Принципиальная схема резервного питания. Четыре схемы резервного питания

В данной статье мы рассмотрим, как создать резервный аккумуляторный источник питания для небольших электронных устройств, чтобы на них никогда не пропадало питание.

Существует множество электронных устройств, на которые должно подаваться питание постоянно и без перебоев. Хорошим примером таких устройств являются будильники. Если посреди ночи питание пропадет, и будильник вовремя не сработает, вы можете пропустить важную встречу. Самым простым решением этой проблемы является резервная аккумуляторная система питания. Таким образом, если питание от внешнего источника падает ниже определенного порогового значения, аккумуляторы автоматически нагрузку на себя и продолжают всё питать, пока не восстановится внешнее питание.

Компоненты

  • источник питания постоянного тока;
  • аккумуляторы;
  • батарейный отсек;
  • стабилизатор напряжения (необязательно);
  • резистор 1 кОм;
  • 2 диода (с допустимым прямым током, превышающим ток от источника питания);
  • разъем «папа» для постоянного напряжения;
  • разъем «мама» для постоянного напряжения.

Принципиальная схема

Существует множество различных видов аккумуляторных систем резервного питания, и выбор типа системы в значительной степени зависит от того, что именно вы питаете. Для данного проекта я разработал простую схему, которую можно использовать для питания маломощной электроники, которая работает от 12 вольт или ниже.

Во-первых, нам нужен источник питания постоянного тока. Такие источники очень распространены и бывают различных напряжений и номинальных токов. Блок питания подключается к схеме через разъем питания постоянного тока. Затем он подключается к блокирующему диоду. Блокирующий диод предотвращает протекание тока из резервной аккумуляторной системы обратно в источник питания. Далее, через резистор и еще один диод подключается аккумуляторная батарея. Резистор позволяет батарее медленно заряжаться от источника питания, а диод обеспечивает низкое сопротивление пути протекания тока между батареей и конечной схемой, таким образом, аккумулятор может питать конечную схему, если выходное напряжение источника питания упадет слишком низко. Если схема, которую вы питаете, требует стабилизированный источник питания, то вы можете просто добавить в конце стабилизатор напряжения.


Если вы питаете Arduino или аналогичный микроконтроллер, то вы должны учесть, что вывод V in уже подключен к встроенному стабилизатору напряжения на плате. Таким образом, вы можете подать на вывод V in любое напряжение в диапазоне от 7 до 12 вольт.

Выбор номинала резистора

Выбор номинала резистора должен быть сделан с осторожностью, чтобы вдруг не перезарядить аккумулятор. Чтобы выяснить, с каким номиналом надо использовать резистор, необходимо в первую очередь рассмотреть источник питания. Когда вы работаете с нестабилизированным источником питания, выходное напряжение не неизменно. Когда схема, которая питается от него, выключается или отключается, напряжение на выходных клеммах источника увеличивается. Это напряжение холостого хода может достигать значения в полтора раза выше, чем то напряжение, которое указано на корпусе блока питания. Чтобы проверить это, возьмите мультиметр и измерьте напряжение на выходных клеммах источника питания, когда к нему ничего не подключено. Это и будет максимальное напряжение источника питания.

NiMH аккумулятор может безопасно заряжаться при токе заряда C/10, или одна десятая емкости аккумулятора в час. Однако прикладывание тока такой же величины после того, как аккумулятор был полностью заряжен, может привести к его повреждению. Если предполагается, что аккумулятор будет непрерывно заряжаться в течение неопределенного периода времени (как, например, в аккумуляторной системе резервного питания), то ток заряда должен быть очень низким. В идеале, ток заряда должен быть равен C/300 или еще меньше.

В моем случае, я буду использовать аккумуляторный отсек размера AA с аккумуляторами емкостью 2500 мАч. В целях безопасности мне нужен ток заряда 8 мА или меньше. Исходя из этого, можно рассчитать, резистор какого номинала нам нужен.

Чтобы рассчитать необходимое сопротивление вашего резистора, начните с определения напряжения холостого хода источника питания, затем вычтите из него напряжение полностью заряженной аккумуляторной батареи. Это даст вам напряжение на резисторе. Чтобы определить сопротивление, разделите разность напряжений на значение максимального тока. В моем случае, напряжение холостого хода источника питания равно 9В, а напряжение на аккумуляторной батарее равно около 6В. Это дает разность напряжений 3В. Деление этих 3 вольт на ток 0,008 ампер дает значение сопротивления 375 Ом. Поэтому номинал нашего резистора должен быть не менее 375 Ом. Для дополнительной безопасности я использовал резистор 1 кОм. Однако имейте в виду, что использование резистора с большим сопротивлением значительно замедлит заряд аккумулятора. Но это не проблема, если система резервного питания используется очень редко.

Для резервирования питания ответственных энергопотребителей используют параллельное соединение нескольких источников питания, исключая при этом взаимное влияние одного источника на другой.
При повреждении или отключении одного из нескольких питающих устройств нагрузка автоматически и без разрыва цепи питания подключится к источнику питания, напряжение которого выше остальных. Обычно в цепях постоянного тока для разделения питающих цепей используют полупроводниковые диоды. Эти диоды препятствуют влиянию одного источника питания на другой. В то же время на этих диодах нерационально расходуется некоторая доля энергии источника питания. В этой связи в схемах резервирования стоит использовать диоды с минимальным падением напряжения на переходе. Обычно это германиевые диоды.
В первую очередь питание на нагрузку подают с основного источника, имеющего обычно (для реализации функции самопереключения на резервное питание) более высокое напряжение. В качестве такого источника чаще всего используют сетевое напряжение (через блок питания). В качестве источника резервного питания обычно используют батарею или аккумулятор, имеющие напряжение заведомо меньшее, чем у основного источника питания.
Самые простые и очевидные схемы резервирования источников постоянного тока показаны на рис. 10.1 и 10.2. Подобным образом можно подключить неограниченное количество источников питания к ответственному радиоэлектронному оборудованию.
Схема резервирования источников питания (рис. 10.2) отличается тем, что роль диодов, разделяющих источники питания, выполняют светодиоды. Свечение светодиода индицирует задействованный источник питания (обычно имеющий более высокое напряжение). Недостатком подобного схемного решения является то, что максимальный ток, потребляемый нагрузкой, невелик и непревышает максимально допустимого прямого тока через свето-диод.

