Последовательно параллельное соединение солнечных панелей. Как правильно подключать солнечные панели разной мощности (pv модули) - бесперебойное питание - каталог статей - вега - профессиональное оборудование

Взвесив все положительные и отрицательные моменты использования альтернативных источников энергии, и выбрав использование последних в качестве основного поставщика электрического тока к потребляющим электроприборам, можно приступать к установке модулей на их будущее место работы: то есть балкон или крышу своего дома. Казалось бы, что может быть проще, но возникает вполне логичный вопрос - как соединить так, чтобы максимально и, по возможности, без потерь использовать возможности .

Значение школьного курса физики

Вспоминая обязательную школьную программу по физике, можно отметить, что возможны три варианта соединения :

  • параллельное,
  • последовательное,
  • смешанное, или как его еще называют последовательно-параллельное.

Название каждого соединения возвращает в прошлое на уроки физики. Даже если не получается вспомнить точное определение каждому из указанных терминов, почти все смогут нарисовать или хотя бы своими словами объяснить основные отличия той или иной схемы подключения.

Схема соединения солнечных источников энергии подчиняется все тем же законам школьной физики. Казалось бы, солнечные батареи - высокотехнологичный агрегат, еще недавно бывший основой для написания фантастических произведений, должен подключаться также непонятно, как и сам процесс фотосинтеза, происходящий в панелях, но это далеко не так.

Параллельное соединение солнечных панелей обеспечивает такое подключение моделей, при котором все элементы имеют два общих узла схождения или разветвления проводников. То есть, в каком бы месте и последовательности не происходило соединение выводов солнечных батарей, все минусовые и плюсовые клеммы сойдутся в двух основных точках: соответственно плюс и минус.

Последовательное соединение солнечных модулей дает возможность соединить элементы таким образом, чтобы для протекания электрического тока остался единственно возможный путь, по которому и будет происходить передача энергоносителя от источника к потребителю. Схема выглядит как цепочка нескольких солнечных батарей, соединенных через один проводник таким образом, чтобы выходной конец одной батареи соединялся с входной клеммой другой, и так от первой до последней панели.

Смешанная схема соединения позволяет соединять солнечные батареи одновременно двумя способами. При таком совмещении вариантов некоторые панели формируются в отдельные блоки, имеющие параллельное соединение, а затем эти блоки соединяются между собой последовательно или наоборот.

Отличия в работе модулей соединенных разными схемами

Каждая схема подключения солнечных батарей обеспечивает их бесперебойную работу. Но есть интересные особенности, которые помогут более разумно распорядиться не только самой солнечной электроэнергией, но и сэкономить на отдельных составных элементах всей цепочки автономного электропитания.

На практике это выглядит следующим образом. К примеру, необходимая - 360 Вт. Для набора этой мощности, помимо самих солнечных панелей, можно приобрести пару инверторов напряжением 12 В и мощностью 180 Вт. Соединив эти приборы с помощью параллельного соединения можно выйти на заданную мощность.

Конечно, 360 Вт крайне не достаточно для обеспечения жилой площади достаточным количеством электричества. Поэтому применяются несколько инверторов необходимой мощности.

Но следует помнить, что повышение мощности приведет к увеличению нагрузки на проводящие элементы.

Все это пагубно сказывается на пожарной безопасности, так как неверно рассчитанное сечение провода может привести к плачевным последствиям. Именно поэтому необходимо перед установкой нужны теоретические расчеты о количестве инверторов и их мощности.

Что касается последовательно соединенных солнечных батарей, то тут экономическая составляющая заключается в том, что один инвертор на 24 В, стоит дороже чем два по 12 В. Но установив последние инверторы параллельно, невозможно добиться схемы с напряжением 24 В или 36 В. Зато при последовательной конфигурации можно использовать несколько относительно дешёвых модулей по 12 В.

По такому же принципу выполняется соединение всех элементов солнечных батарей, начиная от самих панелей и заканчивая накопителями, то есть аккумуляторами.

В настоящее время существует множество поставщиков составляющих электросетей для сборки солнечных модулей. Достаточно широкий спектр поможет найти необходимые элементы, которые могут работать по любой из описанных схем.


В связи с резким повышение стоимости электроэнергии, образованные люди стают все больше интересоваться подключением экономных . Неограниченное количество запасов экологически чистой энергии сегодня стало интересовать все большее количество населения планеты. Задача каждого человека заключается лишь в умении эффективно преобразовать солнечную энергию в необходимую, к примеру, электрическую или тепловую.

