OLED-телевизоры: достоинства и недостатки технологии. Что такое OLED телевизор и как это работает


За всю историю персональных компьютеров они существенно менялись: сначала это были большие «гробы» под столом, потом появились ноутбуки и планшеты, а сейчас мы в карманах носим смартфоны, производительность которых вызвала бы зависть у пользователей ПК лет десять-пятнадцать назад. Не стояли на месте и мониторы: сначала это были большие «пушки» - ЭЛТ-мониторы, где изображение получалось при попадании потока заряженных частиц на люминофор, которым было покрыто стекло. При этом кинетическая энергия частиц преобразовывалось в свечение, и мы видели картинку. Такие мониторы имели как плюсы, так и минусы. Основным плюсом была плавность при выводе динамических сцен, а также поддержка высоких (даже на сегодняшний день) разрешений - до 2048х1536: сейчас самым массовым разрешением остается 1920x1080, где число пикселей в полтора раза меньше. Однако минусы в данном случае перевесили плюсы: во-первых, картинка мерцала: для того, чтобы люминофор продолжал светиться, его нужно было постоянно бомбардировать частицами, с частотой 50-75 Гц - и именно с такой частотой такие мониторы и мерцали, что вызывало усталость глаз. Вторая проблема - качество картинки: контрастность была невысока, цвета тоже оставляли желать лучшего. Ну и третья проблема - габариты: монитор занимал на столе едва ли не больше места, чем системный блок. И если для ПК это не так критично, то для ноутбуков, которые в 90-ых стали становиться все более массовыми, нужна была тонкая замена: тогда в них использовали пассивные матрицы, которые в лучшем случае выдавали 4 цвета и проигрывали в качестве картинки даже ЭЛТ-мониторам. В общем, нужно было переходить на что-то другое, и новый тип дисплеев назвали LCD.

История и устройство LCD-дисплеев

LCD (Liquid Crystal Display, жидкокристаллический дисплей, ЖК-дисплей) на самом деле не такое новое явление - жидкие кристаллы были открыты еще в 1888 году, и их особенностью стало то, что они обладали одновременно свойствами и жидкости (текучесть), и кристаллов (анизотропия, в данном случае это возможность менять ориентацию молекул под действием электрического поля). Первые монохромные ЖК-дисплеи стали появляться в 1970-ых годах, а первый цветной дисплей представила Sony в 1987 году - он имел диагональ всего 3 дюйма, но первый шаг уже был сделан. Сейчас LCD являются самыми массовыми дисплеями - OLED только-только начал захватывать рынок.

Посмотрим, как устроен такой дисплей. У LCD самым первым уровнем можно считать лампу подсветки, так как отраженного света не хватает для обеспечения нужной яркости изображения. После этого свет проходит через поляризационный фильтр, который оставляет только те волны, которые имеют определенную поляризацию (грубо говоря - колеблются в нужном положении). После этого поляризованный свет проходит через прозрачный слой с управляющими транзисторами и попадает на молекулы жидкого кристалла. Они же, в свою очередь, под воздействием электрического поля от управляющих транзисторов повернуты так, чтобы управлять интенсивностью поляризованного света, который после этого попадает на субпиксели определенного цвета (красного, синего или зеленого), и в зависимости от поляризации проходит или не проходит через каждый из них (или проходит частично, если слой ЖК уменьшил интенсивность):


С устройством LCD-дисплеев разобрались, теперь давайте перейдем к OLED и после чего сравним их.

История и устройство OLED-дисплеев

OLED (органический светодиод, organic light-emitting diode) намного моложе жидких кристаллов: впервые люминисценцию в органических материалах наблюдал Андре Бернаносе в Университете Нэнси в 1950-ых годах. Первый OLED-дислпей появился приблизительно в то же время, когда и цветной LCD - в 1987 году, однако активно использовать такие дисплеи стали лишь последние 5 лет назад - до этого их производство было очень дорогим, а сами матрицы были очень недолговечны.