Рис. 10.1. Основная схема резервирования источников питания

Рис. 10.2. Схема резервирования источников питания с использованием светодиодов

Рис. 10.3. Схема резервирования источника питания охранного устройства

Кроме того, на светодиоде падает около двух вольт, необходимых для его работы. Световая индикация неустойчива при несущественной разности напряжений питания.
Схема авторезервирования источника питания для ответственного оборудования - охранного устройства - приведена на рис. 10.3. На схеме условно показан основной - сетевой источник питания. На его выходе - нагрузке RH и конденсаторе С2 - формируется стабильное напряжение 12 6 или более! Батарея резервного питания GB1 подключена к сопротивлению нагрузки через цепочку диодов VD1 и VD2. Поскольку разность напряжения на этих диодах минимальна, ток через диоды в нагрузку не протекает. Однако, стоит отключиться основному
источнику питающего напряжения, как диоды откроются. Таким образом питание подается на нагрузку без перебоев.
Светодиод HL1 индицирует исправное состояние резервного источника питания, а диод VD2 не допускает питание светодио-да от источника основного питания.
Схему можно изменить таким образом, чтобы два светодио-да независимо друг от друга индицировали рабочее состояние обоих источников питания. Для этого достаточно схему (рис. 10.3) дополнить элементами индикации.
Устройство для автоматического включения резервной батареи питания описано в патенте ГДР № 271600 , а его схема показана на рис. 10.4.

Рис. 10.4. Схема устройства для автоматического включения резервной батареи питания

В исходном (штатном) режиме ток от источника основного питания Еа через светодиод-индикатор тока нагрузки поступает в нагрузку. Транзистор VT1 открыт, транзистор VT2 закрыт, резервная батарея питания Еь отключена. Как только произойдет отключение основного источника питания, светодиод HL1 погаснет, закроется транзистор VT1 и, соответственно, откроется транзистор VT2. Батарея Еь подключится к нагрузке.
Недостатком устройства является то, что максимальный ток через нагрузку не может превышать максимально допустимого тока через светодиод. Кроме того, на самом светодиоде теряется до 2 В. Если пожертвовать функцией индикации и заменить светодиод на германиевый диод, рассчитанный на повышенный ток, это ограничение снимется.
Для нормальной работы телефонных автоматических определителей номера (АОН) необходимым условием является
использование резервного источника питания. Схема одного из них показана на рис. 10.5.
Когда источник питания включают в сеть, срабатывает реле К1, которое одновременно является датчиком разряда аккумулятора GB1. Через резистор R2 протекает зарядный ток 5... 10 мА. При отключении сетевого напряжения устройство получает питание от аккумулятора GB1, однако, если напряжение на аккумуляторе упадет ниже 6,5 В, реле отключится. Контакты реле разомкнут цепь питания и защитят таким образом аккумулятор от дальнейшего разряда.

Рис. 10.5. Схема автоматического включения резервного источника питания для АОНа

Аккумуляторная батарея состоит из шести элементов Д-0,55. Ее ресурса хватает для автономной работы телефона в течение часа.
В схеме использовано реле РЭС-64А РС4.569.724.
Налаживают устройство подбором резистора R1, которым устанавливают напряжение отпускания реле К1. Подбором R2 устанавливают величину зарядного тока. Для исключения перезаряда аккумулятора рекомендуется снизить величину зарядного тока до 0,2 мА.
Автоматический перевод питания нагрузки, например, радиоприемника, на резервное батарейное питание при отключении сетевого источника питания позволяет осуществить устройство по схеме на рис. 10.6 . Режим работы устройства индицируется свечением светодиода: зеленый цвет -- работа в штатном режиме; красный - в аварийном (на батареях).
Особенностью индикатора является то, что при работе от батареи ее разряд через подключенный основной блок питания исключен за счет использования диода в цепи затвора полевого транзистора.
Для того чтобы при работе устройства от блока питания не происходила подпитка нагрузки от батареи, выходное напряжение блока питания должно на 0, 7... 0, 8 В превышать напряжение батареи.