Получение электрической энергии стало реальной возможностью благодаря изобретению которой основан на специфических свойствах самого проводника: вырабатывать электрический ток под воздействием света.

Устройство и принцип действия системы

Базовой составляющей солнечной батареи являются фотогальванические ячейки, которые производятся из кремниевых пластин. Сама панель, на которую крепятся в дальнейшем кремниевые пластины, состоит из алюминиевой рамы со вставленным закаленным, ударопрочным, сверхпрозрачным стеклом. Поверх стекла, напоминающего по конструкции матрицу, аккуратно укладываются фотогальванические ячейки, которые соединяются между собой методом пайки.

Следует отметить, что величина солнечной батареи, которую устанавливают на поверхность здания, напрямую зависит от необходимого количества потребляемой мощности. В конце сборки всей батареи остаются 2 выхода «+» и «-».

В дальнейшем, набор полученных ячеек подвергается принудительной инкапсуляции, то есть тщательной герметизации при помощи специальной пленки или двухкомпонентного компаундома.

Далее, под воздействием солнечной энергии на кремниевых пластинах образуется разность потенциалов, которая в результате последовательного крепления ячеек между собой суммируется. Таким образом, получается сбор солнечной энергии и преобразование ее в электрическую.

Следует заметить, что напряжение солнечной батареи будет стационарно изменчиво. Такая изменчивость напрямую зависит от интенсивности светового потока, то есть времени суток и года.

Для обеспечения эффективного использования преобразованной электроэнергии, необходимо правильно осуществить подключение солнечной батареи в схеме взаимодействия с иными обслуживающими устройствами.

Реализация подключения устройства

Наибольшей популярности и распространенности, на сегодняшний день, получили 12-вольтовые системы с прямым преобразованием в 220 В переменного напряжения. Базовая схема такой батареи зачастую состоит из:

  1. Солнечной батареи. Возможно нескольких, в зависимости от потребляемой мощности всего электрического оборудования.
  2. Контроллера заряда-разряда аккумулятора.
  3. Аккумуляторных батарей.
  4. Инвертора.

Для более внятного представления работы всей схемы необходимо разобраться в работе и задаче каждого элемента.

  • Диод Шоттки. Зачастую этот диод схематически не обозначается на схемах, так как считается изначально вмонтированным элементом системы. Главным предназначением таких диодов является препятствие протеканию обратного тока в ночное время суток и мало солнечную погоду.
  • Контролер заряда АКБ. Является электронным устройством, способным автоматически управлять процессами зарядки и разрядки аккумулятора, а также защитить его от чрезмерной зарядки и разрядки.

Работа АКБ происходит следующим образом: в светлое время суток, когда аккумулятор осуществляет зарядку от солнечной батареи, контроллер следит за напряжением на клеммах аккумулятора, и как только оно достигает верхнего предела, процесс зарядки работа по приему энергии прекращается и ток перенаправляется к нагрузке.

В темное время суток солнечная панель не осуществляет работу, а питание всех составляющих системы осуществляется исключительно за счет предварительно заряженного аккумулятора. Как только, напряжение на клеммах аккумулятора достигло нижнего предела – контроллер производит отключение работы схемы.

Дополнительными функциями, которые контроллер осуществляет для защиты элементов реализованной схемы, являются: короткое замыкание и гроза.

  • Аккумуляторная батарея. В реализации такой схемы работы системы является накопителем электрической энергии, вырабатываемой солнечной батареей на протяжении всего светового дня. Такая реализация схемы дает возможность осуществлять обслуживание электрических приборов в темное время суток.

В качестве аккумуляторной батареи можно использовать: автомобильные аккумуляторы (только на открытом пространстве), необслуживаемые аккумуляторы (специально предназначены для осуществления многократных и частых циклов зарядки-разрядки).

Монтаж системы

Солнечные батареи устанавливаются на открытых участках под углом 45 градусов к горизонту по направлению в южную сторону. Только в таком положении можно поглотить наибольшее количество электрической энергии.

Если панель поместить на поворотное устройство, которое будет осуществлять движение по направлению светила в автоматическом режиме, то можно накопить большее количество энергии для личного пользования.

Разновидности систем

Следует отметить, что небольшие помещения, такие как частные дома и квартиры снабдить необходимым запасом электроэнергии гораздо проще, нежели большие предприятия. Поэтому для частных случаев установку системы можно осуществлять своими руками, чего не скажешь о больших и мощных производствах, на которых площадь панелей может достигать километров.

Использование солнечных батарей сегодня является отличной альтернативой рационального вложения капиталов в прогрессивную технику, которая помогает сохранить не только бюджет, но и окружающий мир.