Посмотрим, как такие дисплеи работают. Между катодом (1) и анодом (5) находится два полимерных слоя - эмиссионный (2) и проводящий (4). При подаче на электроды напряжения эмиссионный слой получает отрицательный заряд (электроны), а проводящий - положительный (дырки). Под действием электростатических сил дырки и электроны движутся навстречу друг другу и при встрече рекомбинируют - то есть исчезают с выделением энергии, которая в данном случае выглядит как излучение фотонов в области видимого света (3) - и мы видим картинку:

Что касается IPS, то тут он выступает хорошим середнячком: от детских болезней давно избавились, большинство характеристик достаточны для обычных пользователей, да и цена снизилась настолько, что позволить себе устройство с таким типом дисплея может практически любой. Так что пока IPS и OLED выступают на равных, но вот если первый развиваться дальше уже не будет, то у OLED есть светлое будущее.

Жидкокристаллический дисплей (ЖК -дисплей, ЖКД ; жидкокристаллический индикатор, ЖКИ ; англ. liquid crystal display, LCD ) - дисплей на основе жидких кристаллов, а также устройство (монитор, телевизор) на основе такого дисплея.

Экраны LCD-мониторов (Liquid Crystal Display, жидкокристаллические мониторы) изготовлены из вещества (цианофенил), которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности оптических), связанных с упорядоченностью в ориентации молекул.

Основной их особенностью является возможность изменять ориентацию в пространстве под воздействием электрического поля. А если сзади матрицы поставить источник света, то, проходя через кристалл, поток будет окрашиваться в определенный цвет. Изменяя напряжённость электрического поля, можно изменять положение кристаллов, а значит и видимое количество одного из основных цветов. Кристаллы работают, как клапан или фильтр. Управление всей матрицей даёт возможность вывода на экран определённого изображения.

Жидкокристаллические материалы были открыты еще в 1888 году австрийским ученым Ф. Ренитцером, но только в 1930-м исследователи из британской корпорации Marconi получили патент на их промышленное применение.

В конце 1966 г. корпорация RCA продемонстрировала прототип LCD-монитора – цифровые часы. Значительную роль в развитии LCD-технологии сыграла корпорация Sharp. Она и до сих пор находится в числе технологических лидеров. Первый в мире калькулятор CS10A был произведен в 1964 г. именно этой корпорацией. В октябре 1975 г. уже по технологии TN LCD были изготовлены первые компактные цифровые часы. Во второй половине 70-х начался переход от восьмисегментных жидкокристаллических индикаторов к производству матриц с адресацией каждой точки. Так, в 1976 г. Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы разрешением 160х120 пикселов.

Одним из самых качественных типов LCD-матриц является IPS. Именно IPS технология доминирует в мобильных устройствах, так как она обладает хорошей цветопередачей и, что особенно важно для смартфонов - хорошими углами обзора.

Ресурс работы ЖК телевизора (дисплея) около 60000 часов.

Светодиодный экран (LED screen, LED display) - устройство отображения и передачи визуальной информации (дисплей, монитор, телевизор), в котором каждой точкой - пикселем - является один или несколько полупроводниковых светодиодов (LED).

LED - именно так сейчас принято сокращенно называть жидкокристаллическую (ЖК) панель со светодиодной (LED) подсветкой. Не так давно для подсветки ЖК-матрицы использовались люминисцентные лампы (CCFL), но сегодня их окончательно и бесповоротно вытеснили светодиоды. Матрица работает на просвет. По сути, каждый RGB-пиксель представляет собой «заслонку» (а фактически фильтр) для света, излучаемого светодиодами. Кстати, очень интересный вариант, когда в телевизоре используется «локальная» подсветка, то есть множество светодиодов установлены позади матрицы и могут освещать только определенную зону. Тогда достигается высокий показатель контрастности в одном кадре, однако первые такие модели буквально «шли пятнами». Впрочем, сегодня большинство LED-телевизоров имеют торцевую подсветку, когда диоды расположены по бокам (в торце). Такая конструкция и позволяет сделать предельно плоские, энергоэффективные и легкие видеопанели.

Чаще всего срок службы LED телевизоров принадлежит диапазону от 50 до 100 тысяч часов.

Органический светодиод (англ. organic light-emitting diode, сокр. OLED ) - полупроводниковый прибор, изготовленный из органических соединений, эффективно излучающих свет при прохождении через них электрического тока.

Основная технология создания дисплеев основана на том, что органическая пленка на углеродной основе помещается между двумя проводниками, пропускающими электрический ток, из-за которого пленка излучает свет.

Главное отличие этой технологии от LED в том, что свет испускается каждым пикселем в отдельности, так что яркий белый или красочный цветной пиксель может находиться рядом с пикселем черного или совершенно другого цвета, и они не будут влиять друг на друга.

