Краткая история процессоров. История создания процессоров

История появления и развития первых процессоров для компьютеров берет своё начало в середине двадцатого века. Сейчас уже невозможно себе представить, что как-то можно обойтись без персональных компьютеров, но не так давно, всего каких-то сорок лет назад, слова «компьютер» и «процессор» были известны лишь узкому кругу специалистов. И лишь в 1971 году произошло знаковое событие — никому тогда ещё неизвестная фирма Intel из американского города Санта-Клара дала жизнь первому микропроцессору , благодаря чему в дальнейшем различных типов, конфигураций и назначения, прочно вошли в нашу жизнь, и ими пользуются все и везде, от учащихся школ до инженеров и ученых.

Процессоры с применением электромеханических реле, вакуумных ламп, ферритовых сердечников (то есть специальных устройств памяти)

Данный этап эволюции процессоров затронул период с сороковых по самый конец пятидесятых годов. Такие процессоры устанавливали в специальные разъёмы на отдельных модулях, которые были собраны в стойки. Огромное количество подобных стоек, соединённых проводниками, в совокупности представляли собой процессор. Отличительной чертой являлась их низкая надёжность, небольшое быстродействие, а также огромное выделение теплоты.

Процессоры на транзисторах

Это был второй этап эволюции процессоров, который длился, начиная с середины пятидесятых годов до середины шестидесятых. Транзисторы монтировали уже на платы весьма близкие к нынешним платам по облику, которые устанавливались в стойки. Как и раньше, процессор в среднем состоял из нескольких подобных стоек. Выросло быстродействие, повысился уровень надёжности, уменьшился уровень энергопотребления.

Процессоры на микросхемах

Это был третий этап эволюции процессоров, который наступил в середине шестидесятых годов. Первоначально применялись микросхемы с низкой степенью интеграции, которые содержали простейшие транзисторные, а также резисторные схемы. Потом по мере развития технологий, стали применять микросхемы, которые реализовывали отдельные части цифровой схемотехники. По началу элементарные ключи, а также различные логические элементы, потом более элементы посложнее - элементарные регистры, сумматоры, счётчики, позднее возникли микросхемы, которые содержали функциональные блоки самого процессора - арифметическо-логическое устройство, микропрограммное устройство, регистры, а также устройства для работы с шинами данных и различных команд.

Микропроцессоры

Четвёртым этапом, в самом начале семидесятых годов, было создание микропроцессора, то есть специальной микросхемы, на кристалле у которой физически были расположены все главные элементы, а также блоки процессора. Корпорация Intel в 1971 году смогла создать первый во всем мире четырехразрядный микропроцессор 4004, который состоял из 2300 транзисторов, имел рабочую частоту 108 кГц — это 0,108 МГц или 0,000108 ГГц (где-то в 20000 раз меньше частоты ). Производился этот 4-битный процессор по 10-микронной технологии и был предназначен для применения в микрокалькуляторах. В последствии Intel 4004 стали использовать в анализаторах крови, в схемах управления светофоров и даже на межпланетных космических станциях.

Со временем почти все процессоры стали выпускать в формате таких микропроцессоров. Исключением длительное время были только лишь малосерийные процессоры, которые аппаратно оптимизировались для решения различных специальных задач. К примеру, суперкомпьютеры или процессоры для осуществления решения целого ряда военных задач, или же какие-нибудь процессоры, к которым, как правило, предъявлялись некие особые требования по уровню надёжности, своему быстродействию, либо же защите от воздействия электромагнитных импульсов, а также воздействия ионизирующей радиации. С удешевлением, а также распространением самых современных технологий, данные процессоры тоже начинают делать в формате микропроцессора.

Развитие микропроцессоров

Процесс перехода к микропроцессорам дал возможность создавать персональные компьютеры, проникшие сейчас практически в каждый дом. Самым первым общедоступным микропроцессором явился четырехразрядный Intel 4004, который весной 1972 года сменил восьмибитный Intel 8008, состоявший из 3500 транзисторов и работавший на частоте 200 кГц, имел 8-разрядную шину данных, хотя и производился также по 10-микронной технологии. Сфера его применения ограничивалась терминалами и программируемыми калькуляторами.