Продолжаем нашу тему, посвященную строительству домашней солнечной электростанции. С общей информацией о , о принципах расчета солнечных панелей, а также о для автономных систем электроснабжения вы можете ознакомиться, прочитав наши предыдущие статьи. Сегодня же мы расскажем об особенностях самостоятельного изготовления солнечных панелей, о последовательности подключения электрических преобразователей и о защитных устройствах, которые должны входить в комплект солнечной электростанции.

Изготовление фотоэлектрических модулей

Стандартный фотоэлектрический модуль (панель) состоит из трех основных элементов.

  1. Корпус панели.
  2. Рамка.
  3. Фотоэлектрические ячейки.

Самым простым по конструкции элементом солнечного модуля является его корпус. Как правило, его лицевая сторона представляет собой обыкновенный лист стекла, размеры которого соответствуют количеству солнечных ячеек.

Adoronkin Пользователь FORUMHOUSE

Стекло использовал обычное оконное – 3 мм (самое недорогое). Проводил тест: производительность модуля стекло ухудшает незначительно, так что не вижу особого смысла брать закалённое или просветлённое стекло.

Оконное стекло часто используется при изготовлении защитного корпуса для солнечных панелей. Если же вы сомневаетесь в прочности этого материала, то можно использовать стекло закаленное или обычное, но более толстое (5…6 мм). В этом случае можно не сомневаться, что фотоэлектрические элементы будут надежно защищены от проявлений разрушительной природной стихии (от града, например).

Тыльная сторона корпуса может быть изготовлена из влагостойкого материала, который будет защищать его от попадания пыли и влаги на солнечные элементы. Это может быть металлическая жесть, герметично прикрепленная к рамке с помощью заклепок и силикона или, опять же, обыкновенное стекло.

При этом наличие задней стенки на корпусе самодельной солнечной панели некоторые умельцы и вовсе не приветствуют.

Adoronkin

Тыльная сторона батареи открыта (для лучшего охлаждения), но покрыта акриловым лаком, смешанным с прозрачным герметиком.

Учитывая, что при нагреве панелей значительно падает их мощность, подобное решение выглядит оправданно. Ведь оно обеспечивает эффективное охлаждение полупроводниковых элементов и одновременно – качественную герметизацию солнечных ячеек. Все вместе гарантированно продлевает срок эксплуатации солнечных панелей.

Рамка

Рамки для самодельных солнечных панелей чаще всего изготавливают из стандартных алюминиевых уголков. Лучше использовать алюминий с покрытием – анодированный или крашенный. Если есть соблазн изготовить рамку из дерева или пластика, будьте готовы к тому, что через пару лет изделие может рассохнуться или вовсе развалиться под действием климатических факторов (исключение составляет оконный пластик).

BOB691774 Пользователь FORUMHOUSE

Покупаю там, где производят окна. Цена – 80 руб. за метр. Профиль полностью готов к работе, только запилить надо на 45° и под нагревом, углы склеить.

Рассмотрим самый простой вариант панели: панель с алюминиевой рамкой.

Детали алюминиевой рамки легко скрепляются между собой болтами или саморезами.

Впоследствии к алюминиевому уголку можно без особых усилий приклеить стеклянный корпус. Все, что для этого нужно – обычный силиконовый герметик.

Adoronkin

Я брал силиконовый герметик – универсальный. Достаточно 1-го тюбика. Герметик лучше брать прозрачный. Химическую безопасность герметика по отношению к фотоэлектрическим элементам подтвердила годовая эксплуатация батареи.

В итоге получится неглубокий ящик со стеклянным дном, к которому впоследствии будут приклеены фотоэлектрические элементы.

Определяя размер корпуса и рамки, следует учитывать необходимость в зазоре между соседними фотоэлектрическими ячейками, который равен – 2…5 мм.

Пайка солнечных элементов

Самым ответственным этапом сборки солнечных модулей является спаивание фотоэлектрических элементов. Солнечные ячейки изготовлены из очень хрупкого материала, поэтому и обращения они требуют соответствующего. Те люди, которые уже имели с ними дело, впредь при покупке солнечных элементов заказывают себе ячейки с некоторым запасом по количеству (10 – 15%). Например, для изготовления панели, рассчитанной на 36 элементов, они приобретают 39 – 42 ячейки.

Тонкие шинки для спаивания солнечных ячеек, более толстые шинки (с помощью которых соседние ряды панели объединяются между собой) и солнечные ячейки лучше приобретать у одного и того же продавца. Это экономит время на поиски подходящих элементов и дает определенные гарантии их совместимости.