Это отличает их от традиционных ЖК-панелей, которые оснащаются специальной подсветкой, свет от которой проходит через слой пикселей.

К сожалению, между собой OLED пиксели отличаются не только цветом, но и рядом других характеристик - уровнем яркости, сроком службы, скоростью включения/выключения и прочими. Чтобы обеспечить относительно равномерные характеристики экрана в целом, производителям приходится идти на самые разные ухищрения: варьировать форму и размер светодиодов, размещать их в особом порядке, использовать программные трюки, регулировать яркость свечения с помощью ШИМ (то есть, грубо говоря, пульсацией), и так далее.

Причем технологии реализации самих матриц немного различаются. Так, в LG используется «сэндвич», а у Samsung - классическая RGB-схема. OLED можно гнуть вроде как без особых последствий. Поэтому вогнутые телевизоры также были построены на базе этой технологии.

Органический светодиод (англ. Organic Light-Emitting Diode (OLED) - органический светодиод) - полупроводниковый прибор, изготовленный из органических соединений, которые эффективно излучают свет при пропускании через них электрического тока. Основное применение технология OLED находит при создании устройств отображения информации (дисплеев). Предполагается, что производство таких дисплеев будет гораздо дешевле, нежели производство жидкокристаллических дисплеев .

1.5-дюймовый OLED-дисплей

Принцип действия

Для создания органических светодиодов (OLED) используются тонкопленочные многослойные структуры, состоящие из слоев нескольких полимеров . При подаче на анод положительного относительно катода напряжения, поток электронов протекает через прибор от катода к аноду. Таким образом катод отдает электроны в эмиссионный слой, а анод забирает электроны из проводящего слоя, или другими словами анод отдает дырки в проводящий слой. Эмиссионный слой получает отрицательный заряд, а проводящий слой положительный. Под действие электростатических сил электроны и дырки движутся навстречу друг к другу и при встрече рекомбинируют. Это происходит ближе к эмиссионному слою, потому что в органических полупроводниках дырки обладают большей подвижностью, чем электроны. При рекомбинации происходит понижение энергии электрона которое сопровождается выделением (эмиссией) электромагнитного излучения в области видимого света. Поэтому слой и называется эмиссионным.

Схема 2х слойной OLED-панели: 1. Катод(−), 2. Эмиссионный слой, 3. Выделенное излучение, 4. Проводящий слой, 5. Анод (+)

Прибор не работает при подаче на анод отрицательного относительно катода напряжения. В этом случае дырки движутся к аноду, а электроны в противоположном направлении к катоду, и рекомбинации не происходит.

В качестве материала анода обычно используется оксид индия легированный оловом . Он прозрачный для видимого света и имеет высокую работу выхода , которая способствует инжекции дырок в полимерный слой. Для изготовления катода часто используют металлы, такие как алюминий и кальций , так как они обладают низкой работой выхода , способствующей инжекции электронов в полимерный слой.

Преимущества в сравнении c Плазменными дисплеями

  • меньшие габариты и вес

Преимущества в сравнении c LCD -дисплеями

  • меньшие габариты и вес
  • отсутствие необходимости в подсветке
  • отсутствие такого параметра как угол обзора - изображение видно без потери качества с любого угла
  • более качественная цветопередача (высокий контраст)
  • более низкое энергопотребление при той же яркости
  • возможность создания гибких экранов

Яркость . OLED дисплеи обеспечивают яркость излучения от нескольких кд/м2 (для ночной работы) до очень высоких яркостей - свыше 100 000 кд/м2, причем их яркость может регулироваться в очень широком динамическом диапазоне. Так как срок службы дисплея обратно пропорционален его яркости, для приборов рекомендуется работа при более умеренных уровнях яркости до 1000 кд/м2. При освещении LCD-дисплея ярким лучом света появляются блики, а картинка на OLED-экране останется яркой и насыщенной при любом уровне освещенности (даже при прямом попадании солнечных лучей на дисплей).

Контрастность. Здесь OLED также лидер. OLED-дисплеи обладают контрастностью 1000000:1 (Контрастность LCD 1300:1, CRT 2000:1)

Углы обзора. Технология OLED позволяет смотреть на дисплей с любой стороны и под любым углом, причем без потери качества изображения.

