается формулой Найквиста , и равна температуре резистора , который имел бы такую же мощность тепловых шумов в данной полосе частот:

Где

Мощность шумов, - шумовая температура, - полоса частот, - постоянная Больцмана .

Источником шумов является не сама антенна , а шумящие объекты на Земле и в космосе. Космическая составляющая шума зависит от диаметра антенны: чем больше диаметр и усиление, тем уже основной лепесток диаграммы направленности , соответственно, меньше посторонних космических шумов антенна усиливает вместе с полезным сигналом. Земная составляющая шумовой температуры антенны зависит от угла места - чем ниже «смотрит» антенна, тем больше она принимает индустриальных помех и шумов от источников на поверхности Земли. Поэтому шумовая температура - не постоянная величина, а функция от угла места. Как правило, она указывается в спецификации для одного или нескольких значений угла места. Типичная шумовая температура параболической антенны диаметром 90 см в Ku-диапазоне для угла места 30 градусов - 25-30К.

Шумовая температура антенны в радиоастрономии

Понятие шумовой температуры антенны наряду с понятием антенной температуры широко применяется в радиоастрономии . Антенная температура характеризует полную мощность принимаемого антенной излучения, т.е. мощность шумов и мощность изучаемых объектов , в то время как шумовая температура - только мощность шумов (мешающих факторов). Если в диаграмму направленности не попадает ни одного радиоисточника, то антенная температура равна шумовой. Таким образом полезный сигнал зависит от разности антенной и шумовой температур.

Как правило шумовая температура состоит из двух частей: постоянной и стохастической. Постоянную составляющую можно компенсировать, а вот стохастическая накладывает фундаментальные ограничения на чувствительность радиотелескопов . Поэтому для увеличения соотношение сигнал/шум при проектировании радиотелескопов основное внимание уделяется уменьшения стохастической составляющей. Для этого применяют малошумящие усилители, охлаждение приемников жидким азотом или гелием и прочее.

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Шумовая температура антенны" в других словарях:

    Эффективная величина, служащая мерой мощности шумов в радиоприёмных устройствах. Ш. т. Тш равна температуре согласованного сопротивления (эквивалента антенны), при которой мощность его теплового шума равна мощности шумов данного… …

    эквивалентная шумовая температура спутниковой линии Recom - Шумовая температура на выходе приемной антенны земной станции, соответствующая мощности радиочастотного шума, создающего суммарный шум, наблюдаемый на выходе спутниковой линии, за исключением шума, создаваемого помехами от спутниковых линий,… … Справочник технического переводчика

    Эквивалентная шумовая температура спутниковой линии - 1. Шумовая температура на выходе приемной антенны земной станции, соответствующая мощности радиочастотного шума, создающего суммарный шум, наблюдаемый на выходе спутниковой линии, за исключением шума, создаваемого помехами от спутниковых линий,… … Телекоммуникационный словарь

    Величина, характеризующая мощность электромагнитного излучения, принимаемого антенной. Часто используется в радиоастрономии. Антенная температура не имеет никакого отношения к физической температуре антенны. Так же, как и шумовая температура, она … Википедия

    Фотометрическая величина, характеризующая интенсивность излучения. Часто используется в радиоастрономии. Содержание 1 В диапазоне частот 2 В диапазоне длин волн … Википедия

    Антенна радиотелескопа РТ 7.5 МГТУ им. Баумана. РФ, Московская область, Дмитровский район. Диаметр зеркала 7,5 метра, рабочий диапазон длин волн: 1 4 мм Антенна устройство для излучения и приёма радиоволн (разновидности электромагнитного… … Википедия

    I Орбита (от лат. orbita колея, путь) круг, сфера действия, распространения; см. также Орбита (мед.), Орбиты небесных тел, Орбиты искусственных космических объектов. II Орбита (мед.) глазница, костная полость Черепа, в которой… … Большая советская энциклопедия

    ГОСТ 24375-80: Радиосвязь. Термины и определения - Терминология ГОСТ 24375 80: Радиосвязь. Термины и определения оригинал документа: 304. Абсолютная нестабильность частоты радиопередатчика Нестабильность частоты передатчика Определения термина из разных документов: Абсолютная нестабильность… …

    Устройство для приёма и измерения радиоизлучения косм. объектов в диапазоне от декаметровых до миллиметровых длин волн (в пределах «окна прозрачности» земной атмосферы для радиоволн). Измерения на более длинных волнах производят из космоса. Р.… … Физическая энциклопедия

    ГОСТ Р 50788-95: Установки непосредственного приема программ спутникового телевизионного вещания. Классификация. Основные параметры. Технические требования. Методы измерений - Терминология ГОСТ Р 50788 95: Установки непосредственного приема программ спутникового телевизионного вещания. Классификация. Основные параметры. Технические требования. Методы измерений оригинал документа: 3.1.4 Антенна устройство для приема… … Словарь-справочник терминов нормативно-технической документации

Эффективная шумовая температура

Эффективная шумовая температура антенны или АФУ вводится как параметр приемной антенны при приеме слабых сигналов диапазона СВЧ по аналогии с источниками теплового шума.

При исследовании радиоприемных устройств СВЧ эффективная шумовая температура источника шумов (в градусах Кельвина) вводится как коэффициент, связывающий мощность шумов и полосу пропускания:

,

где - постоянная Больцмана

Эффективную шумовую температуру, характеризующую мощность всех внешних помех, называют условно шумовой температурой излучения . Ее обычно рассчитывают, вводя понятие яркостной температуры источников помех . Участок поверхности источника помех имеет температуру , если создаваемая им интенсивность помех равна интенсивности радиоизлучения соответствующего участка абсолютно черного тела, имеющего температуру , и такую же пространственную конфигурацию, что и источник помех. Интенсивность - это спектральная плотность мощности выходящей через единичную площадку поверхности излучающего тела в единичный телесный угол.

Для абсолютно черного тела: .

На приемную антенну попадает только та часть мощности, которая излучается площадкой (элементарная площадка на излучающей поверхности) в телесный угол, опирающийся на площадку, равную эффективной площади антенны . Таким образом, спектральная плотность мощности излучения от площади на входе приемника, согласованного с антенной, равна:

где телесный угол, под которым видна от антенны излучающая площадка ()

Т.к. поля помех приходящих с разных участков излучающей поверхности, статистически независимы, то полная спектральная плотность мощности помех на входе приемника определится суммированием по всем направлениям от антенны, на участки излучающей поверхности:

Полная мощность шумов:

Шумовая температура:

Величина зависит не только от параметров антенны, но и от интенсивности распределения внешних источников помех.

Собственные шумы антенны определяются сопротивлением потерь антенны , температуру которого нужно считать равной температуре окружающей среды - физическая температура антенны. С учетом потерь эквивалентная схема антенны как генератора шумовой ЭДС показана на рисунке, где приписана шумовая температура , отличная от температуры окружающей среды .

Внешние шумы и шумы за счет потерь в антенне статически независимы, поэтому нужно складывать их среднеквадратические значения:

или ,

где - эффективная шумовая температура антенны.

После преобразования имеем:

, ,

где - КПД антенны.

По аналогичной методике учитываются шумы за счет потерь в фидере вместе с включенными в него различными устройствами:

где - КПД линии передачи, - физическая температура линии передачи (фидера), - коэффициент передачи мощности антенной цепи без учета потерь в антенне и линии. Здесь антенна с фидером согласована, а приемник нет ().

Рассогласование приемника с фидером часто используется для уменьшения шумов входной цепи приемника при реализации предельной чувствительности в диапазоне СВЧ.




Top