Пайка элементов в случае их последовательного соединения производится по следующей схеме.

Отрицательный (лицевой) контакт солнечного элемента припаивается к положительному (тыльному) контакту следующей ячейки и т. д.

Так выглядит готовая панель.

Для работы понадобятся следующие инструменты и материалы:

  • Мощный паяльник 40-60 Вт (не менее).
  • Флюс (флюс-маркер) – обязательно должен быть нейтральным (в противном случае припаянные контакты быстро окислятся).
  • Шинки разной ширины.
  • Резиновые перчатки – чтобы не вымазывать солнечные элементы (особенно их лицевую часть).

Еще нам понадобится олово. Это на тот случай, если шинка будет плохо припаиваться к контактам. Ячейки, с которыми ведется работа, располагаются на твердой и ровной поверхности. Это может быть дощечка или стекло. Для того, чтобы ячейки не скользили по рабочей поверхности стола, их можно зафиксировать с помощью кусочков изоленты, проклеенных по периметру элемента. Клеить изоленту на саму ячейку (особенно на ее лицевую часть) не следует. Свободный конец шинки следует прикрепить к столу с помощью двухстороннего скотча.

Пайка элементов и сборка панелей производятся в следующем порядке: первым делом контактная канавка пластины по всей длине промазывается флюсом. Затем плоская шинка укладывается в канавку и припаивается к контакту пластины по всей ее ширине (на отрицательном полюсе элемента).

Или в трех точках (как правило – на положительном полюсе элемента).

Количество точек припаивания зависит от конструкции элемента.

Поочередно контакты припаиваются ко всем солнечным элементам. Дополнительный припой используется только в тех случаях, когда с первого раза шинку не удается надежно припаять к пластине.

В первую очередь контакты припаиваются к лицевой (отрицательной) стороне каждой ячейки, которая будет ложиться на стеклянный корпус панели.

Шинка необходимого размера подготавливается заранее. Ее длина должна соответствовать ширине 2-х соседних пластин.

Пластины с припаянными контактами выкладываются на стеклянный корпус панели лицевой стороной вниз. После этого их можно припаивать друг к другу согласно полярности («–» каждой ячейки припаивается к «+» соседней ячейки и так далее).

Для того чтобы элементы было удобнее располагать на стеклянном корпусе панели, его поверхность можно предварительно разметить.

Sliderrr Пользователь FORUMHOUSE

На стекле нанес черным фломастером точки расположения ячеек. Расположил ячейки и зафиксировал их головками, гайками и болтами.

Гайки, ключи и другие металлические предметы в данном случае использовались в качестве груза. Зафиксировать ячейки можно также с помощью прозрачного силикона, который наносится на стекло по углам каждого элемента.

Объединяя между собой соседние ряды фотоэлектрических элементов, следует использовать дополнительный припой. Это повысит надежность пайки в местах соединения проводников различной ширины.

Когда все ячейки спаяны между собой, а проводники выведены наружу сквозь алюминиевую рамку панели, можно приступать к заливке солнечных элементов.

Для этого швы между соседними элементами заливаются силиконовым герметиком.

Sliderrr

Залил силиконом зазоры между панелями (немного приплюснул и срезал сопло шприца, чтобы обеспечить эстетичность шва и хороший контакт силикона со стеклом). Когда подсохло, промазал по периметру каждую панельку ещё раз. После того, как высох герметик, два раза покрыл ячейки яхтовым лаком. В дальнейшем попробую лак изоляционный.

Пользователь Mirosh вместо лака использует для заливки ячеек белый силикон, который наносит на поверхность тонким слоем при помощи шпателя. Результат – вполне удовлетворителен.

Перед окончательной сборкой каждый элемент желательно протестировать на предмет генерируемой им мощности. Сделать это можно с помощью мультиметра. Если существенных различий между силой тока и напряжением, которые генерирует каждая отдельная ячейка, нет, то можно смело включать их в состав фотоэлектрического модуля.

Установка диодов Шоттки

В конструкции солнечных панелей зачастую используются элементы, о которых мы ранее не упоминали. Это шунтирующие диоды Шоттки.

К их установке прибегают по двум причинам.

Во-первых, шунтирующие диоды ставят для того, чтобы в темное время суток или в пасмурную погоду солнечные панели не разряжали аккумулятор, входящий в комплект солнечной электростанции.

Alex МАП Пользователь FORUMHOUSE

В случае прямого подключения солнечных батарей к аккумулятору ночью на панелях высаживается напряжение, и они греются. Поэтому в схему примитивного солнечного контроллера, разработанного ещё лет 10 назад, был введён диод Шоттки (защита от ночного разряда АКБ).