Энергопотребление. Достаточно низкое энергопотребление - около 25Вт (у LCD - 25-40Вт). КПД OLED-дисплея близко к 100 %, у LCD −90 %. Энергопотребление же PHOLED(англ.) ещё ниже.

Потребность в преимуществах, демонстрируемых органическими дисплеями с каждым годом растёт. Этот факт позволяет заключить, что в скором времени человечество увидит расцвет данной технологии.

История

Андрэ Бернаноз (André Bernanose) и его сотрудники открыли электролюминесценцию в органических материалах в начале 1950-ых, прикладывая переменный ток высокого напряжения к прозрачным тонким плёнкам красителя акридинового оранжевого и хинакрина. В 1960-м исследователи из компании Dow Chemical разрабатывали управляемые переменным током электролюминесцентные ячейки, используя допированный антрацен .

Низкая электрическая проводимость таких материалов ограничивала развитие технологии до тех пор пока не стали доступными более современные органические материалы, такие как полиацетилен и полипиррол. В году в ряде статей учёные сообщили о том, что они наблюдали высокую проводимость в допированном йодом полипирроле. Они достигли проводимости 1 См /см . К сожалению, это открытие было «потеряно». И только в году исследовали свойства бистабильного выключателя на основе меланина с высокой проводимостью во «включенном» состоянии. Этот материал испускал вспышку света во время включения.

Объём продаж

Рынок OLED-дисплеев медленно, но уверенно растёт. Так, с апреля по июнь 2007 года рост продаж составил + 4 %, за год прибавив 24 %, и достиг $123,4 млн (Объём продаж в г. был ~$85 млн).

По расчётам некоторых аналитиков, объём рынка органических дисплеев вырастет до 3,7 миллиардов долларов до 2010 года. В 2008 году объёмы производства OLED по прогнозам будут увеличены до 18 тыс. шт ежемесячно. В 2009 году объемы выпуска увеличатся до 50 тыс., а к 2010 году - до 120 тыс. в месяц.

Перспективы развития и области применения

На сегодняшний день OLED-технология применяется многими разработчиками узкой направленности, например, для создания приборов ночного видения. Дисплеи OLED встраиваются в телефоны, цифровые камеры и другую технику, где не требуется большого полноцветного экрана. Также есть и мониторы на основе органики, например Samsung активно ведет разработки в данной области (предел в 40 дюймов достигнут). А Epson ещё в 2004 году выпустила 40-дюймовый дисплей. Успех можно объяснить тем, что технология производства таких дисплеев похожа на технологию печати в струйном принтере, а в этом деле компания имеет большой опыт.

Последние достижения

Разработки Sony

Другие компании

Смартфон Nokia N85, анонсированный в августе 2008 и поступивший в продажу в октябре 2008 г. - первый смартфон от финской компании с AM-OLED дисплеем, не очень дорогой аппарат «всё в одном».

Клавиатура Оптимус Максимус (Студия Лебедева), выпущенная в начале 2008 с использованием 48×48-пиксельных OLED-дисплеев (10.1×10.1 мм) для клавиш.

OLED может использоваться в Голографии с высокой разрешающей способностью (Volumetric display). Professor Orbit показал 12 мая 2007 на ЭКСПО Лиссабон трехмерное видео (потенциальное применение этих материалов).

OLEDs может также использоваться как источники света. Эффективность OLED и продолжительность работы уже превышают таковые у ламп. OLED находят применение как источник общего освещения (ЕС - проект OLLA).

11 марта 2008 Дженерал Электрик (GE Global Research) продемонстрировало первый успешный рулонно-изготовленный OLED, как главный успех на пути к эффективному по затратам производству коммерческой технологии OLED. 4-х летняя научно-исследовательская работа обошлась в $13 миллионов (Energy Conversion Devices, Inc и Национальный Институт Отдела американской Торговли Стандартов и Технологии (NIST), GE Global Research) .

Chi Mei EL Corp of Tainan (Корпорация Тайнаня), продемонстрировала 25" (дюймовые) низко-температурные прозрачные кремниевые Active Matrix OLED в Society of Information Displays (SID) на конференции в Лос-Анджелесе, США 20-22 мая 2008.

