На каком электромагнитном явлении основано устройство трансформатора. §63. Назначение и принцип действия трансформатора

Принцип действия:

  1. В устройстве существуют 2 обмотки , их называют первичной и вторичной. К внешнему источнику подключается только первичная обмотка, тогда как вторичная обмотка предназначена для снятия напряжения.
  2. Включая в электросеть первичную обвивку , в магнитопроводе создаётся магнитное поле (переменное) от первичной обмотки, в результате чего образуется ток вторичной обмотки, если его замкнуть через приёмник.
  3. Синхронно в первичной обвивке образуется нагрузочный ток.
  4. Отсюда происходит трансформирование электрической энергии, когда первичная сеть передаёт её вторичной. В результате, приёмник получит ту величину, на которую рассчитан прибор.

схема работы

Явление взаимной индукции, является основой работы трансформатора:

  1. Чтобы улучшить магнитную связь 2 обмоток, они укладываются на магнитопровод стальной структуры.
  2. В свою очередь , делается изоляция не только между ними, но и с магнитопроводом.
  3. Каждая обмотка имеет свою маркировку. Если обмотка с высоким напряжением, её обозначают (ВН), низким – (НН).
  4. Первичная обмотка подключается к электросети, вторичная – к приёмнику.

Напряжение на обвивках имеют различную величину, и от того в каких целях будет применяться устройство, зависит величина на обвивках:

  1. Повышающий трансформатор будет иметь меньше напряжение на первичной обвивке, чем на второй.
  2. Понижающий прибор , в точности всё наоборот.

Использование их различно:

  1. На больших расстояниях используются повышающие приборы.
  2. Если надо распределить электроэнергию потребителям – понижающие.

Существуют приборы с 3 обмотками, когда надо получить не только высокое и низкое напряжение, но и среднюю величину (СН).

Обвивки такого устройства также изолированы друг от друга и имеют подключение от электроэнергии одной обвивкой, когда 2 другие подсоединяются к разным приёмникам:

  1. Обвивки имеют форму цилиндра и выполняются намоткой медного провода, имеющего круглое сечение для малых токов.
  2. Для тока большой величины используются шины с прямоугольным сечением.
  3. На сердечник магнитопровода делается обвивка для малого напряжения, так как она легко изолируется, по сравнению с обвивкой высокого номинала.
  4. Сам сердечник исполняется круглой формы , если обвивка в форме цилиндра. Это делается для уменьшения немагнитных зазоров, и уменьшить длину витков обвивок. Отсюда уменьшится и масса меди на заданную площадь сечения круглого магнитопровода.
  5. Круглый стержень проходит сложный процесс сборки из стальных листов. И чтобы упростить задачу, в устройствах с большим напряжением используются стержни со ступенчатым поперечным сечением, когда их число достигает всего 17 штук.
  6. В мощных агрегатах устанавливаются дополнительные вентиляционные каналы, для охлаждения магнитопровода. Это достигается расположением их перпендикулярно и параллельно поверхности листов из стали.
  7. В менее мощных устройствах сердечник выполняется с прямоугольным сечением.

Назначение и типы

трехфазный трансформатор

Трансформатор, можно назвать преобразователем одной величины напряжения или тока в другую.

Они могут быть:

  • трёхфазными;
  • однофазными;
  • понижающими;
  • повышающими;
  • измерительными и т.д.;

Назначение прибора: передаёт и распределяет электроэнергию заказчику.

В приборе есть активные компоненты: обвивка и сердечник магнитопоровода. В свою очередь, сердечник может быть стержневым и броневым. Для них используется холоднокатаная горячекатаная электротехническая сталь.

Обвивку используют непрерывную, винтовую, цилиндрическую, дисковую.

Среди современных изделий можно отметить следующие:

  • тороидальные;
  • броневые;
  • стержневые;


Они имеют характеристики похожие друг с другом, с высокой надёжностью. Единственное, что их различает – это способ изготовления.

В стержневом варианте, обвивка наматывается вокруг сердечника, тогда как в броневом типе идёт включение в сердечник. Поэтому, в стержневом типе, обвивку можно увидеть и располагается она только горизонтально, а в броневом, она скрыта, но может быть, как горизонтально, так и вертикально размещена.

Какой бы тип мы не рассматривали, у него имеются 3 компонента:

  • система охлаждения;
  • обвивка;
  • магнитопровод;

За счёт приборов удаётся значительно повысить напряжённость, идущую с электрических станций, на дальние расстояния, при этом, потери энергии будут минимальные по проводам. На основании вышеизложенного, можно использовать провода на линиях передач, с меньшей площадью сечения.

Потребителю также можно уменьшать потребление энергии с высоковольтных линий до номинальных значений (380, 220, 127 В).

Область применения и виды


трансформатор в телевизоре

Бытовые трансформаторы защищают технику при перепадах напряжения.

Поэтому применяют их в следующих приборах:

  • в освещении;
  • осциллографах;
  • телевизорах;
  • радиоприёмниках;
  • измерительных устройствах и т.д;

Сварочные экземпляры, разделяющие силовую и сварочную сеть, активно используются при сварке и электротермических конструкциях, где успешно понижают величину напряжения до обязательных номиналов.

В энергосети используются масляные агрегаты, где напряжённость 6 и 10 кВ.

