Основные понятия. Обобщенная структурная схема тракта цифрового ТВ. Курсовая работа квантование сигнала

ИНФОРМАЦИИ

ПОНЯТИЕ ИНФОРМАЦИИ. ВИДЫ и свойства

Сообщения и сигналы. Кодирование и квантование сигналов.

Методы измерения количества и качества информации.

Понятие информации. Виды и свойства информации.

Лекция 3. ОСНОВНЫЕ ПОНЯТИЯ ИНФОРМАТИКИ

Ключевые слова : информация; виды информации; свойства информации; меры информации; количество информации; объем данных; энтропия; тезаурус пользователя; качество информации; показатели качества информации; сообщение; источник информации; получатель информации; канал связи; носитель информации; параметр сигнала; кодирование; декодирование; дискретизация; квантование.

Литература: 1. Информатика. Базовый курс / Симонович С.В. и др. –

СПб.: Издательство «Питер», 1999.

2. Могилев А.В. и др. Информатика: Учеб. пособие для

студ. пед. вузов / А.В.Могилев, Н.И.Пак, Е.К.Хеннер; Под

ред. Е.К.Хеннера. – 2-е изд., стер. – М.: Изд. центр «Ака-

демия», 2001.

Дисциплина «Информатика» неразрывно связана с понятием информация , которое является одним из фундаментальных в современной науке вообще и базовым для изучаемой нами информатики. Это понятие неоднократно звучало при изложении вводной лекции. С ним мы сталкиваемся ежедневно. Информацию наряду с веществом и энергией рассматривают в качестве важнейшей сущности мира, в котором мы живем. Тем не менее, общепризнанного и строгого определения понятия информациядо сих пор нет. В разных дисциплинах в понятие информация вкладывают разный смысл. При этом типична ситуация, когда понятие об информации, введенное в рамках одной научной дисциплины, может опровергаться конкретными примерами и фактами, полученными в рамках другой. Например, представление об информации как о совокупности данных, повышающих уровень знаний об объективной реальности окружающего мира, характерное для естественных наук, может быть опровергнуто в рамках социальных наук.

В простейшем бытовом понимании с термином «информация » обычно ассоциируются некоторые сведения , данные , знания и т. п.

Словоинформация (латинское informatio ) означает разъяснение, осведомление, изложение . В общем случае под информацией понимают все те сведения, которые уменьшают степень неопределенности нашего знания о конкретном объекте .

Сама по себе информация может быть отнесена к категории абстрактных понятий, но ряд ее особенностей приближает ее к материальным объек­там . Так, информацию можнополучить, записать, удалить, передать ; информация не может возникнуть из ничего . С позиции материалистической философии информация есть отражение реального мира . Однако при распространении информации прояв­ляется такое ее свойство, которое не присуще материальным объектам: при передаче информации из одной системы в другую количество информации в передающей системе не уменьшается, хотя в принимающей системе оно обычно увеличивается . Если бы информация не обладала этим свойством, то преподаватель, читая лек­цию студентам, терял бы информацию и становился неучем.



Итак, информация не материальна, но она является свойством материи и не может существовать без своего материального носителя – средства переноса информации в пространстве и во времени. Носителем информации может быть как непосредственно наблюдаемый физический объект, так и некоторый энергетический суб­страт. В последнем случае информация представлена в видесигналов : световых, звуковых, электрических и т. д. При отображении на носителе информация коди­руется, то есть ей ставится в соответствие форма, цвет, структура и другие пара­метры элементов носителя.

Часто информацию отождествляют с данными . Однако это неправильно. Одни и те же данные могут в момент потребления поставлять разную информацию в зависимости от степени адекватности взаимодействующих с ними методов. Например, для человека, не владеющего китайским языком, письмо, полученное из Пекина, дает только ту информацию, которую можно получить методом наблюдения (количество страниц, цвет и качество бумаги, количество иероглифов и их начертание и т.п.). Все это информация, но не вся, заключенная в письме. Использование более адекватных методов (например, привлечение переводчика) даст иную информацию.

Обратим внимание на то, что данные являются объективными , поскольку это результат регистрации объективно существовавших сигналов, вызванных изменениями в материальных телах или полях. В то же время, методы являются субъективными . В основе искусственных методов лежат алгоритмы (упорядоченные последовательности команд), составленные и подготовленные людьми (субъектами). В основе естественных методов лежат биологические свойства субъектов информационного процесса. Следовательно, информация возникает и существует в момент диалектического взаимодействия объективных данных и субъективных методов .

Сформулируем и в дальнейшем будем использовать следующее определение информации:

информация – это продукт взаимодействия данных и адекватных им методов .

Информация не является статичным объектом – она динамически меняется и существует только в момент взаимодействия данных и методов их обработки. Все остальное время она пребывает в состоянии данных. Таким образом, информация существует только в момент протекания информационного процесса .