Рис. 10.6. Схема автоматического переключения нагрузки на резервное питание с индикацией

Рис. 10.7. Схема автоматического коммутатора питания

Дальнейшим развитием предыдущего устройства является автоматический коммутатор питания (рис. 10.7) . Устройство предназначено для установки в любые носимые и переносные устройства (приемники, плейеры, магнитофоны), имеющие внутренние источники питания. Автоматический коммутатор питания позволяет автоматически переходить от внутреннего к внешнему питанию и обратно.
В исходном состоянии, когда внешний источник питания отключен, реле К1 обесточено, и через его нормально замкнутые контакты напряжение подается с батареи GB1 на нагрузку RH и через диод VD1 на нижний по схеме (красный) диод HL1. При подключении внешнего источника питания реле К1 срабатывает, его контакты К1.1 устанавливаются в нижнее по схеме положение, и питание на нагрузку подается от внешнего источника. Так как на анод верхнего по схеме диода HL1 (зеленого цвета) подается напряжение на 2 В больше, чем на анод нижнего диода HL1 (красного цвета), двухцветный двуханодный светодиод HL1 светится зеленым цветом, указывая на режим работы от сети. При пропадании сетевого напряжения обмотка реле К1 обесточивается, и нагрузка автоматически переключается на работу от батареи GB1. Об этом сигнализирует индикатор HL1, меняя цвет свечения с зеленого на красный. Диод VD1 следует взять типа КД503, КД521 или КД510. Падение напряжения на нем в прямом включении должно быть не менее 0,7 б.-Тогда при свечении зеленого светодиода не будет подсвечиваться красный.
Резистором R2 устанавливают ток через HL1, равный 20 мА. Реле К1 типа РЭС-15 (паспорт РС4.591.005) или другое с рабочим напряжением не более 5 В. Обычно срабатывание реле происходит при напряжении, на 30...40% меньшем его рабочего напряжения.
При настройке устройства резистор R1 подбирают такой величины, чтобы реле К1 надежно срабатывало при напряжении 4 В. При использовании реле К1 других типов с напряжением срабатывания, близким к 4,5 В, резистор R1 можно исключить.
При сетевом питании электронно-механических часов наблюдается неприятный эффект: при отключении сетевого напряжения происходит остановка хода часов.
Более надежными и удобными в эксплуатации являются комбинированные блоки питания - сетевые блоки питания в сочетании с никель-кадмиевыми аккумуляторами Д-0,1 или Д-0,125 (рис. 10.8) .
Здесь конденсаторы С1 и С2 выполняют функцию балластных реактивных элементов, гасящих избыточное напряжение сети. Резистор R2 служит для разрядки конденсаторов С1 и С2 при отключении устройства от сети.
Если контакты выключателя SA1 замкнуты, то при отрицательной полуволне сетевого напряжения на верхнем (по схеме) проводе диод VD2 откроется, и через него будут заряжаться конденсаторы С1 и С2. При положительных же полуволнах конденсаторы станут перезаряжаться, ток потечет, в первую очередь, через открытый диод VD3 и начнет подзаряжаться аккумулятор GB1 и конденсатор СЗ. Напряжение на полностью заряженном аккумуляторе будет не менее 1,35 В, на светодиоде HL1 -- около 2 В. Поэтому светодиод начнет открываться и тем самым ограничивать зарядный ток аккумулятора. Следовательно, аккумулятор постоянно будет в заряженном состоянии.

Рис. 10.8. Комбинированный блок питания электронно-механических часов

При наличии напряжения в сети часы питаются от нее во время положительных полупериодов, а во время отрицательных полупериодов - энергией, запасенной аккумулятором GB1 и конденсатором СЗ. При пропадании сетевого напряжения источником питания становится аккумулятор.
Освещение циферблата включают размыканием контактов выключателя SA1. В этом случае ток зарядки и разрядки конденсаторов С1 и С2 протекает через нити накала ламп EL1 и EL2, и они начинают светиться. А ранее замкнутый двуханодный стабилитрон VD1 теперь выполняет две функции: ограничивает напряжение на лампах до значения, при котором они светятся с небольшим недокалом, а в случае перегорания нити накала одной из ламп пропускает через себя зарядно-разрядный ток конденсаторов, что предотвращает нарушение работы блока питания в целом.
Двуханодный стабилитрон VD1 типа КС213Б можно заменить на два включенных встречно-последовательно стабилитрона Д814Д, КС213Ж, КС512А. Светодиод HL1 - АЛ341 с прямым падением напряжения при токе 10 мА - 1,9...2,1 В. Лампы накаливания EL1 и EL2 типа СМН6,3-20 (на напряжение 6,3 В и ток и м/ч; или аналогичные, корпус выключателя SA1 должен быть надежно изолирован от сети.
В блоке питания для электронных часов (рис. 10.9) гашение избыточного сетевого напряжения осуществляется резисторами R1 и R2 . Это не самое экономичное решение проблемы, но при малых токах потребления вполне оправдано. Кроме того, при случайном касании выхода выпрямителя максимальный ток через тело человека не достигнет опасных значений (не более 4 мА), поскольку величина ограничивающих ток резисторов достаточно велика.

Рис. 10.9. Схема резервированного питания электронных часов

С выхода стабилизатора (аналога стабилитрона и, одновременно, индикатора включения - светодиода HL1) напряжение питания через германиевый диод VD5 подается на электронные часы. В случае отключения сетевого напряжения часы получают питание от батареи GB1, при наличии сетевого напряжения ток выпрямителя подзаряжает элемент питания. В схеме не использован конденсатор фильтра. Роль конденсатора фильтра большой емкости выполняет сам элемент питания.
Электронно-механические часы обычно питают от одного гальванического элемента напряжением 1,5 В. Предлагаемый источник бесперебойного питания (рис. 10.10) для кварцевых электронно-механических часов вырабатывает напряжение 1,4 В при среднем токе нагрузки 1 мА . Напряжение, снимаемое с емкостного делителя С1 и С2, выпрямляет узел на элементах VD1, VD2, СЗ. Без нагрузки напряжение на конденсаторе СЗ не превышает 12 В.
Рассмотренные ранее устройства автоматического перехода на резервное питания в случае отключения основного источника использовали в качестве базового (основного) источник постоянного тока. Менее известны схемы резервирования устройств, работающие на переменном токе. Схема одного из них, способного работать в цепях как постоянного, так и переменного тока приведена ниже .