Многие автоматические конструкции используют трансформаторы, где напряжение на обвивках несуидальное.

Виды:


  1. Вращающийся . Передача сигнала ведётся на объекты, которые вращаются. Например, видеомагнитофон, где передача сигнала ведётся на барабан узла магнитной головки. Здесь существуют 2 половины магнитопровода и вращение их происходит с минимальным зазором в отношении друг друга. На основании этого, реализуется большая скорость оборотов, в контактном способе сигнала достичь такого эффекта не считается возможным.
  2. Пик-трансформатор . В этом варианте происходит преобразование синусоидального напряжения в сплески, имеющие пикообразную форму. Активно используются в управлении тиристоров, а также электронных и полупроводниковых устройств.
  3. Согласующий . Принимает участие в согласовании сопротивлений в разных промежутках электронной схемы, при этом, форма сигнала искажается минимально. Синхронно обеспечивается гальваническая развязка между зонами схем.
  4. Разделительный . Здесь 2 обмотки не соединены между собой электрически. Такая схема даёт возможность повысить безопасность электрических сетей. Когда происходит случайное одновременное прикосновение к токоведущей части и земли, выдаётся гальваническая развязка электрической цепи.
  5. Импульсный . В этом варианте преобразуются импульсные сигналы за очень короткий промежуток времени (десятки микросекунд), при этом, искривление конфигурации импульса минимально.
  6. По напряжению . Здесь происходит конверсия большого напряжения в низкую величину. Этот вариант позволяет изолировать измерительные и логические цепи от большого напряжения.
  7. По току . В этом типе измеряются цепи с большим током. Например, в конструкциях релейных щитов электроэнергетических систем. Поэтому, применяются достаточно жёсткие требования к точности.
  8. Автотрансформатор . В этом типе соединение 2 обмоток ведётся напрямую. В результате, создаётся электрическая и электромагнитная связь, чем объясняется высокий КПД этого вида. Недостатком такого устройства, можно назвать отсутствие изоляции, то есть не существует гальваническая развязка.
  9. Силовой . Этот вариант используется при изменяемом токе и преобразует электрическую энергию в установках и электросетях. Широко применяется этот тип на линиях ЛЭП с высокой напряжённостью (35-750 кВ), городских электрических сетях (10 и 6 кВ).
  10. Сдвоенный дроссель . Наличие 2 равных обвивок, даёт возможность получить более результативный дроссель, чем обычный. Их используют на вводе фильтра в блоке питания, а также в звуковом оборудовании.
  11. Трансфлюксор . Оставшаяся намагниченность магнитного провода имеет большую величину, что позволяет использовать его для сохранения сведений.

Немного из истории


Изобретение трансформаторов начиналось ещё в 1876 году, великим русским учёным П.Н. Яблоковым. Тогда его изделие не имело замкнутого сердечника, который появился значительно позже – 1884 год. И с появлением прибора учёные активно стали интересоваться переменным током.

Например, уже в 1889 году, М.О. Доливо-Добровольским (русским электротехником) была предложена трёхфазная система переменного тока. Им был построен первый 3-х фазный

Уже через пару лет, электромеханик предоставил свои работы на выставке, где произошла презентация трёхфазной высоковольтной линии, имеющую протяженность 175 км, где успешно повышалась и понижалась электроэнергия.

Немного позже, пришла очередь масляным агрегатам, так как масло не только оказалось хорошим изолятором, но и прекрасной охлаждающей средой.

В 20 столетии появились изделия более компактные и экономичные. Производителями продукции являлись иностранные фирмы. На настоящий момент, выпуском продукции занимаются и отечественные фирмы.

Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора .

Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.

Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.

Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.

1. Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции .

Если на первичную обмотку подать переменное напряжение U1 , то по виткам обмотки потечет переменный ток Io , который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле . Магнитное поле образует магнитный поток Фo , который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2 . И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2 , которое будет приблизительно равно наведенной ЭДС е2 .

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1 , образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1 . Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2 , создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2 , стремящийся размагнитить порождающий его магнитный поток.

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1 , т.е.

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2 , под воздействием которой во вторичной цепи течет ток I2 . Именно благодаря наличию магнитного потока Фo и существует ток I2 , который будет тем больше, чем больше Фo . Но и в то же время чем больше ток I2 , тем больше противодействующий поток Ф2 и, следовательно, меньше Фo .

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2 , тока I2 и потока Ф2 , обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo , а без него не мог бы существовать поток Ф2 и ток I2 . Следовательно, магнитный поток Ф1 , создаваемый первичным током I1 , всегда больше магнитного потока Ф2 , создаваемого вторичным током I2 .

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках . При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным .

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим .

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим .

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2 . Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока . Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

2. Устройство трансформатора.

2.1. Магнитопровод. Магнитные материалы.

Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы , используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями .
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали , имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы , которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

2.2. Типы магнитопроводов.

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые , броневые и тороидальные . При этом каждый из этих типов может быть и стрежневым и ленточным.

Стержневые .

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

Броневые .

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные .

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

На этом пока закончим. Продолжим во .
Удачи!