Следующим шагом в развитии микропроцессоров стало создание в 1974 году Intel 8080. Новый 8-битный процессор содержал уже 6000 транзисторов и мог адресовать 64 Кбайт памяти. Кроме всего прочего, это был первый микропроцессор, который уже мог делить числа. Именно он стал основой для создания первого персонального компьютера Altair 8800, в котором использовалась операционная система СР/М. Простота общения с компьютером Altair 8800 и легкость написания для него программ — заслуга будущих основателей фирмы Мicrosoft Пола Аллена и Билла Гейтса, которые в конце 1975 года создали для него интерпретатор языка Ваsic (Бэйсик), что немало поспособствовало популяризации в то время.

Но история Intel 8080 на этом не закончилась. Кучка бывших инженеров Intel, которые занимались разработкой процессора 8080, объединившись, в конце 1975 года создали компанию Zilog Corporation, которая выпустила микропроцессор Z80, представляющий собой значительно улучшенную версию 8080. Изначально Z80 содержал 8500 транзисторов, работал на частоте 2,5 МГц и мог адресовать 64 Кбайт памяти. Позднее он стал работать уже на частоте 10 МГц. Самым, пожалуй, ярким представителем компьютеров на базе Z80 был «Sinclair ZX Spectrum» английской компании Sinclair Research Ltd.

В 1978 году Intel выпускает новый шестнадцатиразрядный микропроцессор Intel 8086, содержащий набор команд х86, который заложил основы архитектуры всех нынешних настольных процессоров. 8086 работал на частоте 5 МГц и содержал 29000 транзисторов. Он мог адресовать 1 Мбайт памяти благодаря 20-разрядной адресной шине. По причине большой распространённости восьмиразрядных модулей памяти выпущен был весьма дешевый Intel 8088, являющийся упрощенной версией 8086 со всеми теми же характеристиками, но с восьмиразрядной шиной данных. Это дало возможность программной и аппаратной совместимости как с процессором 8086, так и с предыдущими 8-разрядными процессорами 8085 и 8080.

Использование Intel 8088

позволило в значительной мере увеличить потенциал и возможности персональных компьютеров, так как он позволил работать с 1 Мб памяти, тогда, как все имевшиеся на тот момент компьютеры были ограничены 64 Кб. Программное обеспечение для компьютеров на Intel 8088 разрабатывала фирма Microsoft. И в 1981 году для компьютера IBM РС была представлена первая версия операционной системы MS DOS 1.0. Дальше по мере прогресса анонсировались и новые версии DOS, которые предоставляли пользователям дополнительные удобства с учётом новых возможностей компьютеров. Тем самым через пару лет, вытеснив с рынка 8-битовые модели компьютеров, IВМ РС занял ведущее место.

В 1982 году Intel выпускает новый 16-разрядный микропроцессор Intel 80286, разработанный по 1,5 микронной технологии. Он имел 134000 транзисторов, виртуальную память размером до 1 Гб, а также защищённый режим с 24-битной адресацией, который позволял использовать 16 мегабайт памяти на частоте: 8, 12 и 16 МГц.

Процессор типа Intel 80386 возник в 1985 году и смог привнести улучшенный защищённый режим, 32-битную адресацию, которая позволила применять до 4 гигабайт оперативной памяти, а также еще и поддержку механизма применения виртуальной памяти. Intel 80386 изготавливался по 1,5 мкм технологии, имел уже 275000 транзисторов и работал на частотах: 16, 20-40 МГц. Данная линейка процессоров была построена на вычислительной регистровой модели. Параллельно шло развитие микропроцессоров, которые взяли за основу вычислительную стековую модель.

В 1989 году увидел свет новый микропроцессор Intel 80486, в котором на одном, изготовленном по 1 мкм технологии, кристалле 1200000 транзисторов, первичный кэш и встроенный математический сопроцессор 80487. 486 работал на частотах: 25, 33, 50 и 66 МГц и, как его предшественник, мог использовать до 4 Гб .

Первые 32-разрядные процессоры Pentium

появились в 1993 году. Они уже имели 3 миллиона транзисторов, были изготовлены по 0,8 мкм технологии, имели частоту 60 и 66 МГц и 64-битную шину данных. В следующем 1994 году вышло второе поколение процессоров Pentium с частотой 75, 90 и 100 МГц, изготовленных по 0,6 мкм технологии, что снизило потребляемую ими мощность.