Рис. 10.10. Схема низковольтного источника бесперебойного питания

Рис. 10.11. Схема включения источника резервного питания с гальванической развязко й

Схема включения источника резервного питания с гальванической развязкой (ИР/7) питается от источника управляющего сигнала (рис. 10.11), потребляя при этом минимальный ток (доли мА). Управляющий сигнал поступает на резистивный делитель R1, R2. Стабилитрон VD6 и диоды VD1 - VD5 защищают вход устройства от перенапряжения и неправильного подключения полярности. ИР/7 отключен контактами реле К1.1. Напряжение, снимаемое с резистора R2 и стабилитрона VD6, поступает через диод VD5 на электролитический конденсатор С1 большой емкости. Этот конденсатор при первом включении устройства заряжается до 9... 10 В за 2.. .3 минуты, после чего схема готова к работе. Скорость заряда и потребляемый устройством ток определяются резистором R1. Транзистор VT1 закрыт падением напряжения на VD5.

Через диод VD7 и резистор R4 устройство подключено к ИР/7.
При отключении управляющего напряжения переход эмиттер - база входного транзистора устройства более не шунтируется. Транзисторы VT1 и VT2 открываются. Конденсатор С1 разряжается через реле К1 и транзистор VT2. Контакты К1.1 реле замыкаются, включая ИРП. Питание на схему поступает от ИРП. Одновременно контакты реле К1.2 могут управлять другой нагрузкой. Если на входе устройства вновь появляется управляющее напряжение, транзистор VT1 запирается. Соответственно, запирается и транзистор VT2. Реле К1 обесточивается, отключая своими контактами К1.1 ИРП. Напряжение на конденсаторе С1 сохраняется на уровне 9... 10 Б, и схема переходит в ждущий режим работы.

Довольно часто возникает необходимость обеспечить резервное питания вашего устройства, в данной статье рассматривается 4 способа как обеспечить это.

Самый простой

Самый простой способ перейти на резервное питание-2 диода

Будет открыт только один из диодов, от того источника питания, напряжение на котором больше. Преимущества схемы-простота и дешевизна. Недостатки схемы очевидны, зависимость напряжения на нагрузке от тока, типа диода(шотки или обычный), температуры. Напряжение всегда будет ниже чем у источника на величину падения напряжения на диоде.

Немного сложней

Это схема немного сложнее, работает она следующим образом: когда напряжение VCC присутствует, и оно больше чем напряжение резервного источника(в данном случае это батарея BT2), то мосфет закрыт, потому что напряжение на затворе(Gate) выше чем на Истоке(Source), пропуск напряжения к нагрузке и Истоку обеспечивает открывшийся диод D3. Когда VCC пропадет, напряжение на Затворе пропадет вслед за ним, зато откроется диод внутри мосфета, обеспечив напряжение на Истоке, ну а поскольку на истоке теперь есть напряжение, а на Затворе нет, то транзистор полностью откроется, обеспечив коммутацию батареи без потери напряжения. Данный способ отлично подходит для коммутации питания для модуля GSM, внешнее напряжение выбираем 4,5в, тогда к модулю через диод D3 придет 4,2-4,3в а от батареи напряжение будет идти без потерь.

Дорогой но без потерь

Без потерь напряжения можно коммутировать источники с помощью специальных микрочхем, в частности LTC4412 скачать даташит Однако, эта микросхема бывает дефицитной и дорогой.

Оптимальный без потерь

Ну вот и подошли к оптимальному способу, причем без потерь. Для начала рассмотрим блок схему LTC4412

Сразу понятно, что в ней нет ничего сложного, так почему бы не повторить её на дискретных элементах? Блок PowerSorceSelector-это матрица из двух диодов, обеспечивает питание остальной схемы, A1-это компаратор, AnalogController-непонятно что, однако можно предположить, что ничего особо важного он не делает, позже станет понятно почему.

Попробуем изобразить это.

DA3-это компаратор. Он сравнивает напряжения на двух источниках. Питается через диод D4 или D5. Когда напряжение на VCC больше чем на батарее, на выходе компаратора устанавливается высокий уровень, это закрывает VT2, и открывает VT3, потому что он подключен на выход через инвертор. Таким образом, VCC проходит на нагрузку без потерь. В случае, когда VCC будет меньше батареи, низкий уровень на выходе компаратора закроет VT3 и откроет VT2.

Надо сказать пару слов о выборе деталей. DA3, DD1 должны иметь потребление, которое допустимо в данной системе, выбор очень широк, от единиц миллиампер, до сотен наноампер (например MCP6541UT-E/OT и 74LVC1G02). Диоды обязательно шотки, если падение на диоде будет выше порога открытия транзистора(а у IRLML6402TR он может быть -0,4в), то он не сможет полностью закрыться.

Обеспечение надежности и бесперебойности электроснабжения имеет первостепенное значение. И, естественно, одним из основных средств решения этой задачи есть автоматизация включения резервного электропитания (АВР). Схемы АВР широко применяются в энергосистемах и распределительных электросетях всех напряжений.

Ниже даются описания трех вариантов выполнения АВР в простых электросетях напряжением до 1000 В, из который больше всего часто придется иметь дело электромонтерам.

Схема АВР в двухпроводных сетях напряжением до 220 В (рис.1) рассчитанная на наличие двух линий, одна из которых является рабочей, другая - резервной, и применяется как в однофазных сетях переменного тока, так и в двухпроводных сетях постоянного тока.