Литература:

1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

Силовые трансформаторы служат для преобразования электрической энергии одного напряжения в энергию другого напряжения. Они являются основным оборудованием электрических подстанций. Электроэнергия, вырабатываемая на электростанциях, при передаче к потребителям претерпевает многократную трансформацию в повышающих и понижающих трансформаторах. Передача электроэнергии на большие расстояния более экономична высоким напряжением. Мощность трансформаторов, установленных в электроэнергетических системах, превышает установленную мощность генераторов в 4-5 раз. Несмотря на относительно высокий КПД трансформаторов стоимость энергии, теряемой ежегодно в них, составляет значительную сумму. Необходимо стремиться к уменьшению числа ступеней трансформации, уменьшению установленной мощности трансформаторов.

Трансформаторы изготовляют однофазными и трехфазными, двух- и трехобмоточными. Преимущественное применение в системах и сетях имеют трехфазные трансформаторы, экономические показатели которых выше показателей групп из однофазных трансформаторов. Группы из однофазных трансформаторов применяют только при самых больших мощностях и напряжениях 500 кВ и выше в целях уменьшения массы для транспортировки от места изготовления до места установки. Однофазные трансформаторы применяются также на тяговых подстанциях при электрификации железных дорог переменным током.

Трансформаторы и автотрансформаторы имеют номинальные мощности десятично кратные следующим значениям: 1; 1,6; 2,5; 4; 6,3 кВ*А.

Для удобства планирования работ, связанных с транспортировкой и ремонтом трансформаторов, их условно делят по габаритам в зависимости от мощности и напряжения обмоток ВН.

На рис. показано устройство и компоновка основных частей силового масляного трансформатора третьего габарита.

Основой конструкции трансформатора служит активная часть, состоящая из магнитопровода 17 с расположенными на нем обмотками 21 высшего напряжения (ВН) и низшего напряжения (НН), расположенными под ВН на стержнях магнитопровода, отводов НН 16 и BH18 и переключающего устройства 6. Магнитопровод, набранный из отдельных тонких листов трансформаторной стали с жаропрочным изоляционным покрытием, стягивается ярмовыми балками 19 и шпильками, пропущенными через сквозные отверстия стержней магнитопровода и ярмовых балок.

Отводами 16 и 18 называются соединительные провода, идущие от концов обмоток НН и ВН к вводам НН 14 и ВН 12.

Переключающее устройство 6 обмоток трансформатора служит для ступенчатого изменения напряжения в определенных пределах, поддержания номинального напряжения на зажимах обмотки НН при его изменении.

С этой целью обмотки ВН трансформаторов снабжают регулировочными ответвлениями 20, которые присоединяют к переключателям 6.

Необходимость регулирования вызвана тем, что в электросистемах возможны различные отклонения от нормального режима электроснабжения, приводящие к неэкономичной работе приемников электроэнергии.

Рис.1

1 - бак; 2 - вентиль; 3 - болт заземления; 4 - термосифонный фильтр; 5 - радиатор; 6 - переключатель; 7 - расширитель; 8 - маслоуказатель; 9 - воздухоосушитель; 10 - выхлопная труба; 11 - газовое реле; 12 - ввод ВН; 13 - привод переключающего устройства; 14 - ввод НН; 15 - подъемный рым; 16 - отвод НН; 17 - остов; 18 - отвод ВН; 19 - ярмовая балка остова (верхняя и нижняя); 20-- регулировочные ответвления обмоток ВН; 21 - обмотка ВН (внутри НН); 22 - каток тележки.

В трансформаторах могут быть два вида переключателей ответвления: регулирование под нагрузкой (РПН) и без нагрузки после отключения трансформатора, т.е. переключение без возбуждения (ПБВ). Переключающее устройство приводится в действие с помощью привода 13, расположенного на крышке бака трансформатора 1.

Бак трансформатора представляет собой стальной резервуар овальной формы, заполненный трансформаторным маслом, с погруженной в него активной частью трансформатора. Масло, являясь охлаждающей средой, отводит тепло, выделяющееся в обмотках и магнитопроводе, и отдает его в окружающую среду через стенки и крышку бака. Кроме охлаждения масло служит для повышения Уровня изоляции между токоведущими частями и заземленным баком. Для увеличения поверхности охлаждения баки делают ребристыми, вваривают в них трубы или снабжают съемными радиаторами 5. В нижней части бака имеется кран для слива масла 2, а в днище - пробка для спуска осадков после слива масла через кран. Ко дну бака трансформатора массой выше 800 кг приваривают тележку с поворотными катками 22, позволяющими изменять направление передвижения трансформатора с поперечного на продольное. Для подъема трансформатора на верхних ярмовых балках крепятся подъемные шпильки с рым-кольцами 15.

Термосифонный фильтр 4 крепится к баку трансформатора двумя патрубками с фланцами и промежуточными плоскими кранами. Фильтр предназначен для поддержания изоляционных свойств масла, а следовательно, продления срока его службы. Он представляет собой цилиндрическое устройства, заполненное активным материалом - сорбентом, который поглощает продукты старения трансформаторного масла. Работа фильтра основана на термосифонном принципе: более нагретое масло верхних слоев попадет в фильтр, охлаждается и опускается вниз, непрерывно при этом очищаясь.

На крышке бака размещены вводы 12 и 14, расширитель 7, выхлопная труба 10, газовое реле 11.