Если к солнечным панелям подключен современный контроллер, то особой необходимости в защите от ночного разряда нет. Исправный контроллер, без помощи дополнительных устройств, вовремя отключит СБ от аккумулятора.

Во-вторых, если солнечный модуль закрывается тенью от стоящего рядом здания (или другого массивного предмета), то мощность этого элемента снижается. Последствия снижения мощности таковы: по отношению к остальным панелям, подключенным к затененному элементу последовательно, затененный элемент из источника тока превращается в резистивную нагрузку. Сопротивление затененного модуля сильно возрастает, а его температура значительно увеличивается.

Значительное снижение мощности – это самое безобидное из того, к чему может привести частичное затенение последовательно соединенной солнечной батареи. Ведь в конечном итоге затененный модуль перегреется и выйдет из строя. Это явление получило название «эффект горячего пятна».

Для того чтобы избежать этого эффекта, параллельно каждому последовательно подключенному модулю (или последовательному ряду солнечных ячеек) устанавливается диод Шоттки. Диод позволяет пустить электричество в обход затененной панели. В этом случае генерируемое напряжение снизится, но большой просадки тока удастся избежать.

Alex МАП

Большой ток от остальных панелей цепи, которые освещены, не прервётся, а пойдёт в обход затенённых частей панелей через диоды. Итоговое напряжение станет чуть меньше, но контроллеру это не важно. Если бы в панелях не были встроены диоды, тогда при малейшем затенении хотя бы кусочка 1 панели вся цепочка полностью бы переставала давать ток.

Иными словами, потери мощности будут соизмеримы с площадью затенения.

Диоды можно устанавливать параллельно всему модулю, а можно параллельно его отдельным рядам.

Здесь изображена схема, при которой каждый ряд ячеек, установленных в одном модуле, имеет свой диод. На практике же модуль чаще всего разделяется на 2 равные части.

HouzeR Пользователь FORUMHOUSE

Обычно для четырехрядной панели выводится средняя точка, то есть ячейки шунтируются пополам. Диоды ставят в клеммной коробке.

В любом случае, все модули солнечной панели следует располагать так, чтобы свет попадал на них равномерно. Тогда не придется решать проблему шунтирования отдельных модулей или даже ячеек.

Клеммные коробки для удобства располагают на тыльной стороне солнечных панелей.

Если несколько последовательно соединенных групп панелей подключается к контроллеру параллельно, то в этом случае каждая последовательная цепочка включается в общую цепь через развязывающий диод. Это позволяет избежать потерь при рассогласовании отдельных последовательных цепочек и дополнительно защитить аккумулятор от разряда в ночное время (если, вдруг, контроллер выйдет из строя).

Диоды подбираются по двум основным параметрам: по максимальной силе тока, которая будет проходить в прямом направлении (прямой ток), и по обратному напряжению. Максимальное напряжение обратного тока (Uобр.макс.) не должно привести к пробою диода. При этом рабочие характеристики диода должны немного превышать номинал панели (примерно в 1,3 – 1,5 раза).

Но здесь есть одна хитрость.

Мax94 Пользователь FORUMHOUSE

Нормальных Шоттки на большие напряжения не бывает. Это просто столбы с падением по прямому току. Так что лучше брать обычные с Urev. Max ≈ 30...100В.

Установка панелей

Как правильно крепить панели и где их устанавливать? Ответы на эти вопросы зависят от конструкции СБ и от возможностей их владельца. Единственное, о чем должны позаботиться все без исключения – это о соблюдении угла наклона. Для каждого региона этот угол будет свой, а зависит он напрямую от широты местности.

В среднем зимой угол наклона должен быть на 10°…15° выше оптимального значения, летом – на такую же величину – ниже. можно посмотреть в разделе FORUMHOUSE.

Сечение проводников

В соответствии с постулатами электротехники слишком малое сечение проводника может привести к его перегреву и даже к возгоранию. Слишком большое – это неплохо, но приведет к необоснованно завышенному удорожанию автономной системы. Поэтому задача ее создателя – найти «золотую середину».

Начнем с того, что самые толстые проводники следует устанавливать в цепи, соединяющий аккумулятор с инвертором (кстати, чем короче будет этот участок, тем лучше). Именно здесь протекают токи большой силы.

Проводники, соединяющие панели с инвертором, а также соединяющие панели между собой, можно выбирать с малым сечением. На этих участках цепи может присутствовать сравнительно высокое напряжение, но всегда будет малая сила тока.