Принцип действия

Для создания органических светодиодов (OLED) используются тонкопленочные многослойные структуры, состоящие из слоев нескольких полимеров. При подаче на анод положительного относительно катода напряжения, поток электронов протекает через прибор от катода к аноду. Таким образом катод отдает электроны в эмиссионный слой, а анод забирает электроны из проводящего слоя, или другими словами анод отдает дырки в проводящий слой. Эмиссионный слой получает отрицательный заряд, а проводящий слой положительный. Под действием электростатических сил электроны и дырки движутся навстречу друг к другу и при встрече рекомбинируют. Это происходит ближе к эмиссионному слою, потому что в органических полупроводниках дырки обладают большей подвижностью, чем электроны. При рекомбинации происходит понижение энергии электрона которое сопровождается выделением (эмиссией) электромагнитного излучения в области видимого света. Поэтому слой и называется эмиссионным. Прибор не работает при подаче на анод отрицательного относительно катода напряжения. В этом случае дырки движутся к аноду, а электроны в противоположном направлении к катоду, и рекомбинации не происходит.
В качестве материала анода обычно используется оксид индия легированный оловом. Он прозрачный для видимого света и имеет высокую работу выхода, которая способствует инжекции дырок в полимерный слой. Для изготовления катода часто используют металлы, такие как алюминий и кальций, так как они обладают низкой работой выхода, способствующей инжекции электронов в полимерный слой.

Классификация по способу управления

Существуют два вида OLED-дисплеев - PMOLED и AMOLED. Разница заключается в способе управления матрицей - это может быть либо пассивной матрицей (PM) или активной матрицей (AM).

В PMOLED -дисплеях используются контроллеры развертки изображения на строки и столбцы. Чтобы зажечь пиксель, необходимо включить соответствующую строку и столбец: на пересечении строки и столбца пиксель будет излучать свет. За один такт можно заставить светиться только один пиксель. Поэтому чтобы заставить светиться весь дисплей, необходимо очень быстро подать сигналы на все пиксели путем перебора всех строк и столбцов. Как это делается в старых ЭЛТ (электроно-лучевых трубках).

Дисплеи на базе PMOLED получаются дешевыми, но из-за необходимости строчной развертки изображения не возможно получить дисплеи больших размеров с приемлемым качеством изображения. Обычно размеры PMOLED-дисплеев не превышают 3" (7,5 см)

В AMOLED -дисплеях каждый пиксель управляется напрямую, поэтому они могут быстро воспроизводить изображение. Размеры AMOLED-дисплеев могут иметь большие размеры и на сегодня уже созданы дисплеи с размером 40" (100 см). Производство AMOLED-дисплеев дорогое из-за сложной схемы управления пикселями, в отличие от PMOLED-дисплеев, где для управления достаточно простого контроллера.

Классификация по светоизлучающему материалу

В настоящее время в основном развиваются две технологии, показавшие наибольшую эффективность. Различаются они используемыми органическими материалами это микромолекулы (sm-OLED) и полимеры (PLED), последние делятся на просто полимеры, полимерорганические соединения (POLED), и фосфоресцирующие(PHOLED). О последних немного по подробнее. PHOLED используют принцип электрофосфоресценции, чтобы преобразовать до 100 % электрической энергии в свет. К примеру, традиционные флуоресцентные OLED преобразовывают в свет приблизительно 25-30 % электрической энергии. Из-за их чрезвычайно высокого уровня эффективности энергии, даже по сравнению с другим OLED, PHOLED изучаются для потенциального использования в больших дисплеях типа телевизионных мониторов или экранов для потребностей освещения. Интересно, что технология OLED способна значительно повысить качество LCD панелей, поскольку перспективной технологией подсветки для них является технология PHOLED (PHosphorescent Organic Light Emitting Diode). По данным компании Universal Display Corporation применение PHOLED диодов увеличивает яркость панелей в четыре раза.

Схемы цветных OLED дисплеев
Первыми появились OLED дисплеи на основе микромолекул, однако они оказались слишком дорогостоящими, поскольку изготавливались с помощью вакуумного напыления.

Первый шаг к созданию полимерных дисплеев был сделан в 1989 году, когда ученым Кембриджского университета удалось синтезировать особый полимер – полифениленвинилен. Дисплеи этого типа могут быть получены путем нанесения полимерных материалов на основу специальным струйным принтером. Иногда такие дисплеи называют LEP (Light-Emitting Polymer). Основа может быть гибкой с радиусом изгиба 1 см и менее.

Однако на сегодняшний день по сроку службы и эффективности приборы на основе микромолекул опережают приборы LEP. Сравнительные характеристики долговечности и эффективности излучения для двух технологий OLED дисплеев приведены ниже.