Вводы представляют собой фарфоровые проходные изоляторы, к которым в баке крепятся выводы обмоток трансформатора, а снаружи - токоведущие части распределительных устройств. Вводы внутри бака имеют гладкую поверхность, для наружной установки, работающие в тяжелых условиях (под дождем, снегом, в загрязненном воздухе), отличаются более развитой поверхностью (имеют зонтообразные ребра) для увеличения пути поверхностного электрического разряда по фарфору и электрической прочности ввода.

Расширитель 7 служит для компенсации колебаний уровня масла в трансформаторе при изменении температуры и уменьшения площади соприкосновения с воздухом открытой поверхности масла, защиты его от преждевременного окисления кислородом воздуха и увлажнения. Расширитель представляет собой цилиндрический бак, закрепленный с помощью кронштейна на крышке трансформатора. Расширитель сообщается с баком трансформатора трубой, не выступающей ниже внутренней поверхности крышки трансформатора и заканчивающейся внутри расширителя выше его дна во избежание попадания осадков масла в бак. Объем расширителя должен обеспечивать постоянное наличие в нем масла во всех режимах работы трансформатора как в летних так и в зимних условиях.

Для наблюдения за маслом на боковой стенке расширителя устанавливают маслоуказатель 8, выполненный в виде стеклянной трубки в металлической оправе. Воздухоосушитель 9 предназначен для поглощения влаги из воздуха, поступающего в расширитель.

Воздухоосушитель, устанавливаемый на расширителе трансформатора, имеет металлический корпус, заполненный селикагелем, отбирающим влагу у воздуха, поступающего в расширитель при понижении уровня масла.

Газовое реле 11 встраивают в рассечку трубы, соединяющей бак трансформатора с расширителем. Оно защищает трансформатор при внутренних повреждениях, связанных с выделением газа или утечкой из бака.

Повреждения внутри трансформатора, сопровождаемые электрической дугой, приводит к интенсивному разложению масла с образованием большого количества газа и, как следствие, резкому повышению давления внутри бака, при этом может разорваться бак и возникнуть пожар. Выхлопная труба 10, устанавливаемая на крышке бака трансформатора, закрыта стеклянным диском. При повышении давления внутри бака стекло лопается и газы вместе с маслом выбрасываются наружу раньше, чем произойдет деформация бака.

При сборке схем обмоток трансформаторов большое значение придается не только получению результирующего напряжения на его зажимах, но и направлению векторов напряжений первичной и вторичной обмоток, определяющих группу соединения трансформатора. Стандартом предусмотрены группы соединения обмоток трансформаторов: нулевая (0) и одиннадцатая (11). За единицу группы принят угол смещения вектора линейного напряжения обмотки НН относительно соответствующего вектора линейного напряжения обмотки ВН, равный 30. Смещение отсчитывают от вектора линейного напряжения ВН по часовой стрелке.

Начала фазных обмоток ВН трехфазных трансформаторов обозначают прописными латинскими буквами А, В, С, концы - буквами X, Y, Z. Начала обмоток НН обозначают строчными латинскими буквами а, в, с, концы - буквами х, у, z. Для трехобмоточных трансформаторов начала обмоток среднего напряжения (СН) обозначают буквами А аВа Са концы - буквами Х Y ZM

Фазные обмотки трехфазных трансформаторов могут быть соединены в звезду CD, треугольник (А) или зигзаг (У). Эти схемы в тексте обозначают буквами У, Д и Z.

В схеме соединения обмоток трансформатора ответвление нейтрали, сделанное на внешний зажим, обозначается буквой N.

Рис. 2.

Для отличия по конструкции, назначению, мощности, напряжению и другим признакам трансформаторы подразделяются на типы. Каждому типу присваивают обозначения, состоящие из букв и цифр.

Буквенные обозначения по конструктивному выполнению:

А - автотрансформатор (понижающий - А в начале обозначения, повышающий - А в конце); Т - трехфазный; 0 --однофазный; Р - с расщепленной обмоткой НН;

Т - трехобмоточный (вторая буква Т в обозначении трехфазного трансформатора).

Буквенное обозначение по видам охлаждения:

С - сухой (естественное воздушное);

М - масляный (естественное масляное);

Д - дутьевой (принудительная циркуляция воздуха при охлаждении радиаторов вентиляторами);

ДЦ - дутьевой, с принудительной циркуляцией масла через охладитель с помощью насоса;

МЦ - масляный, с принудительной циркуляцией масла и естественной - воздуха.

Буквенное обозначение при наличии регуляторов напряжения:

Н - с регулированием напряжения под нагрузкой (наличие РПН).

Число в числителе после буквенного обозначения указывает мощность трансформатора в киловольт-амперах, в знаменателе - класс напряжения обмотки ВН в киловольтах.

В условном обозначении указывают также год разработки конструкции, климатическое исполнение и категорию размещения трансформатора (1 - на открытом воздухе, 3 - в закрытом помещении)

Рис. 3. Пример обозначения типа трансформатора и его расшифровка:


Принцип действия трансформатора основан на знаменитом законе взаимной индукции. Если включить в сеть первичную обмотку этой то по этой обмотке начнет течь переменный ток. Этот ток будет создавать в сердечнике переменный магнитный поток. Данный магнитный поток начнет пронизывать витки вторичной обмотки трансформатора. На этой обмотке будет индуцироваться переменная ЭДС (электродвижущая сила). Если подключить (замкнуть) вторичную обмотку к какому-то приемнику электрической энергии (например, к обычной лампе накаливания), то под воздействием индуктируемой электродвижущей силы по вторичной обмотке к приемнику будет течь электрический переменный ток.