HeliosHouse Пользователь FORUMHOUSE

16 мм² не нужно и 10 мм² не нужно. 4 – более чем достаточно. "Толстый" провод понадобится только в контуре инвертора, сечение нужно подбирать в соответствии с мощностью тока.

«Толстый» и «тонкий» – понятия растяжимые, поэтому не будем уходить от стандартов.

Учитывая, что алюминиевые проводники в домашних системах электроснабжения на сегодняшний день использовать запрещено, табличные данные распространяются на медные токопроводящие жилы с поливинилхлоридной или резиновой изоляцией.

Также, выбирая проводники, следует обращать внимание на рекомендации производителей инверторов, контроллеров и других устройств, задействованных в системе.

Защитные автоматы

В цепи солнечной электростанции, как и в цепи любого другого мощного источника электроэнергии, необходимо ставить защиту от коротких замыканий. В первую очередь автоматы или плавкие вставки должны защищать силовые кабели, идущие от аккумуляторных батарей к инвертору.

Leo2 Пользователь FORUMHOUSE

Если замкнет что в инверторе, то так и до пожара недалеко. Одно из требований к аккумуляторным системам – наличие автомата DC или плавкой вставки как минимум на одном из проводов и как можно ближе к клеммам аккумулятора.

Помимо этого, защита ставится в цепь аккумулятора и контроллера. Не стоит также пренебрегать защитой отдельных групп потребителей (потребителей постоянного тока, бытовых приборов и т. д.). Но это уже правило построения любой системы электроснабжения.

Автомат, устанавливаемый между аккумулятором и контроллером, должен иметь большой запас по току осечки. Иными словами, защита не должна сработать случайно (при увеличении нагрузки). Причина: если на ввод контроллера подается напряжение (от СБ), то в этот момент от него нельзя отключать аккумулятор. Это может привести к выходу устройства из строя.

Порядок подключения

Сборка электрической цепи происходит в следующем порядке:

  1. Подключение контроллера к аккумулятору.
  2. Подключение к контроллеру солнечных панелей.
  3. Подключение к контроллеру группы потребителей постоянного тока.
  4. Подключение инвертора к аккумуляторным батареям.
  5. Подключение нагрузки к выходу инвертора.

Подобная последовательность подключения поможет уберечь контроллер и инвертор от повреждений.

Вы можете узнать от участников нашего портала, посетив соответствующую тему. Тем, кого всерьез заинтересовала , мы рекомендуем посетить еще один полезный раздел, посвященный обмену опытом в этой области. В заключение предлагаем вашему вниманию видеосюжет, который расскажет о том, как правильно монтируются и подключаются солнечные батареи.

Категория: Поддержка по альтернативной энергии Опубликовано 21.08.2016 16:31

Наши сотрудники регулярно предоставляют консультации на предмет установки солнечных электростанций различных типов, а также компания Best Energy предоставляет полный комплекс услуг для установки солнечной электростанции «под ключ» . Реже бывает применение автономной системы электроснабжения на основе солнечных батарей для автомобильного транспорта и недавно к нашим специалистам поступил интересный вопрос о том, как правильно соединить две солнечные батареи разной мощности: последовательно или параллельно? Ответ на этот вопрос было принято решение опубликовать на сайте в разделе поддержки по продукции альтернативных источников энергии, доработав его в полноценный формат статьи.

Схемы соединения солнечных батарей

Всего существует три схемы соединения солнечных панелей, которые могут применяться: параллельное, последовательное и параллельно-последовательное. В зависимости от мощности солнечной электростанции и напряжения постоянного тока может применяться одна из выбранных схем. Остановимся подробнее на каждой и опишем принцип работы.

Параллельное соединение солнечных панелей

Данная схема подходит для тех случаев, когда необходимо оставить напряжение на одном уровне, но повысить мощность солнечного PV-массива. Приведем пример на двух солнечных панелях мощность 100В с напряжением 12В. Соединение происходит путем подключения положительных соединений в одну группу, а отрицательных выводов – во вторую группу. Такими образом, напряжение остается прежним 12В, а мощность возрастает до 200 Вт.

Рисунок 1. Параллельное соединение солнечных панелей (12В 200Вт).

Последовательное соединение солнечных панелей

Последовательное соединение применяется в тех ситуациях, когда необходимо поднять уровень напряжения, но зафиксировать мощность на одном уровне. На схеме отражено соединение двух солнечных панелей мощностью 100Вт с напряжением 12В, когда в итоге получаем солнечный PV-массив 24В 100Вт.

Рисунок 2. Последовательное соединение солнечных панелей (24В 100Вт).

