Линейные операторы в евклидовом пространстве. Операторы в евклидовых пространствах

1. Номограмма Киреева для определения давления пара при разных температурах 35 (рис. 77).

В середине номограммы помещена общая для обеих ее частей шкала давлений, по бокам - шкалы температур. На шкале давлений отложены lgP, на шкале температур 1 / T .

Каждому веществу на номограмме отвечает одна точка, выражающая зависимость температуры кипения вещества от давления. Прямая, проходящая через эту точку (называемую Киреевым "точкой жидкости"), пересекает оси в соответствующих точках, показывающих давление пара вещества при данной температуре (или температуру кипения его при данном давлении). Например, прямая МN показывает, что температура кипения хлорбензола (точка 22) при давлении 64 мм равна 60° С.

Номограмма Киреева позволяет избежать трудоемких аналитических расчетов, точность которых не всегда оправдана, для нахождения зависимости между давлением пара и температурой кипения вещества. На основании имеющихся данных по давлению пара жидкости при двух температурах можно определить положение "точки жидкости" как места пересечения двух прямых, соединяющих соответствующие точки на шкалах давлений и температуры; это показано пунктирными линиями для бензола (точка 15). Кроме того, с помощью номограммы можно, правда с еще меньшей точностью, графически определять зависимость давления пара от температуры жидкостей, для которых известна лишь одна температура кипения (большей частью температура кипения при атмосферном давлении). Оказалось, что "точки жидкостей" лежат почти точно на прямой RS или симметричной ей прямой R"S". Пересечение прямой, соединяющей соответствующие точки на шкалах давления и температур с прямой RS или R"S", определяет "точку жидкости" в последнем случае.

Прямая RS соединяет "точки жидкостей" неполярных веществ, зависимость давления пара которых от температуры рассчитана по гексану (см. стр. 13); прямая R"S" соединяет точки полярных жидкостей, рассчитанные по воде. Номограмма может быть легко построена в любом масштабе для разных жидкостей и даже, как указывает Киреев, для смесей жидкостей.

2. Номограмма для определения относительной летучести двойных смесей углеводородов (рис. 78) (см. стр. 18).

3. Номограмма для определения минимального флегмового числа 83 (рис. 79).

Находят точку пересечения радиальной прямой, отвечающей содержанию легколетучего компонента в жидкости куба, и кривой, которая соответствует относительной летучести данной смеси. Линейкой соединяют найденную точку и точку на правой оси, отвечающую содержанию легколетучего компонента в дестиллате. Точка пересечения линейки и левой оси будет соответствовать минимальному флегмовому числу.

4. Номограмма для расчетов по ректификации 83 (рис. 80).

Номограмма состоит из двух частей - левой, позволяющей определять минимальное число теоретических тарелок, и правой, которая дает возможность по минимальному числу теоретических тарелок находить число теоретических тарелок в рабочих условиях при определенном флегмовом числе.

Рис. 77. Номограмма для определения давления пара при разных температурах: 1 - SiH 3 CH 3 ; 2 - СН 2 =СН=СН 2 ; 3 - СН 3 Сl; 4 - СН 2 =СНСl; 5 - бутадиен-1, 3; 6 - С 2 Н 5 Сl; 7 - изопрен; 8 - метилформиат; 9 - н-пентан; 10 - С 2 Н 5 Вr; 11 - СН 2 Сl 2 ; 12 - этилформиат; 13 - СНСl 3 ; 14 - н-гексан; 15 - бензол; 16 - этилацетат; 17- С 6 Н 5 F; 18 - н-гептан; 19 - толуол; 20 - н-октан; 21 - н-октан; 22 - С 6 Н 5 Сl; 23 - С 6 Н 5 Вr; 24 - н-декан; 25 - С 6 H 5 J; 26 - нафталин; 27 - NH 3 ; 28 - CH 3 NH 2 ; 29 - CH 3 COCH 3 ; 30 - СН 3 ОН; 31 - С 2 Н 5 ОН; 32 - Н 2 O; 33 - СН 3 СООН; 34 - C 2 Н 5 СООН; 35 - изо-С 3 Н 7 СООН; 36 - н-бутиленгликоль; 37- НОСН 2 СН 2 ОН; 38 - глицерин; 39 - Hg; А - В. Водные растворы аммиака, содержащие 5, 10, 15, 20, 30, 35, 40, 45, 50, 55, 60, 65 70 75 80 85, 90, 95 и 100 вес. % NH 3 (приведено только общее давление пара раствора)

Абсцисса - относительная летучесть; ордината - разность температур кипения.