Вместе с этим, по первичной обмотке будет протекать ток нагрузки. Это значит, что электроэнергия будет трансформироваться и передаваться из вторичной обмотки в первичную при том напряжении, на который рассчитана нагрузка (то есть приемник электроэнергии, подключенный ко вторичной сети). Принцип действия трансформатора и основан на этом простом взаимодействии.

Для улучшения передачи магнитного потока и усиления магнитной связи намотка трансформатора, как первичная, так и вторичная, помещается на специальный стальной магнитопровод. Обмотки изолированы и от магнитопровода, и друг от друга.

Принцип действия трансформатора различен по напряжению обмоток. Если напряжение вторичной и первичной обмоток будет одинаково, то будет равен единице, и тогда теряется сам смыл трансформатора как преобразователя напряжения в сети. Разделяют понижающие и повышающие трансформаторы. Если первичное напряжение будет меньше, чем вторичное, то такое электрическое устройство будет называться повышающим трансформатором. Если же вторичное меньше - то понижающим. Однако один и тот же трансформатор можно использовать и в качестве повышающего, и в качестве понижающего. Трансформатор повышающий используется для передачи энергии на различные расстояния, для транзита и прочего. Понижающие используют в основном для перераспределения электроэнергии между потребителями. Расчет обычно и производится с учетом его последующего применения в качестве понижающего напряжение или повышающего.

Как уже говорилось выше, принцип действия трансформатора довольно прост. Однако есть некоторые любопытные детали в его конструкции.

В трансформаторах трехобмоточных три изолированные обмотки помещены на магнитопровод. Такой трансформатор может получать два разных напряжения и передавать энергию сразу двум группам приемников электроэнергии. В таком случае говорят, что кроме обмоток низшего и у трехобмоточного трансформатора есть и обмотка среднего напряжения.

Обмотки трансформатора имеют цилиндрическую форму, и полностью изолируются друг от друга. При такой обмотке поперечное сечение стержня будет иметь круглую форму для уменьшения ненамагниченных промежутков. Чем меньше таких промежутков, тем меньше и масса меди, а, следовательно, масса и стоимость трансформатора.

ТРАНСФОРМАТОРЫ

НАЗНАЧЕНИЕ ТРАНСФОРМАТОРОВ И ИХ ПРИМЕНЕНИЕ

Трансформатор предназначен для преобразования переменного тока одного напряжения в переменный ток другого напряжения. Увеличение напряжения осуществляется с помощью повышающих трансформаторов, уменьшение — понижающих.

Трансформаторы применяют в линиях электропередачи, в технике связи, в автоматике, измерительной технике и других областях.

В соответствии с назначением различают:

Силовые трансформаторы для питания электрических двигателей и осветительных сетей;

Специальные трансформаторы для питания сварочных аппаратов, электропечей и других потребителей особого назначения;

Измерительные трансформаторы для подключения измерительных приборов.

По числу фаз трансформаторы делятся на одно- и трехфазные. Трансформаторы, используемые в технике связи, подразделяют на низко- и высокочастотные.

Расчетные мощности трансформаторов различны — от долей вольт-ампер до десятков тысяч киловольт-ампер; рабочие частоты — от единиц герц до сотен килогерц.

Трансформатор — простой, надежный и экономичный электрический аппарат. Он не имеет движущихся частей и скользящих контактных соединений, его КПД достигает 99%. КПД трансформатора η, определяемый как отношение мощности на выходе Р 2 к мощности на входе Р 1 , зависит от нагрузки.

УСТРОЙСТВО ТРАНСФОРМАТОРА

Трансформатор представляет собой замкнутый магнитопровод, на котором расположены две или несколько обмоток. В маломощных высокочастотных трансформаторах, используемых в радиотехнических схемах, магнитопроводом может являться воздушная среда.

Для уменьшения потерь на гистерезис магнитопровод изготовляют из магнитомягкого материала — трансформаторной стали, имеющей узкую петлю намагничивания. Для уменьшения потерь на вихревые токи в материал магнитопровода вводят примесь кремния, повышающую его электрическое сопротивление, а сам магнитопровод собирают из отдельных листов электротехнической стали толщиной 0,35—0,5 мм, изолированных друг от друга теплостойким лаком или специальной бумагой.

Различают трансформаторы стержневого (рис. 7.1, а) и броневого (рис. 7.1, б) типов.

Рис. 7.1. Конструкция однофазного маломощного трансформатора стержневого (а) и броневого (б) типов

Последний хорошо защищает обмотки катушек от механических повреждений. Верхнюю часть магнитопровода, называемую ярмом, крепят после насадки на стержень катушек (обмоток). Стержни и ярмо соединяют очень плотно, чтобы исключить воздушные зазоры на стыках. В маломощных трансформаторах находят широкое применение кольцевые магнитопроводы, которые собирают из штампованных колец или навивают из длинной ленты. В этих магнитопроводах отсутствует воздушный зазор, поэтому магнитный поток рассеяния мал. В трансформаторах, рассчитанных на повышенные частоты, кольцевые магнитопроводы часто прессуют из ферромагнитного порошка, смешанного с изоляционным лаком.