Существуют три схемы цветных OLED дисплеев:

* схема с раздельными цветными эмиттерами;
* схема WOLOD+CF (белые эмиттеры + цветные фильтры);
* схема с конверсией коротковолнового излучения.

Самый простой и привычный вариант – обычная трехцветная модель, которая в технологии OLED называется моделью с раздельными эмиттерами. Три органических материала излучают свет базовых цветов – R, G и B. Этот вариант самый эффективный с позиции использования энергии, однако, на практике оказалось довольно сложно подобрать материалы, которые будут излучать свет с нужной длиной волны, да еще с одинаковой яркостью.

Второй вариант реализуется гораздо проще. Он использует три одинаковых белых эмиттера, которые излучают через цветные фильтры, однако он значительно проигрывает по эффективности использования энергии первому варианту, поскольку значительная часть излученного света теряется в фильтрах.

В третьем варианте (CCM – Color Changing Media) применяются голубые эмиттеры и специально подобранные люминесцентные материалы для преобразования коротковолнового голубого излучения в более длинноволновые – красный и зеленый. Голубой эмиттер, естественно, излучает «напрямую». У каждого из вариантов есть свои достоинства и недостатки:

Другие виды OLED дисплеев

TOLED - прозрачные светоизлучающие устройства TOLED (Transparent and Top-emitting OLED) - технология, позволяющая создавать прозрачные (Transparent) дисплеи, а также достигнуть более высокого уровня контрастности.
Прозрачные TOLED-дисплеи: направление излучения света может быть только вверх, только вниз или в оба направления (прозрачный). TOLED может существенно улучшить контраст, что улучшает читабельность дисплея при ярком солнечном свете.
Так как TOLED на 70 % прозрачны при выключении, то их можно крепить прямо на лобовое стекло автомобиля, на витрины магазинов или для установки в шлеме виртуальной реальности… Также прозрачность TOLED позволяет использовать их с металлом, фольгой, кремниевым кристаллом и другими непрозрачными подложками для дисплеев с отображением вперед (могут использоваться в будущих динамических кредитных картах). Прозрачность экрана достигается при использовании прозрачных органических элементов и материалов для изготовления электродов.
За счёт использования поглотителя с низким коэффициентом отражения для подложки TOLED-дисплея контрастное отношение может на порядок превзойти ЖКИ (мобильные телефоны и кабины военных самолетов-истребителей). По технологии TOLED также можно изготавливать многослойные устройства(например SOLED) и гибридные матрицы (Двунаправленные TOLED TOLED делает возможным удвоить отображаемую область при том же размере экрана - для устройств, у которых желаемый объём выводимой информации шире, чем существующий).

FOLED (Flexible OLED) - главная особенность - гибкость OLED-дисплея (Демонстрация гибкого OLED-дисплея от SONY). Используется пластик или гибкая металлическая пластина в качестве подложки с одной стороны, и OLED-ячеек и герметичной тонкой защитной пленки - с другой. Преимущества FOLED: ультратонкость дисплея, сверхнизкий вес, прочность, долговечность и гибкость, которая позволяет применять OLED-панели в самых неожиданных местах. (Раздолье для фантазии - область возможного применения OLED весьма велика).
Staked OLED - принципиально новое решение от UDC – Staked OLED, сложенные OLED-устройства. Основной особенностью новой технологии является размещение R-ячеек (G-, B-) в вертикальной (последовательно), а не в горизонтальной (параллельно) плоскости, как это происходит в ЖКИ-дисплее или электронно-лучевой трубке. В SOLED каждым элементом подпиксела можно управлять независимо. Цвет пиксела может быть отрегулирован при изменении тока, проходящего через три цветных элемента (в нецветных дисплеях используется модуляция ширины импульса). Яркостью управляют, меняя силу тока. Преимущества SOLED: высокая плотность заполнения дисплея органическими ячейками, посредством чего достигается хорошее разрешение, а значит, высококачественная картинка.(В SOLED-дисплеях в 3 раза улучшено качество изображения в сравнении с ЖКИ и ЭЛТ).