Вычисление эффективности колонки, необходимой для разделения данной смеси. Предварительно находят относительную летучесть α для данной двойной смеси или определяющей пары сложной смеси (см. стр. 155). Устанавливают желательный или допустимый минимальный состав дестиллата и жидкости куба (например, при содержании нижекипящего компонента в жидкости куба 0,05 молярных долей колонка должна давать дестиллат, содержащий не ниже 0,98 молярных долей этого компонента). Затем на нижней левой части номограммы находят точку пересечения прямых, отвечающих концентрациям нижекипящего компонента в дестиллате и жидкости куба (пунктирная линия). Из точки пересечения проводят вертикальную линию до кривой относительной летучести, соответствующей предварительно найденной величине. Из точки пересечения вертикальной линии и кривой а проводят горизонтальную линию влево до оси N.

Зная эффективность колонки при полном возврате и относительную летучесть смеси, можно определить составы дестиллата при разных составах жидкости в кубе.

Приведенный способ применим для расчетов результатов ректификации при полном орошении.

Если желательно найти требуемую эффективность колонки в рабочих условиях, то следует также определить минимальное флегмовое число для данной двойной смеси или для определяющей пары сложной смеси и минимальное число теоретических тарелок, как это указано выше, и установить, при каком флегмовом числе будет происходить перегонка. Затем из точки на оси флегмового числа, соответствующей выбранной величине (правая нижняя часть номограммы), проводят горизонтальную прямую до пересечения с кривой минимального флегмового числа (см. пунктир). Из точки пересечения проводят вертикаль до горизонтальной прямой, отвечающей минимальному числу теоретических тарелок. Положение найденной таким образом точки относительно кривых определяет число теоретических тарелок в рабочих условиях.

Пользуясь номограммой, можно определять число теоретических тарелок по найденному числу эквивалентных тарелок. Для этого находят точку пересечения вертикальной прямой на правой части номограммы, построенной, как указано выше, с горизонтальной прямой, идущей от шкалы Nмин. и отвечающей числу эквивалентных тарелок. Положение найденной точки по отношению кривых правой верхней части номограммы определяет число теоретических тарелок. Соответствующая цифра на оси Nмин. и дает искомую величину.

Определение числа теоретических тарелок по Оболенцову и Фросту (см. стр. 111)

Порядок графического расчета (см. цифры в кружках на схеме построения, рис. 81):

1. Соединяют прямой точку на правой части шкалы концентраций 1, отвечающую содержанию нижекипящего компонента в дестиллате х д, с точкой на шкале а, соответствующей молярной доле дестиллата от загрузки.

2. Соединяют точку на правой части шкалы концентраций I, отвечающую содержанию нижекипящего компонента в загрузке x загр. , с точкой пересечения первой построенной прямой и линией МN. Построенную прямую продолжают до шкалы дестиллата.

3. Из найденной точки пересечениядрамой и шкалы дестиллата проводят горизонтальную линию до кривой l. Из точки пересечения опускают вертикальную линию до прямой КL.

4. 5, 6. Делают аналогичное построение на левой части шкалы концентраций II и кривой II. Вертикальную линию проводят до линии

7. Соединяют найденные точки на линиях и КL и продолжают прямую до пересечения с линией РQ.

8. Из найденной на линии РQ точки опускают вертикальную линию до кривой III. От найденной на кривой точки проводят горизонтальную линию до линии FG.

9. Соединяют точку, найденную на линии FG, с точкой на шкале а, отвечающей относительной летучести перегоняемой смеси, и продолжают прямую до шкалы N - числа теоретических тарелок.