Обмотки трансформаторов изготовляют из медного провода и располагают на одном и том же или на разных стержнях, рядом или одну под другой. В последнем случае непосредственно к стержню примыкает обмотка низшего напряжения, а поверх нее размещается обмотка высшего напряжения.

Обмотку трансформатора, к которой подводится напряжение питающей сети, называют первичной , а обмотку, к которой подсоединяется нагрузка,— вторичной . На сердечнике может быть размещено несколько вторичных обмоток с разным числом витков, что позволяет получить различные по значению вторичные напряжения.

При работе трансформатора за счет токов в обмотках, а также вследствие перемагничивания магнитопровода и вихревых токов выделяется теплота. Трансформаторы небольшой мощности (до 10 кВ-А), для которых достаточно воздушного охлаждения, называют сухими.

Рис. 7.2. Трехфазный силовой трансформатор Рис. 7.3. Общий вид автотрансформатора

I — ручка скользящего контакта; 2— скользящий контакт; 3 — обмотка

В мощных трансформаторах применяют масляное охлаждение (рис. 7.2). Магнитопровод 1 с обмотками 2, 3 размещается в баке 4, заполненном минеральным (трансформаторным) маслом. Масло не только отводит теплоту за счет конвекции или принудительной циркуляции, но и является хорошим диэлектриком (изолятором). Масляные трансформаторы надежны в работе и имеют меньшие размеры и массу по сравнению с сухими трансформаторами той же мощности. При изменении температуры объем масла меняется. При повышении температуры излишек масла поглощается расширителем 5, а при понижении температуры масло из расширителя возвращается в основной бак.

В тех случаях, когда требуется плавно изменять вторичное напряжение, применяют скользящий контакт для изменения числа витков обмотки (примерно так же, как это делается в ползунковых реостатах). Скользящий контакт широко используется в автотрансформаторах, рассчитанных на регулирование напряжения в небольших пределах (рис. 7.3).

ФОРМУЛА ТРАНСФОРМАТОРНОЙ ЭДС

Рассмотрим катушку (рис. 7.4), к зажимам которой подведено синусоидальное напряжение. Пренебрежем сопротивлением катушки и потерями на гистерезис и вихревые токи. Тогда приложенное к катушке напряжение u = U m sinωt будет уравновешиваться только ЭДС самоиндукции e = E m sin ω t .

Это очевидно, так как полностью уравновешивать друг друга могут только равные и одинаково изменяющиеся во времени величины.

В соответствии с законом электромагнитной индукции е = — w ; следовательно, Е m sin ωt= —ω.

Это дифференциальное уравнение позволяет найти зависимость между ЭДС обмотки и магнитным потоком в магнитопроводе:

d Ф= - sin ωt dt

Проинтегрируем левую и правую части этого выражения:

Ф = - ∫ sin ω t dt= cos ωt +A

Здесь постоянная интегрирования A = 0, так как синусоидальная ЭДС не может создать постоянную составляющую магнитного потока. Таким образом,

E= cos ω t = Ф m cos ω t,

где Ф m = Е m /ω w —амплитудное значение переменного магнитного потока в магнитопроводе катушки. Подставив в последнее равенство Е m = √2 E и ω = 2πf, получим

Ф m =, или Е=

т. е. Е = 4,44 fw Ф m . Это выражение, связывающее действующее значение ЭДС в обмотке с амплитудой магнитного потока в магнитопроводе, принято называть формулой трансформаторной ЭДС. Она играет важную роль в теории трансформаторов и электрических машин переменного тока.

Рис. 7.4. Схема катушки с ферромагнитным сердечником в цепи переменного тока

ПРИНЦИП ДЕЙСТВИЯ ОДНОФАЗНОГО ТРАНСФОРМАТОРА.

КОЭФФИЦИЕНТ ТРАНСФОРМАЦИИ.

Работа трансформатора основана на явлении взаимной индукции, которое является следствием закона электромагнитной индукции.

Рассмотрим более подробно сущность процесса трансформации тока и напряжения.

При подключении первичной обмотки трансформатора к сети переменного тока напряжением U 1 по обмотке начнет проходить ток I 1 (рис. 7.5), который создаст в магнитопроводе переменный магнитный поток Ф. Магнитный поток, пронизывая витки вторичной обмотки, индуцирует в ней ЭДС E 2 , которую можно использовать для питания нагрузки.

Поскольку первичная и вторичная обмотки трансформатора пронизываются одним и тем же магнитным потоком Ф, выражения индуцируемых в обмотке ЭДС можно записать в виде

Е 1 = 4,44fw 1 Ф m

Е 2 = 4,44 fw 2 Ф m

где f — частота переменного тока; w 1 , w 2 — число витков обмоток.

Е 2 /Е 1 = w 2 / w 2 = k .

Отношение чисел витков обмоток трансформатора называют коэффициентом трансформации k .

Таким образом, коэффициент трансформации показывает, как относятся действующие значения ЭДС вторичной и первичной обмоток.