Параллельно-последовательное соединение солнечных панелей

Более сложной схемой соединения солнечных батарей будет параллельно-последовательный тип. Зачастую подобная схема применяется для относительно мощных солнечных массивов. Применение этой схемы дает возможность как поднять номинальное напряжение соединенных панелей, так и увеличить мощность. На примере показано, как можно соединить четыре панели с напряжением 12В и мощностью 100Вт. После соединения получаем солнечный PV-массив с напряжением 24В и мощностью 200Вт.

Рисунок 3. Параллельно-последовательное соединение солнечных панелей (24В 200Вт).

Соединение солнечных батарей разной мощности

Когда требуется соединить вместе солнечные батареи разной мощности, то может применяться две вышеописанные схемы: параллельная и последовательная. Однако необходимо учитывать возможности применяемого MPPT-контроллера. Так, чтобы подключить батареи параллельно, максимальный выходной ток должен соответствовать току MPPT-контроллера и наоборот, для соединения разных по мощности солнечных модулей последовательно, MPPT-контроллер обязательно должен иметь более высокое рабочее напряжение, чем сумма напряжения холостого хода двух модулей.

Рисунок 4. Параллельное и последовательной соединение солнечных панелей разной мощности.

Как видно по приведенным расчетам, производительность выше на 5,5% при последовательном соединении. Рекомендуем использовать этот вариант.

Внимание! Соединение солнечных батарей разной мощности несколько снижает производительность MPPT-контроллера и делает болеет трудным поиск точки максимальной мощности, но такая система также будет нормально работать при необходимости. 3 /5 на основе 24 голосов

Альтернативная энергетика становится все доступнее. Эта статья даст вам полное представление о солнечной энергетике локальных масштабов, видах фотоэлементов и панелей, принципах построения солнечных ферм и экономической обоснованности.

Особенности солнечной энергетики в средних широтах

Для жителей средних широт альтернативная энергетика весьма привлекательна. Даже в северных широтах среднегодовая суточная доза излучения составляет 2,3-2,6 кВт·ч/м 2 . Чем ближе к югу — тем выше этот показатель. В Якутске, например, интенсивность солнечного излучения составляет 2,96, а в Хабаровске — 3,69 кВт·ч/м 2 . Показатели в декабре составляют от 7% до 20% от среднегодового значения, а в июне и июле возрастают вдвое.

Вот пример расчета эффективности солнечных панелей для Архангельска — региона с одним из самых низких показателей интенсивности солнечного излучения:

  • Q — среднегодовое количество солнечной радиации в регионе (2,29 кВт·ч/м 2);
  • К откл — коэффициент отклонения поверхности коллектора от южного направления (среднее значение: 1,05);
  • P ном — номинальная мощность солнечной панели;
  • К пот — коэффициент потерь в электроустановках (0,85-0,98);
  • Q исп — интенсивность излучения, при которой панель испытывалась (обычно 1000 кВт·ч/м 2).

Последние три параметра указываются в паспорте панелей. Таким образом, если в условиях Архангельска работают панели KVAZAR с номинальной мощностью 0,245 кВт, а потери в электроустановке не превышают 7%, то один блок фотоэлементов обеспечит генерацию в размере около 550 Вт·ч. Соответственно, для объекта с номинальным потреблением 10 кВт·ч понадобится около 20 панелей.

Экономическая обоснованность

Сроки окупаемости солнечных панелей посчитать несложно. Умножьте суточное количество производимой энергии в сутки на количество суток в году и на срок эксплуатации панелей без снижения мощности — 30 лет. Рассмотренная выше электроустановка способна генерировать в среднем от 52 до 100 кВт·ч в сутки в зависимости от продолжительности светового дня. Среднее значение составляет около 64 кВт·ч. Таким образом, за 30 лет электростанция в теории должна выработать 700 тыс. кВт·ч. При одноставочном тарифе в 3,87 руб. и стоимости одной панели около 15 000 руб, затраты окупятся за 4-5 лет. Но реальность более прозаична.

Дело в том, что декабрьские значения солнечной радиации меньше среднегодовых примерно на порядок. Поэтому для полностью автономной работы электростанции зимой требуется в 7-8 раз больше панелей, чем летом. Это существенно увеличивает вложения, но уменьшает срок окупаемости. Перспектива введения «зеленого тарифа» выглядит вполне ободряюще, но даже на сегодняшний день можно заключить договор на поставку электроэнергии в сеть по оптовой цене, которая втрое ниже розничного тарифа. И даже этого достаточно, чтобы выгодно продавать 7-8 кратный излишек выработанной электроэнергии в летний период.

Основные типы солнечных панелей

Существует два основных типа солнечных панелей.