Практическое применение системы двух линий из АВР распространяется на ответственные электросети с небольшой подключенной мощностью токоприемников, как, например, аварийное освещение, цепи управления и сигнализации и др. В случаях питания исключительно ламп накаливания при равенстве напряжений рабочей и резервной линий схема может быть использована совместно для переменного и постоянного токов, например с питанием рабочей линии от источника переменного, а резервного - от источника постоянного тока.

Самая простая схема АВР осуществляется с помощью реле контроля наличия напряжения РКН, контакты которого непосредственно включены в линии рабочего и резервного питания. В двухпроводных сетях переменного тока 220 В в качестве реле РКН может быть применено реле типа ЭП -41/33Б. Контакты этого реле рассчитаны на рабочий ток до 20 А, что при 220 В отвечает мощности 4,4 кВт, достаточной для большинства небольших однофазных установок переменного тока. При постоянном току необходимо выбрать соответствующее реле другого типу, имея при этом в виду, что размыкать цепь при постоянном току значительно труднее, чем при переменном. Следовательно, даже при сравнительно небольших токах придется применить не реле, а контактор с дугогасящими камерами.

Действие схемы показано на мал.1. Реле РКН получает питание от рабочей линии и имеет запирающие контакты в той же линии, что и размыкающие линии резервного питания. Поэтому при наличии питания на рабочей линии реле РКН используется и питание нагрузки осуществляется от нее; резервная линия (независимо от того, есть на ней напряжение или нет) от нагрузки отсоединена. При отсутствии напряжения в рабочей линии происходит переключение контактов реле РКН, то есть размыкаются контакты в цепи питания от рабочей линии и защелкивающиеся в цепи питания резервной.

Рис 1. Схема АВР в двухпроводных сетях.

При возобновлении напряжения на рабочей линии происходит обратное переключение.

Схема АВР в трехфазных сетях переменного тока к 380/220В без контроля обрыва фаз (рис. 2). Как и в предыдущем случае, схема рассчитана на наличие двух линий, из которых одна рабочая, другая - резервная.

Вообще говоря, схемы АВР в трехфазных сетях переменного тока с электросиловой или смешанной электросиловой и осветительным нагрузками требуют контроля обрыва фаз. Это объясняется тем, что трехфазные электродвигатели не могут работать под нагрузкой на двух фазах: они остановятся, и их обмотки могут сгореть (предохранители в этом случае вовремя не перегорают). Однако в некоторых, но достаточно распространенных случаях необходимость контроля отпадает. Это имеет место при защите линий автоматическими выключателями, которые отключают все три фазы одновременно при любом повреждении в электросети, которая защищается, без предохранителей, и выполнении линий питания трехжильными или четырехжильными кабелями, в которых обрыв одной фазы маловероятен. Отсутствие контроля обрыва фаз позволяет существенно упростить схему АВР.

В противовес описанной выше схеме для двухпроводных сетей, где переключения в цепях рабочей и резервной линий осуществлялись непосредственно контактами реле, в схеме АВР для сетей трехфазного переменного тока как исполнительные органы используются магнитные или пускатели трехполюсные контакторы. Это позволяет существенно расширить область применения схемы, потому что номинальные рабочие токи для магнитных пускателей серии П лежат в пределах от 15 до 135 А, а трехполюсных контакторов (типов КТЭ и КТВ) - от 75 до 600 А.

Режимы работы схемы. В рассмотренной схеме каждое из четырех возможных положений переключателя режимов ПП (пакетный переключатель) определяет один из четырех режимов работы схемы.

Положение АВР-1: линия №1 является рабочей, линия №2 - резервной с автоматическим включением резерва.

Положение АВР-2: линия №2 рабочая, линия №1 резервная с автоматическим включением резерва.

Положение Мест, (местное управление) : переключение линий происходит пакетными выключателями 1В и 2В.

Положение 0 (нуль) : обе линии отключенные от цепи управления контакторами 1К и 2К и лишенные питания.

Прежде чем перейти к подробному рассмотрению схемы, необходимо обратить внимание на то, что в цепи управления обеими линиями введенные контакты того же переключателя Пп. Потому его контакты, которые отвечают потому или другому положению, в цепях катушек 1К и 2К обоих контакторов замкнуты одновременно. Так, например, при замыкании контакта переключателя 1-7 Линии №1 одновременно оказывается замкнутым контакт 11-13 Линии №2, на что указывают черные кружки на пунктирных линиях АВР-1.

Рис. 2. Схема АВР в трехфазных сетях переменного тока напряжением к 380/220В без контроля обрыва фаз.

Но контакты 1-3 и соответственно 11-17, а также контакты 1-5 и 11-15 разомкнуты. Контакты 1-3 и 11-17 замкнутся в положении ЛВР-2, при этом контакты 1-7, 11-13, 1-5 и 11-15 будут разомкнуты. Контакты 1-5 и 11-15 замкнуты в положении Мест и, наконец, в положении 0 все контакты разомкнуты, на что указывает отсутствие черных кружков на пунктирной линии 0.

Автоматическая работа схемы. В положении АВР-1, катушка контактора 1К питательного Линии №1 получает питание по цепи 1-7-0. При этом главные контакты 1К замкнуты и нагрузку питает Линия №1, тем временем катушка контактора 2К Линии №2 (цепь которой разомкнута блоком-контактом 1К) лишена питания. Следовательно, Линия №2 отключена от шин и является резервной.