На основании закона электромагнитной индукции можно написать

e 1 = — w 1 , e 2 = — w 2

Поделив одно равенство на другое, получим e 2 / e 1 = w 2 / w 1 = k

Следовательно, в любой момент времени отношение мгновенных значений ЭДС вторичной и первичной обмоток равно коэффициенту трансформации. Нетрудно понять, что это возможно только при полном совпадении по фазе ЭДС е 1 и е 2 .

Если цепь вторичной обмотки трансформатора разомкнута (режим холостого хода), то напряжение на зажимах обмотки равно ее ЭДС: U 2 = E 2 , а напряжение источника питания почти полностью уравновешивается ЭДС первичной обмотки U ≈ E 1 . Следовательно, можно написать, что k = E 2 / E 1 ≈U 2 /U 1 .

Рис. 7.5. Принципиальная схема однофазного трансформатора

Таким образом, коэффициент трансформации может быть определен на основании измерений напряжения на входе и выходе ненагруженного трансформатора. Отношение напряжений на обмотках ненагруженного трансформатора указывается в его паспорте.

Учитывая высокий КПД трансформатора, можно полагать, что S t ≈ S 2 , где S 1 = U 1 I 1 — мощность, потребляемая из сети; S 2 = U 2 I 2 — мощность, отдаваемая в нагрузку.

Таким образом, U 1 I 1 ≈ U 2 I 2 , откуда I 1 / I 2 ≈ U 2 / U 1 = k .

Отношение токов первичной и вторичной обмоток приближенно равно коэффициенту трансформации, поэтому ток I 2 во столько раз увеличивается (уменьшается), во сколько раз уменьшается (увеличивается) U 2 .

ТРЕХФАЗНЫЕ ТРАНСФОРМАТОРЫ

В линиях электропередачи используют в основном трехфазные силовые трансформаторы. Внешний вид, конструктивные особенности и компоновка основных элементов этого трансформатора представлены на рис. 7.2. Магнитопровод трехфазного трансформатора имеет три стержня, на каждом из которых размещаются две обмотки одной фазы (рис. 7.6).

Рис. 7.6. Размещение обмоток на сердечнике трехфазного трансформатора

Для подключения трансформатора к линиям электропередачи на крышке бака имеются вводы, представляющие собой фарфоровые изоляторы, внутри которых проходят медные стержни. Вводы высшего напряжения обозначают буквами А, В, С, вводы низшего напряжения — буквами а, b , с. Ввод нулевого провода располагают слева от ввода а и обозначают О (рис. 7.7).

Принцип работы и электромагнитные процессы в трехфазном трансформаторе аналогичны рассмотренным ранее. Особенностью трехфазного трансформатора является зависимость коэффициента трансформации линейных напряжений от способа соединения обмоток.

Применяются главным образом три способа соединения обмоток трехфазного трансформатора: 1) соединение первичных и вторичных обмоток звездой (рис. 7.8, а); 2) соединение первичных обмоток звездой, вторичных — треугольником (рис. 7.8, б); 3) соединение первичных обмоток треугольником, вторичных—звездой (рис. 7.8, в).

Рис. 7.8. Способы соединения обмоток трехфазного трансформатора

Обозначим отношение чисел витков обмоток одной фазы буквой k , что соответствует коэффициенту трансформации однофазного трансформатора и может быть выражено через отношение фазных напряжений: k = w 2 / w 1 ≈ U 2ф / U 1ф

Обозначим коэффициент трансформации линейных напряжений буквой с.

При соединении обмоток по схеме звезда — звезда

При соединении обмоток по схеме звезда — треугольник

с =.

При соединении обмоток по схеме треугольник— звезда

Таким образом, при одном и том же числе витков обмоток трансформатора можно в √3 раза увеличить или уменьшить его коэффициент трансформации, выбирая соответствующую схему соединения обмоток.

АВТОТРАНСФОРМАТОРЫ И ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ

Принципиальная схема автотрансформатора изображена на рис. 7.9.

У автотрансформатора часть витков первичной обмотки используется в качестве вторичной обмотки, поэтому помимо магнитной связи имеется электрическая связь между первичной и вторичной цепями. В соответствии с этим энергия из первичной цепи во вторичную передается как с помощью магнитного потока, замыкающегося по магнитопроводу, так и непосредственно по проводам. Поскольку формула трансформаторной ЭДС применима к обмоткам автотрансформатора так же, как и к обмоткам трансформатора, коэффициент трансформации автотрансформатора выражается известными отношениями

k = w 2 /w l =E 2 /E l ≈ U 2 /U 1 ≈I 1 /I 2

Вследствие электрического соединения обмоток через часть витков, принадлежащую одновременно первичной и вторичной цепям, проходят токи I 1 и I 2 , которые направлены встречно и при небольшом коэффициенте трансформации мало отличаются друг от друга по значению. Поэтому их разность оказывается небольшой и обмотку w 2 можно выполнить из тонкого провода. Таким образом, при k = 0,5 - 2 экономится значительное количество меди. При больших или меньших коэффициентах трансформации это преимущество автотрансформатора исчезает, так как та часть обмотки, по которой проходят встречные токи I 1 и I 2 , уменьшается до нескольких витков, а сама разность токов увеличивается.