При использовании ЭВМ для обработки информации от различных устройств (объектов, процессов), в которых информация представлена непрерывными (аналоговыми) сигналами, требуется преобразовать аналоговый сигнал в цифровой - в число, пропорциональное амплитуде этого сигнала, и наоборот. В общем случае процедура аналого-цифрового преобразования состоит из трех этапов:

дискретизации;

квантования по уровню;

кодирования.

Под дискретизацией понимают преобразование функции непрерывного времени в функцию дискретного времени, а сам процесс дискретизации состоит в замене непрерывной функции её отдельными значениями в фиксированные моменты времени.

Дискретизация может быть равномерной и неравномерной. При неравномерной дискретизации длительность интервалов между отсчетами различна. Наиболее часто применяется равномерная дискретизации, при которой длительность интервала между отсчетами Т Д , постоянна. Период дискретизации Т Д непрерывного сигнала и(t) (рис. 1 а) выбирается в соответствии с теоремой Котельникова:

где F в - высшая частота в спектре частот сигнала и(t) (рис. 1 б)

Рис. 1.Процесс аналого-цифрового преобразования

Под квантованием понимают преобразование некоторой величины с непрерывной шкалой значений в величину, имеющую дискретную шкалу значений.

Для этого весь диапазон значений сигнала и(t), называемый шкалой делится на равные части – кванты, h – шаг квантования. Процесс квантования сводится к замене любого мгновенного значения одним из конечного множества разрешенных значений, называемых уровнями квантования.

Вид сигнала и(t) в результате совместного проведения операций дискретизации и квантования представлен на рис. 1 в). Дискретизированное значение сигнала и(t), находящееся между двумя уровнями квантования, отождествляется с ближайшим уровнем квантования. Это приводит к ошибкам квантования, которые всегда меньше шага квантования (кванта), т. е. чем меньше шаг квантования, тем меньше погрешность квантования, но больше уровней квантования.

Число уровней квантования на рис. 1 в) равно восьми. Обычно их значительно больше. Можно провести нумерацию уровней и выразить их в двоичной системе счисления. Для восьми уровней достаточно трех двоичных разрядов. Каждое дискретное значение сигнала представляется в этом случае двоичным кодом (табл. 1) в виде последовательности сигналов двух уровней.

Таблица 6.1

Наличие или отсутствие импульса на определенном месте интерпретируется единицей или нолем в соответствующем разряде двоичного числа. Цифровая форма представления сигнала и(t) показана на рис. 1 г). Импульсы старших разрядов расположены крайними справа.

Таким образом, в результате дискретизации, квантования и кодирования аналогового сигнала получаем последовательность n -разрядных кодовых комбинаций, которые следуют с периодом дискретизации Т л. При этом рациональное выполнение операций дискретизации и квантования приводит к значительному экономическому эффекту как за счет снижения затрат на хранение и обработку получаемой информации, так и вследствие сокращения времени обработки информации.

При использовании ЭВМ для обработки информации от различных устройств (объектов, процессов), в которых информация представлена непрерывными (аналоговыми) сигналами, требуется преобразовать аналоговый сигнал в цифровой - в число, пропорциональное амплитуде этого сигнала, и наоборот. В общем случае процедура аналого-цифрового преобразования состоит из трех этапов:

дискретизации;

квантования по уровню;

кодирования.

Под дискретизацией понимают преобразование функции непрерывного времени в функцию дискретного времени, а сам процесс дискретизации состоит в замене непрерывной функции её отдельными значениями в фиксированные моменты времени.

Дискретизация может быть равномерной и неравномерной. При неравномерной дискретизации продолжительность интервалов между отсчетами различна. Наиболее часто применяется равномерная дискретизации, при которой продолжительность интервала между отсчетами Т Д , постоянна. Период дискретизации Т Д непрерывного сигнала и(t) (рис. 1 а) выбирается в соответствии с теоремой Котельникова:

где F в - высшая частота в спектре частот сигнала и(t) (рис. 1 б)

Рис. 1.Процесс аналого-цифрового преобразования

Под квантованием понимают преобразование некоторой величины с непрерывной шкалой значений в величину, имеющую дискретную шкалу значений.

Для этого весь диапазон значений сигнала и(t), называемый шкалой делится на равные части – кванты, h – шаг квантования. Процесс квантования сводится к замене любого мгновенного значения одним из конечного множества разрешенных значений, называемых уровнями квантования.

Вид сигнала и(t) в результате совместного проведения операций дискретизации и квантования представлен на рис. 1 в). Дискретизированное значение сигнала и(t), находящееся между двумя уровнями квантования, отождествляется с ближайшим уровнем квантования. Это приводит к ошибкам квантования, которые всœегда меньше шага квантования (кванта), т. е. чем меньше шаг квантования, тем меньше погрешность квантования, но больше уровней квантования.