Допустимо теперь, что Линия №1 осталась без напряжения. В этом случае контактор 1К отпустит, его главные контакты отсоединят Линию №1 от шин, а блок-контакт замкнет цепь катушки 2К (11-13- 17-0). Если на Линии №2 есть напряжение, то контактор 2К включится и питание шин возобновится. Другими словами, состоится АВР, то есть автоматическое включение резерва.

При возобновлении питания по Линии №1 создаются обратные переключения, то есть автоматически включится контактор 1К, а потом отключится контактор 2К, потому что при включении контактора 1К его блок-контакт 13-17 размыкает цепь катушки 2К.

Таким образом, рассмотренная схема относится к категории схем из самовозвратом.

Необходимо подчеркнуть, что такое самовозвратом не всегда допустимая, особенно в сложных сетях высокого напряжения. В этих случаях схема возвращается в исходное положение после ряда предыдущих операций, осуществляемых вручную или с помощью телемеханики.

Если переключатель ПП занимает положение АВР-2, то рабочей является Линия №2, а резервная - Линия №1. Катушка контактора 2К включена по цепи 11-17-0, тем временем как катушка контактора К1 отключена блоком-контактом 2К 3-7. При исчезновении напряжения на Линии №2 автоматически включается Линия №1 аналогично описанному выше.

Работа схемы на местном (ремонтному, «ручному») управлении. В положении переключателя Мест цепи АВР разомкнуты. Контактор 1К руководствуется выключателем 1В по цепи 1-5-7-0, контактор 2К. - выключателем 2В по цепи 11-15-17-0. Этот режим предвиден для испытания и проверок действия всего устройства потом или ремонту налаживания, а также на случай неисправности в цепях автоматического управления.

Наконец, положение переключателя 0 отвечает полному отключению как главных цепей, так и цепей управления, что необходимо при ремонтных работах.

Предупредительная сигнализация. Действие АВР возобновляет питание электроустановки по резервной линии, но вместе с тем свидетельствует о нарушении нормального режима работы и необходимости принять меры к устранению причины, что вызывало действие АВР. Поэтому нужно немедленное оповещение дежурного персонала пункта, в ведении которого находится электроустановка, о переключении. Для оповещения служит предупредительная сигнализация, которая особенно необходима для полностью автоматизированных установок, которые работают без дежурного персонала, где ненормальность в питании, которое вызывало действие АВР, может оставаться незамеченной очень долгое время.

Для предупредительной сигнализации используется третий полюс переключателя режимов ПП, через который включенные блоки-контакты 1К и 2К. Схема работает таким способом. При нормальном питании шин цепь предупредительной сигнализации разомкнута.

При автоматическом переключении введений в положение переключателя ПП АВР-1 Линия №2 включится, блок-контакт 2К замкнется, благодаря чему на дежурный пункт подается предупредительный сигнал. В положении переключателя АВР-2 при включении Линии №1 цепь предупредительной сигнализации защелкивающаяся блоком-контактом 1К.

Аварийная сигнализация. Оповещение о полном отключении установки выполняет аварийная сигнализация. Для аварийной сигнализации, которая действует при отсутствии напряжения на обеих линиях, используется специальная цепь с включенными последовательно блоками-контактами контакторов обеих линий. Если хотя бы одна из линий находится в рабочем состоянии, то цепь аварийной сигнализации прервана соответствующим блоком-контактом 1К или 2К. При исчезновении напряжения на обеих линиях оба блоки-контакта окажутся замкнутыми и по цепи аварийной сигнализации будет поданный сигнал на дежурный пункт.

Важное замечание. Рассмотренная схема, так же как рассмотрена ниже схема с контролем обрыва фаз, допускает возможность одновременного питания шин по двум линиям в течение очень короткого времени, необходимого для процесса переключения. Хотя это время вычисляется долями секунды, однако для обеих линий должны быть соблюденные условия рівнобіжної работы (тот же вид тока - постоянный или переменный, равенство напруг, соблюдение фаз).

Схема АВР в трехфазных сетях переменного тока к 380/220В с контролем обрыва фаз (рис. 3) применяется в случаях, когда возможен обрыв одной или двух фаз без отключения всей питательной линии.

Наиболее часто это возникает в электросетях, защищенных плавкими предохранителями, когда короткое замыкание или перегрузка вызывает перегорание предохранителя лишь в одной или двух фазах. Аналогичное явление возможно при обрыве одного или двух проводов в результате ветра, гололеда, неосторожность обслуживающего персонала и тому подобное

Как и в схеме на рис. 2, шины электроустановки получают независимое одно от одного питания по двум трехфазным линиям, одна из которых является рабочей, а вторая резервной. На введениях линий устанавливаются магнитные пускатели или трехполюсные контакторы.

Выбор режима осуществляется с помощью переключателя режимов ПП, что выполняет той же функции, что и в описанной выше схеме.

Реле контроля обрыва фаз. Для контроля обрыва фаз служит специальное реле типа Е-511 Киевского завода реле и автоматики. Оно состоит из двух электромагнитных реле напряжения: основного реле 2ПП для линии №1 (4ПП для линии №1) и вспомогательного реле 1ПП (3ПП), а также содержит конденсаторы C1, С2 и активные опоры R1 и R2. Как видно из схемы, конденсатор C1 и сопротивление R1 соединены последовательно и включены между фазами А1 и В1 линии №1 (А2, В2 линии №2). Конденсатор С2 и сопротивление R2 также соединены последовательно и присоединены между фазами В1 и С1 (У2, С2).