Электрическое соединение первичной и вторичной цепей повышает опасность при эксплуатации аппарата, так как при пробое изоляции в понижающем автотрансформаторе оператор может оказаться под высоким напряжением первичной цепи.

Автотрансформаторы применяют для пуска мощных двигателей переменного тока, регулирования напряжения в осветительных сетях, а также в других случаях, когда необходимо регулировать напряжение в небольших пределах.

Измерительные трансформаторы напряжения и тока используют для включения измерительных приборов, аппаратуры автоматического регулирования и защиты в высоковольтные цепи. Они позволяют уменьшить размеры и массу измерительных устройств, повысить безопасность обслуживающего персонала, расширить пределы измерения приборов переменного тока.

Измерительные трансформаторы напряжения служат для включения вольтметров и обмоток напряжения измерительных приборов (рис. 7.10). Поскольку эти обмотки имеют большое сопротивление и потребляют маленькую мощность, можно считать, что трансформаторы напряжения работают в режиме холостого хода.

Измерительные трансформаторы тока используют для включения амперметров и токовых катушек измерительных приборов (рис. 7.11). Эти катушки имеют очень маленькое сопротивление, поэтому трансформаторы тока практически работают в режиме короткого замыкания.

Рис. 7.10. Схема включения и Рис. 7.11. Схема включения и

условное обозначение измери- условное обозначение изме-

тельного трансформатора напря- рительного трансформатора тока
жения

Результирующий магнитный поток в магнитопроводе трансформатора равен разности магнитных потоков, создаваемых первичной и вторичной обмотками. В нормальных условиях работы трансформатора тока он невелик. Однако при размыкании цепи вторичной обмотки в сердечнике будет существовать только магнитный поток первичной обмотки, который значительно превышает разностный магнитный поток. Потери в сердечнике резко возрастут, трансформатор перегреется и выйдет из строя. Кроме того, на концах оборванной вторичной цепи появится большая ЭДС, опасная для работы оператора. Поэтому трансформатор тока нельзя включать в линию без подсоединенного к нему измерительного прибора. Для повышения безопасности обслуживающего персонала кожух измерительного трансформатора должен быть тщательно заземлен.

СВАРОЧНЫЕ ТРАНСФОРМАТОРЫ

К источникам питания сварочных аппаратов предъявляются специфические требования: при заданной мощности они должны создавать большие токи в нагрузке, причем резкое изменение сопротивления нагрузки не должно существенно сказываться на значении сварочного тока.

Относительно невысокие напряжения при больших токах обеспечивают не только эффективное тепловыделение в сварочном контакте, но и безопасность сварщика, работающего обычно среди металлических конструкций с высокой электропроводностью.

В соответствии с рассмотренными требованиями сварочные трансформаторы обеспечивают понижение напряжения от 220 или 380 В до 60—70 В. Такое напряжение на зажимах вторичной обмотки устанавливается при холостом ходе сварочного трансформатора. В процессе сварки оно колеблется от максимального значения 60—70 В до значений, близких к нулю. Сопротивление электрической дуги, возникающей при сварке, изменяется при перемещениях руки сварщика. Если бы напряжение на зажимах вторичной обмотки трансформатора поддерживалось постоянным, возникали бы резкие колебания тока в цепи и регулировать тепловыделение было бы невозможно. Поэтому сварочный трансформатор устроен так, что при резком уменьшении сопротивления дуги ток в цепи увеличивается незначительно, а произведение I 2 R , определяющее количество теплоты, сохраняется на требуемом уровне.

В соответствии с законом Ома при резком уменьшении сопротивления и незначительном увеличении тока напряжение на дуге снижается. Сварочный трансформатор имеет крутопадающую внешнюю характеристику.

Сварочный трансформатор выдерживает короткие замыкания, возникающие в случае прикосновения электрода к сварочному шву. Ток короткого замыкания, как показывает внешняя характеристика, ограничен. Вторичная обмотка трансформатора рассчитана на достаточно длительное протекание этого тока.

При постоянном напряжении питающей сети быстрое снижение выходного напряжения трансформатора при незначительном возрастании тока может быть достигнуто только за счет увеличения внутреннего падения напряжения в обмотках трансформатора. Для этого нужно увеличить сопротивление обмоток.

Сварочные трансформаторы изготовляют с большим регулируемым индуктивным сопротивлением обмоток. При этом увеличивают не активное сопротивление проводов, а индуктивное сопротивление рассеяния обмоток, так как увеличение активного сопротивления привело бы к возрастанию потерь энергии и перегреву трансформатора.

Для увеличения индуктивного сопротивления рассеяния обмоток увеличивают поток рассеяния, вводя в магнитопровод трансформатора шунтирующий магнитопроводящий стержень, через который замыкается часть основного магнитного потока. Изменяя значение воздушного зазора в шунтирующем стержне, можно изменять магнитный поток рассеяния. Средний подвижный стержень, выполняющий функции магнитного шунта, предусмотрен, например, в конструкции отечественного сварочного трансформатора СТАН-1.

Применяют и другие способы изменения индуктивного сопротивления рассеяния обмоток. Так, в трансформаторе СТЭ в цепь вторичной обмотки включают специальный дроссель с регулируемым воздушным зазором, а в трансформаторе ТС-500 изменяют расстояние между первичной и вторичной обмотками.




Top