Число уровней квантования на рис. 1 в) равно восьми. Обычно их значительно больше. Можно провести нумерацию уровней и выразить их в двоичной системе счисления. Для восьми уровней достаточно трех двоичных разрядов. Каждое дискретное значение сигнала представляется в этом случае двоичным кодом (табл. 1) в виде последовательности сигналов двух уровней.

Таблица 6.1

Наличие или отсутствие импульса на определœенном месте интерпретируется единицей или нолем в соответствующем разряде двоичного числа. Цифровая форма представления сигнала и(t) показана на рис. 1 г). Импульсы старших разрядов расположены крайними справа.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, в результате дискретизации, квантования и кодирования аналогового сигнала получаем последовательность n -разрядных кодовых комбинаций, которые следуют с периодом дискретизации Т л. При этом рациональное выполнение операций дискретизации и квантования приводит к значительному экономическому эффекту как за счет снижения затрат на хранение и обработку получаемой информации, так и вследствие сокращения времени обработки информации.

На практике преобразование аналогового сигнала в цифровую форму осуществляется с помощью аналого-цифрового преобразователя (АЦП). Для решения обратной задачи преобразования числа в пропорциональную аналоговую величину, представленную в виде электрического напряжения, тока и т. п., служит цифроаналоговый преобразователь (ЦАП). В ЦАП каждая двоичная кодовая комбинация преобразуется в аналоговый сигнал, и на выходе создается последовательность модулированных по амплитуде импульсов с периодом Т л.

Для передачи речевого сигнала по цифровому каналу связи необходима процедура аналого-цифрового преобразования (АЦП), которая состоит из 3 этапов: дискретизация, квантование и кодирование. Дискретизация представляет собой процедуру взятия отдельных значений сигнала через равные промежутки времени.

При этом, чем больше будет использоваться уровней, тем более точно можно будет восстановить сигнал к исходной форме на приемном конце.

Большинство сигналов первоначально формируется в аналоговой форме. Затем они преобразуются в цифровые сигналы с помощью аналого-цифровых преобразователей (АЦП). В дальнейшем они снова преобразуются в аналоговые сигналы с использованием цифро-аналоговых преобразователей (ЦАП). Эти преобразователи - неотъемлемая часть любой цифровой системы:
Аналоговый сигнал - Выборка - Квантование - Кодирование - Цифровой сигнал
Выборка
В аналоговом сигнале амплитуда напряжения непрерывно изменяется во времени. При выполнении выборки амплитуда считывается через одинаковые промежутки времени. Эта скорость выборок или частота выборок определяет промежуток времени или то, как часто производится считывание. Если скорость выборок слишком высокая, точность преобразования выше, однако требуемая полоса частот значительно увеличивает стоимость проектирования и компонентов. Если частота выборок слишком низкая, то конечный результат может неточно соответствовать аналоговому сигналу.
Квантование
Квантование представляет собой процесс представления всех выборок в цифровой форме. Ширина выборки - изменения аналогового сигнала между двумя выборками. Для представления цифрового значения ширины выборки обычно берется усредненное значение. Размер выборки определяет уровень квантования, используемый для квантования выборки. Использование 8 бит обеспечивает получение 256 уровней квантования, в то время как 12 бит позволяют получить 4096 уровней. Точность выборки выше, если используется большее число бит, однако при этом увеличивается число бит для передачи, что требует использования более широкой полосы частот. По этой причине большинство цифровых систем для квантования выборок используют 8 бит
Кодирование
Кодирование является заключительным шагом в процессе аналого-цифрового преобразования. В процессе кодирования для каждой выборки формируется значение, выраженное в двоичном коде. Кроме того, кодирование включает в себя: биты, которые сообщают другому оборудованию, как интерпретировать данные, информацию о конце синхроимпульса, информацию о начале кадра, биты защиты от ошибок для уменьшения ошибок при передаче и хранении информации.
Защита от ошибок
Защита от ошибок осуществляется добавлением дополнительных бит при кодировании. На приемной стороне распознается - если этот бит изменился, то система понимает, что произошла ошибка.
Погрешность:
Имеется несколько источников погрешности АЦП. Ошибки квантования и (считая, что АЦП должен быть линейным) нелинейности присущи любому аналого-цифровому преобразованию. Кроме того, существуют так называемые апертурные ошибки которые являются следствием джиттера (англ. jitter) тактового генератора, они проявляются при преобразовании сигнала в целом (а не одного отсчёта).
Эти ошибки измеряются в единицах, называемых МЗР - младший значащий разряд. В приведённом выше примере 8-битного АЦП ошибка в 1 МЗР составляет 1/256 от полного диапазона сигнала, то есть 0.4 %.




Top