Преимущества в сравнении c LCD-дисплеями

* меньшие габариты и вес
* отсутствие необходимости в подсветке
* отсутствие такого параметра как угол обзора - изображение видно без потери качества с любого угла
* мгновенный отклик (на порядок ниже, чем у LCD) - по сути полное отсутствие инерционности
* более качественная цветопередача (высокий контраст)
* более низкое энергопотребление при той же яркости
* возможность создания гибких экранов

Яркость. OLED дисплеи обеспечивают яркость излучения от нескольких кд/м2 (для ночной работы) до очень высоких яркостей - свыше 100 000 кд/м2, причем их яркость может регулироваться в очень широком динамическом диапазоне. Так как срок службы дисплея обратно пропорционален его яркости, для приборов рекомендуется работа при более умеренных уровнях яркости до 1000 кд/м2. При освещении LCD-дисплея ярким лучом света появляются блики, а картинка на OLED-экране останется яркой и насыщенной при любом уровне освещенности (даже при прямом попадании солнечных лучей на дисплей).

Контрастность. Здесь OLED также лидер. OLED-дисплеи обладают контрастностью 1000000:1 (Контрастность LCD 1300:1[источник не указан 71 день], CRT 2000:1)
Углы обзора. Технология OLED позволяет смотреть на дисплей с любой стороны и под любым углом, причем без потери качества изображения.
Энергопотребление. Энергопотребление OLED дисплеев в полтора раза ниже, чем LCD. Энергопотребление PHOLED(англ.) ещё ниже.
Потребность в преимуществах, демонстрируемых органическими дисплеями с каждым годом растёт. Этот факт позволяет заключить, что в скором времени человечество увидит расцвет данной технологии.

Но технология не стоит на месте и впереди новое поколение OLED

Светодиоды на основе квантовых точек. Сразу отметим, что сильными сторонами QDLED-устройств (Quantum Dot LED - светодиод на квантовых точках) являются высокая яркость, невысокая стоимость производства, широкий диапазон цветов. Уже почти сразу после изобретения нового типа светодиодов им предрекают отличные перспективы стать основой для дисплеев мобильных аппаратов («наладонников», мобильных телефонов и пр.), и даже крупноформатных телевизионных панелей.

Под квантовой точкой ученые подразумевают особую полупроводниковую структуру, которая ограничивает движение электронов сразу в трех измерениях. Применительно к светодиодам на квантовых точках использовалась следующая вариация: селенид кадмия образует «ядро», а в качестве ограничивающей «оболочки» выступает сульфид цинка. Главными «действующими лицами» в данном случае являются электроны, которые при переходе с высокого энергетического состояния на более низкое испускают фотоны, за счет чего и образуется свечение точки. Довольно прост и механизм изменения цвета свечения светодиода - необходимо лишь изменить размеры квантовой точки, что приводит к изменению и длины волны света. Таким образом, рассчитав необходимые размеры полупроводниковой структуры возможно создать светодиоды красного, оранжевого, желтого, или зеленого цветов. Еще одним преимуществом устройств высочайшая яркость - до 9000 Кд/кв. м. К примеру, яркость современных дисплеев не превышает значения в 500 Кд/кв. м. То есть разработка позволяет повысить соответствующий параметр на порядок. Более того, технология позволяет легко повысить яркость светодиодов - всего лишь формированием нескольких квантовых точек.

В конце выкладываю видео для сравнения свойств TFT и OLED дисплеев.

OLED (organic light emitting diode) - полупроводниковый прибор на основе органических кристаллов, которые излучают свет при пропускании через них электрического тока.

OLED представляют собой тончайшую слоистую органическую структуру на основе углерода.

Эмиссионный слой, находящийся между катодом, который отдает электроны в эмиссионный слой, и анодом, который забирает из него электроны. Эмиссионный слой заряжается отрицательно, проводящий - положительно. Электростатические силы заставляют электроны двигаться навстречу дыркам. При столкновении (происходит вблизи эмиссионного слоя) начинается процесс рекомбинации с эмиссией фотонов (излучением).

Органические светодиоды, подобно неорганическим, излучают волны видимого спектра. В приборах, работающих на OLED технологии, используются множество таких слоев.

Сколько можно заработать на сдачу светодиодного экрана в аренду? Узнайте об этом, прочитав .

Стоимость OLED дисплея

Самыми лучшими производителями OLED дисплеев на сегодняшний день являются LG, Samsung, Sony.

Стоимость качественных дисплеев на органических светодиодах составляет от 165 000 руб/кв.м.

This entry was posted in . Bookmark the .




Top