Величины сопротивлений и конденсаторов подобраны таким образом, что при отсутствии обрыва фаз (нормальный режим) между точками X1 и Y1 для реле линии №1 (Х2 и Y2 для реле линии №2) напряжение равняется нулю. Следовательно, реле 1ПП (3ПП, проходит между точками X1 и Y1 (X2 и Y2), отпущенный и его контакт в цепи реле 2ПП (4ПП) замкнут: реле 2ПП (4ПП) притянуто.

При обрыве одной из фаз симметрия напряжений нарушается. Вследствие этого между точками X1 и Y1 (Х2 и Y2) возникает разница потенциалов, достаточная для срабатывания реле 1ПП (3ПП). При срабатывании реле 1ПП (3ПП) его контакт размыкает цепь катушки реле 2ПП (4ПП), реле отпускает, что, как будет объяснено ниже, приводит к действию АВР.

Рис. 3. Схема АВР в трехфазных сетях переменного тока напряжением к 380/220В с контролем обрыва фаз. Пунктирными линиями обведенные элементы, которые входят в состав реле типа Е-511.

При обрыве двух фаз, например А1 и В1, реле 2ПП также отпускает, потому что оно остается присоединенным только к одной фазе С1. При обрыве фаз У1 и С1 реле 2ПП отпускает, потому что остается присоединенным только на одной фазе А1. И, наконец, при обрыве фаз А1 и С1 реле 2ПП полностью избавляется от питания.

Взаимодействие реле обрыва фаз с схемой АВР. Для приведения схемы в рабочее состояние необходимо переключатель режимов ПП установить в положение АВР-1, а потом включить рубильник 1P. При этом реле 2ПП сработает и включит катушку контактора 1К: на шины будет поданное напряжение от линии №1. Потом нужно включить рубильник 2Р. При включении рубильника 2Р контактор 2К не включится, потому что цепь его катушки уже разомкнута блоком-контактом 11-13 включенного ранее контактора 1К, но реле 4ПП сработает и замкнет свой контакт 15-13.

При перегорании предохранителей и обрыве проводов в одной, двух или трех фазах линий № 1 реле 2ПП отпустит и контактом 1-3 отключит контактор 1К, после чего через блок-контакт, который замкнулся, 1К 11-13 включится контактор 2К: питание шин возобновится от линии №2.

При возобновлении нормального питания по линии №1 схема автоматически вернется в первобытное положение: включится контактор 1КО, после чего отключится контактор 2К.

В положении переключателя ПП АВР-2 будут происходить аналогичные переключения.

Необходимо особенно подчеркнуть следующее:

а) В процессе возобновления питания после действия АВР обе линии кратковременно оказываются соединенными через шины.

б) При переключении переключателя ПП из положения АВР-1 (АВР-2) в положение АВР-2 (АВР-1) возможный перерыв питания шин на время, необходимое для включения контактора 2К (1К).

в) Прежде чем переводить схему на местное управление, необходимо включить выключатель 1В или 2В в зависимости от того, какая линия должна будет продолжать питать шины.

Причины применения в схеме реле типа Е-511. Реле типа Е-511, как видно из приведенного выше описания, являет собой сравнительно сложное устройство, и, естественно, возникает вопрос: или нельзя контролировать обрыв фаз более простыми средствами. Ответ дает рис. 4. На нем показано, что в системах трехфазного переменного тока при наличии присоединенных к сети электродвигателей обрыв одной фазы не вызывает полного отсутствия напряжения в этой фазе со стороны нагрузки. Некоторая часть напряжения в оборванной фазе Uост будет поддерживаться через обмотки неотключенного электродвигателя, и она достаточно большая, чтобы удерживать притянутым якорь простого промежуточного реле (какое с целью осуществления контроля за обрывом фазы должно было бы отпустить). Выходит, контроль даже с помощью трех промежуточных реле не достигает цели.

Рис. 4. Недопустимость контроля обрыва фаз тремя промежуточными реле.

а - при соединении обмоток электродвигателя в звезду; бы - при соединении в треугольник.

Надежный контроль обеспечивается или тремя реле минимального напряжения, значительно более чувственными, чем промежуточные реле, или специальным реле, например типа Е-511.

С необходимостью организации резервного питания сталкивается практически каждый владелец загородной недвижимости. И причин этому несколько: изношенность коммуникаций, интенсивная застройка в микрорайоне, несоответствие характеристик подстанции возросшим потребностям и ряд других. Это вызывает систематические (порой надолго) отключения напряжения, его постоянные броски или перекосы фаз. Проблема, знакомая многим.

В таких условиях не то что говорить о гарантированном сроке эксплуатации различных (и порой весьма дорогостоящих) бытовых приборов; многие из них вообще не получается включить. Например, импортный газовый котел, который довольно популярен у «частников», очень требователен к качеству напряжения. «Заморским изобретателям» и в голову не может прийти, что с электричеством возможны такие недоразумения. И если сработает защита и он «встанет», зимой, при наших морозах, то это самое настоящее ЧП.

С целесообразностью резервирования по энергоснабжению все ясно. Но вот как лучше это сделать и что стоит учесть, мы рассмотрим подробно.

Здесь подразумевается, в течение какого срока необходимо организовать независимое электроснабжение участка. Одни устройства рассчитаны на длительную непрерывную работу ( , бензиновые двигатели с водяным охлаждением), другие требуют систематической остановки (те же бензиновые с охлаждением воздушным).

Кстати, некоторые специализированные фирмы предлагают услуги по подключению непосредственно к ЛЭП (минуя местную подстанцию). Иногда просто невозможно организовать энергоснабжение иным способом. Для этого используется или кабель, уложенный в траншею, или воздушная линия, протянутая к участку. Если у данной организации есть соответствующая лицензия, и она берет на себя все заботы по оформлению разрешительных документов, то это – отличный вариант.