Возможность предвидеть будущее завораживает, завораживает настолько, что с незапамятных времен человечество пытается создать что-то такое, что будет обладать такими свойствами. Человеку свойственен страх, особенно если речь идет о здоровье. Поэтому, когда мужчина или женщина сталкиваются с медициной, то один из первых вопросов, адресованных врачу: «Доктор, насколько серьезно мое заболевание?». И давая ответ, основанный на собственном опыте, врач осознает, что хотел бы ответить более достоверно.

Сейчас, коллеги, мы имеем преимущество перед докторами, которые практиковали несколько десятилетий назад. В нашем распоряжении сегодня есть прогностические модели, основанные на данных тысяч пациентов, статистически обработанные, отвечающие принципам доказательной медицины – номограммы.

Что же такое номограммы и как ими пользоваться? Номограмма представляет собой прогностический алгоритм, позволяющий оценить вероятность определенного исхода индивидуально для каждого конкретного пациента, используя набор определенных «входных» данных (например, уровень ПСА, сумма по Глисону и клиническая стадия опухоли). На сегодняшний день не вызывает сомнений тот факт, что прогнозирование на основе сочетания нескольких прогностических параметров дает более точный результат, нежели прогнозирование, использующее только 1 маркер (например, уровень свободного ПСА).

Сам термин «номограмма» подразумевает графическое представление математической формулы, составляющей основу прогностической модели. С точки зрения статистического анализа в основе номограмм лежит уравнение множественной регрессии, решить которое без помощи компьютера вряд ли было бы под силу даже математику.

В то же время с помощью графика можно легко найти значение искомого параметра, не прибегая к сложным вычислениям. В литературе номограммы представлены совокупностями шкал: каждой вводимой переменной соответствует своя шкала. Исходному параметру в зависимости от величины его значения присваивается определенное число баллов, а затем подсчитывается итоговая сумма набранных по каждому параметру баллов. По значению этой суммы в финальной паре шкал можно легко оценить искомый риск.

Однако в настоящее время применение номограмм зачастую уже не требует даже простейших самостоятельных вычислений, поскольку многие из них доступны в электронном варианте, где необходимо ввести нужные параметры, и программа сама подсчитает результат.

На сегодняшний день доказано, что в качестве прогностических моделей номограммы обладают большей точностью, нежели прогнозирование, основанное на опыте врача, либо отнесение пациента к какой-либо группе риска.

Сегодня номограммы широко используются в различных разделах медицины – кардио-логии, реаниматологии, онкологии, а также в онкоурологии. В онкоурологии разработано множество номограмм. Наибольшее их количество предназначено для ведения больных с раком предстательной железы, что не удивительно, так как в развитых странах это одна из наиболее часто встречающихся злокачественных опухолей у мужчин. Разработаны также номограммы для рака мочевого пузыря и почечно-клеточного рака.

Количество номограмм с каждым годом увеличивается, и практикующий специалист может задаться вопросом – какими же номограммами пользоваться, применение каких из них способно принести большую пользу пациентам? Чтобы прояснить сложившуюся ситуацию Европейская ассоциация урологов (EAU) в «Клинических рекомендациях по лечению рака предстательной железы» одобрила к применению только 2 варианта прогностических моделей – таблицы Partin и номограммы Kattan.

Кроме этого, специалист, активно применяющий номограммы в своей клинической практике, должен иметь представление об основных параметрах, по которым номограммы можно сравнивать между собой, выбирая наиболее качественную.

Самый важный показатель – прогностическая точность номограммы. Как она определяется и в чем выражается? Первоначально, в ходе построения математической модели на основе данных когорты пациентов, проверяется правильность прогноза на той же популяции участников (т. е., в каком проценте случаев, рассчитанный по номограмме, исход соответствует реальному исходу).

Исходя из этого, рассчитывается коэффициент прогностической достоверности номограммы (индекс конкордантности), выражаемый в процентах или долях единицы. Индекс конкордантности равный 50% говорит о том, что данная прогностическая модель столь же точна, как и подбрасывание монетки – она ошибется в 50% случаев.

Большинство используемых в настоящее время прогностических моделей, в том числе и номограмм, имеют индекс конкордантности 70–85%. Индекс конкордантности превышающий 80% (или 0,8) говорит о высокой прогностической точности номограммы, и лишь немногие существующие сегодня прогностические модели таким индексом обладают.