Твердые кремниевые фотоэлементы считаются элементами первого поколения и наиболее распространены: около 3/4 рынка. Их существует две разновидности:

  • монокристаллические (черного цвета) имеют высокий КПД (0,2-0,24) и малую цену;
  • поликристаллические (темно-синего цвета) дешевле в производстве, но менее эффективны (0,12-0,18), хотя при рассеянном свете их КПД снижается меньше.

Мягкие фотоэлементы называют пленочными и изготавливают либо из кремниевого напыления, либо путем многослойной композиции. Кремниевые элементы дешевле в производстве, но их КПД в 2-3 раза ниже кристаллических. Однако при рассеянном свете (сумерки, пасмурность) они эффективнее кристаллических.

Некоторые виды композитных пленок имеют КПД около 0,2 и стоят гораздо больше твердых элементов. Их применение в солнечных электростанциях весьма сомнительно: пленочные панели в большей степени подвержены деградации со временем. Основная область их применения — мобильные энергоустановки с низким потреблением энергии.

Гибридные панели включают помимо блока фотоэлементов также коллектор — систему капиллярных трубок для нагрева воды. Преимущество их не только в экономии площади и возможности горячего водоснабжения. За счет водяного охлаждения фотоэлементы меньше теряют в производительности при нагреве.

Таблица. Обзор производителей

Модель SSI Solar LS-235 SOLBAT MCK-150 Canadian Solar CS5A-210M Chinaland CHN300-72P
Страна Швейцария Россия Канада Китай
Тип Поликристалл Монокристалл Монокристалл Поликристалл
Мощность при 1000 кВт·ч/м 2 , Вт 235 150 210 300
Число элементов 60 72 72 72
Напряжение: холостого хода/при нагрузке, В 36,9/29,8 18/12 45,5/37,9 36,7/43,6
Ток: при нагрузке/короткого замыкания, А 7,88/8,4 8,33/8,58 5,54/5,92 8,17/8,71
Вес, кг 19 12 15,3 24
Размеры, мм 1650х1010х42 667х1467х38 1595х801х40 1950х990х45
Цена, руб. 13 900 10 000 14 500 18 150

Оборудование гелиоэнергетического комплекса

Батареи генерируют при работе постоянный ток величиной до 40 В. Чтобы использовать его в бытовых целях, требуется ряд преобразований. За это отвечает следующее оборудование:

  1. Блок аккумуляторных батарей. Позволяет пользоваться выработанной энергией ночью и в часы малой интенсивности. Используются гелиевые аккумуляторы номинальным напряжением 12, 24 или 48 В.
  2. Контроллеры заряда поддерживают оптимальный цикл работы аккумуляторов и переводят требуемую мощность на питание потребителей. Необходимое оборудование подбирается под параметры батарей и аккумуляторов.
  3. Инвертор напряжения трансформирует постоянный ток в переменный и имеет ряд дополнительных функций. Во-первых, инвертор устанавливает приоритет источника напряжения, а при недостатке мощности «подмешивает» питание из другого. Гибридные инверторы позволяют также отдавать излишек вырабатываемой энергии в городскую сеть.

1 — солнечные батареи 12 В; 2 — солнечные батареи 24 В; 3 — контроллер заряда; 4 — АКБ 12 В; 5 — освещение 12 В; 6 — инвертор; 7 — автоматика «умного дома»; 8 — блок АКБ 24 В; 9 — аварийный генератор; 10 — основные потребители 220 В

Применение в домашнем хозяйстве

Солнечные панели могут использоваться в абсолютно любых целях: от компенсации получаемой энергии и питания отдельных линий до полной автономизации энергосистемы , включая отопление и горячее водоснабжение. В последнем случае важную роль играет масштабное применение энергосберегающих технологий — рекуператоров и тепловых насосов.

При смешанном использовании гелиоэнергетики используют инверторы. При этом питание может направляться либо на работу отдельных линий или систем, либо частично компенсировать использование городского электричества. Классический пример эффективной энергосистемы — тепловой насос, питаемый небольшой солнечной электростанцией с блоком аккумуляторов.

1 — городская сеть 220 В; 2 — солнечные батареи 12 В; 3 — освещение 12 В; 4 — инвертор; 5 — контроллер заряда; 6 — основные потребители 220 В; 7 — АКБ

Традиционно панели устанавливают на крышах зданий, а в некоторых архитектурных решениях они полностью заменяют кровельное покрытие. При этом панели необходимо ориентировать на южную сторону таким образом, чтобы падение лучей на плоскость было перпендикулярным.




Top