Недостаток – стоимость работ, так как придется устанавливать свою собственную подстанцию. Хотя есть и выход – «скооперироваться» с соседями, которые испытывают те же неудобства в энергоснабжении. Зато есть и ощутимый «плюс» – перебои с напряжением исключены, да и его качество будет соответствовать всем нормативам.

Какие устройства необходимо «запитать»

примерная мощность

От этого будут зависеть и дальнейшие критерии подбора источника энергии. Ориентироваться следует, естественно, на те, которые должны работать постоянно. К примеру, тот же котел, холодильник, морозильная камера. Каждый собственник должен составить список всех изделий, которые должны быть постоянно включены.

Тип напряжения

Большинство бытовых агрегатов потребляют 1-фазное 220 В. Но встречаются и такие, которым необходимо 3 ф. Это нужно учесть, если они также постоянно используются. Но такие изделия встречаются довольно редко.

Мощность источника

По примерным оценкам специалистов, нужно ориентироваться по максимуму на 20 кВт. Для загородного дома (если это не дворец, напичканный различными устройствами) вполне достаточно. Но это для варианта «все включено». Возможно, хватит агрегата и на 4 кВт. Для примера – если одновременно будут работать котел (вместе с насосом), холодильник и телевизор + освещение, то понадобится не более 2 – 2,5 кВт. Если система водоснабжения автономная, то периодически будет включаться насосная станция. Ее мощность также нужно учесть.

Кроме того, необходимо принять во внимание, что некоторые бытовые приборы характеризуются большим пусковым током. Например, у электромясорубки он превышает номинальное значение в 6 – 7 раз. Кроме того, должен быть и расчет на перспективу. Возможно, что-то будет приобретено еще, и также с обязательным постоянным включением. Необходимо сделать и «запас» для самого генератора, так как он не должен работать на пределе. Оптимальная нагруженность – не более 80%.

Подведем итог. Как видим, нюансов довольно много. Поэтому следует определить все «изделия» (включая и приборы освещения на прилегающей территории, автоматику, сигнализацию и тому подобное), которые должны быть в любое время обеспечены бесперебойным питанием и посчитать их совокупную мощность. Полученную величину нужно умножить на 1,5. Вот по такому параметру и подбирать энергоустановку.

Вид топлива

Это может быть газ, дизельное топливо (соляра), бензин. Каждый определяет сам, с чем ему удобнее (и дешевле) работать.

Место установки

Оно определяет как габариты источника питания, так и его конструктивные особенности. Например, дизель больше дымит, поэтому необходима качественная «вытяжка». Агрегаты без кожуха – «шумные», следовательно, они более подходят для размещения в хозпостройках (пристройках).

Если предусмотрена установка резервного агрегата на улице, то нужно обратить внимание на способ его запуска (ручной или автоматический, от АКБ).

Особенности источников резервного питания

Газогенераторы

Если дом газифицирован, то это наиболее оптимальный вариант. Топливо для такого устройства самое дешевое. Мощность большинства таких изделий начинается от 7 кВт, что вполне достаточно для загородного дома с периодическим пропаданием напряжения в сети.

Примерная стоимость – 180 000 рублей. Но если учесть, сколько будет сэкономлено на топливе (по сравнению с бензином или солярой) за весь период эксплуатации, то цена вполне приемлемая. Кроме того, почти отсутствуют вредные выхлопы.

Бензогенераторы

Наиболее распространенный тип устройств для резервного эл/питания. Отчасти это потому, что мы лучше разбираемся именно в таких двигателях, чем в дизельных. Ведь многие собственники загородных домов имеют личный автомобиль, следовательно, хотя бы общее понятие о принципе работы есть. К тому же они проще в обслуживании.

Дизельные агрегаты

Под этим наименованием подразумевается несколько разновидностей подобной «техники» — дизель-генераторы, дизельные станции и так далее. Неоспоримое достоинство – возможность длительной (без остановок) эксплуатации. Кроме того, нет паров бензина, которые требуют принятия особых мер по пожарной безопасности.

Мы привели только наиболее распространенные устройства для организации резервирования. Но есть и ряд других, которые хотя и применяются реже, но тоже достойны внимания. Например, ИБП, солнечные батареи, системы на инверторах.

Вывод

Практика показывает, что независимо от способа решения проблемы резервирования системы электроснабжения, необходимо все-таки иметь запасной генератор. По отзывам большинства собственников загородных домов, более удобными как с точки зрения эксплуатации, так и ремонта являются агрегаты бензиновые. Например, их всегда можно дозаправить прямо из бака автомобиля.

Решая вопрос организации резервного электроснабжения, не стоит руководствоваться чьим-то мнением, ориентироваться на друзей или соседей. Главный «подсказчик» – собственный дом и находящееся в нем имущество (в первую очередь, технические устройства и расположение осветительных приборов). Они и определяют целесообразность приобретения того или иного агрегата.

Нужно учесть, что ИБП, солнечные батареи имеют ограниченное применение как по времени, так и по подключаемым устройствам (схемам). В их комплект входят АКБ, а они требуют постоянного внимания (контроль состояния, подзарядка). Кроме того, современные батареи (в отличие от «старых» моделей, в которых можно было заменять отдельные банки) ремонту не подлежат.

При наличии средств целесообразно смонтировать более сложную, но надежную комбинированную схему резервирования. Например, включение аварийного питания от ИБП с последующим автоматическим запуском дизеля. Это более затратно, зато перебои в электроснабжении исключены.




Top