Заслуживающая доверия номограмма должна пройти и так называемую внешнюю валидизацию, т. е. проверку на других популяциях. В этом случае индекс конкордантности уточняется и корректируется.

Кстати, индекс конкордантности – не единственный параметр, на который следует обращать внимание. Конкордантность отражает лишь обобщенную способность номограммы предсказать определенный исход.

Однако прогностическая модель может, к примеру, хорошо прогнозировать исход у лиц низкого риска и обладать низкой прогностической способностью у лиц высокого риска. Если в исследуемой популяции число пациентов с низким риском значительно больше, чем с высоким, индекс конкордантности будет достаточно хорошим, но такую номограмму некорректно было бы применять у больных группы высокого риска.

Чтобы избежать таких «накладок», номограмма должна быть хорошо откалибрована, т. е. она должна одинаково хорошо прогнозировать результат внутри различных подгрупп больных. Значения индекса конкордантности и калибровки приводятся для каждой модели, а знать эти параметры необходимо для введения номограммы в клиническую практику.

Вдобавок ко всему вышесказанному, качественная номограмма должна также иметь хорошую воспроизводимость в различных популяциях (например, быть одинаково точной у пациентов различной расовой или этнической принадлежности).

Какую информацию могут дать номограммы врачу? Существуют номограммы, подсчитывающие вероятность обнаружения рака простаты при первичной или повторной биопсии. С помощью номограмм можно предсказать патологическую стадию опухоли, что необходимо для выбора правильной тактики лечения.

Например, чтобы определить показания к нервосберегающей радикальной простатэктомии (РПЭ) при раке предстательной железы (РПЖ), необходимо иметь информацию о риске экстракапсулярного распространения опухоли (ЭКР). С этой целью широко применяются таблицы Partin, позволяющие подсчитать вероятность ЭКР РПЖ, инвазии в семенные пузырьки и регионарные лимфатические узлы на основе таких параметров как сумма по Глисону, значение ПСА и клиническая стадия опухоли. Таблицы Partin прошли внешнюю валидизацию в клинике Мейо (Рочестер, штат Миннесота, США) на когорте свыше 2400 больных, и сейчас они широко используются для оценки риска и выбора тактики лечения у больных с РПЖ. Несколько позднее были разработаны номограммы (например, номограмма Ohori и др.), позволяющие оценить вероятность ЭКР с учетом стороны поражения. Примечательно, что некоторые исследования сравнивающие таблицы Partin с номограммами, имеющими аналогичные конечные точки, подтверждают достоверно большую прогностическую точность последних.

Если больному выполняется РПЭ, номограммы могут помочь в определении риска прогрессирования заболевания на предоперационном или послеоперационном этапе. В качестве примера можно привести номограммы Kattan, разработанные еще в 1998 г., в которых на основе предоперационных клинических данных можно было оценить вероятность отсутствия биохимического рецидива на протяжении 5 лет после РПЭ.

Другой пример – послеоперационные номограммы Kattan, позволяющие на основе таких параметров как сумма по Глисону, степень капсулярной инвазии, наличие положительного хирургического края, инвазия в семенные пузырьки и регионарные лимфатические узлы, подсчитать вероятность рецидива заболевания в течение 7 лет.

Другие номограммы Kattan помогают спрогнозировать риск биохимического рецидива после лучевой терапии (или брахитерапии) РПЖ. С помощью номограмм можно определить вероятность метастазирования опухоли у больных с биохимическим рецидивом после проведенной РПЭ (номограммы Kattan) или после лучевой терапии (номограмма Dotan). Также разработаны номограммы, определяющие выживаемость онкоурологических больных после различных видов терапии.

В настоящее время номограммы продолжают совершенствоваться с целью повышения их прогностической точности. Предполагается, что это может быть достигнуто благодаря включению в анализ различных биомаркеров заболевания (например, уровня в плазме трансформирующего фактора роста-бета или рецептора к интерлейкину-6, уровня экспрессии некоторых генов), а также данных неинвазивных визуализационных исследований.

Ваша оценка: Нет




Top