И вот, последние 20 лет, начиная с 1993 года, с момента появления первого процессора Intel Pentium, прогресс в развитии компьютерных процессоров продвигался так быстро, что сейчас в наших домашних персональных компьютерах уже стоят четырех- , шести- , восьми-ядерные процессоры тактовой частотой более 3 ГГц, созданные по 22 нм технологии, со встроенным видеоядром, но использующие всё ту же х86 архитектуру. И хотя, за время существования микропроцессоров разработано было большое множество разных архитектур, часть из них (в усовершенствованном и дополненном виде) применяется и поныне. К примеру, Intel x86, который развился сначала в 32-битную IA-32, а позднее в 64-битную x86-64 (у Intel получила название EM64T). Процессоры с архитектурой x86 использовались вначале только в компьютерах корпорации IBM (IBM PC), однако, ныне они всё более активно применяются во всех сферах компьютерной индустрии, от огромных суперкомпьютеров до небольших встраиваемых процессоров.

И это далеко не предел. В планах корпорации в ближайшие годы перейти на производство микропроцессоров по 14 нм технологии, далее 10 нм и 8 нм, и соответственно увеличение их производительности с одновременным снижением энергопотребления.

Вступление

Сегодня мир без компьютера - это немыслимое явление. А ведь мало кто задумывается об устройстве этих "существ". И уж точно никто не знает, насколько умными стали данные аппараты за последние 50 лет. Для многих людей Искусственный интеллект и компьютер, который стоит на вашем столе, - это одно и тоже. Но как люди просвещенные, мы знаем, что до разума человека, или даже собаки любой, даже самой умной, машине еще далеко.

А ведь отличие все-таки есть: в мозге живых существ идет параллельная обработка видео, звука, вкуса, ощущений, и т. д., не говоря уже о такой элементарной вещи, как мыслительный процесс, который сопровождает многих от рождения и до самой смерти.

Сегодня любой прорыв в информационных технологиях встречается как нечто особо выдающееся. Люди хотят создать себе младшего брата, который, если еще не думает, то хотя бы соображает быстрее их. Понятно, что никакими гигагерцами не измеришь уникум человеческого мозга, но никто и не измеряет, и мы проведем краткую экскурсию в недалекое прошлое и, конечно, в непонятное настоящее развития главной части компьютера, его мозга, его сердца - его центрального процессора.

Экскурс в историю микропроцессоров

Самые первые электронно-вычислительные машины (ЭВМ) появились в 60-е годы ХХ столетия. Сначала эти машины были громоздки, и они были доступны только исследовательским центрам с огромным бюджетом. Компьютеры же, участвуя в современном сверхбыстром научно-техническом прогрессе, становятся все меньше и меньше. В настоящее время это машины, имеющие размеры дипломата и выполняющие любые мыслимые и не мыслимые операции.

Но обратимся к историческим справкам. С 1978 года был запущен в серийное производство один из первых процессоров из серии i86. Именно развитие этой серии и привело к появлению доступных и небольших по размером персональных компьютеров, так популярных в наше время.

Мы остановимся на IBM-совместимых компьютерах. Названы они так по имени фирмы производителя.

Мы остановимся на этих компьютерах лишь потому, что, к примеру, компьютеры Apple Computers можно назвать скорее специализированными, чем широко распространенными.

В1978 году фирма Intel совместно с фирмой IBM разрабатывает и выпускает в серию первые из процессоров семейства i86. Если присмотреться, то можно увидеть, что с фирмой Intel к ряду процессоров присоединяются и другие фирмы, которые производят свои устройства по зарекомендовавшей себя технологии.

Важно то, что почти с самого начала эти фирмы выливаются в конкурирующие между собой предприятия, что и приводит к резким темпам развития, снижениям цен и соответственно можно считать этот факт положительным для потребителя.

AMD - это отпочковавшийся от Intel младший брат, но пути эти фирм расходятся по всем параметрам. Сейчас наблюдается явное противостояние двух сильных конкурентов, у которых есть свои технологии, а так же сильные и слабые стороны. AMD по праву занимает свою долю на рынке процессоров, даже несмотря на то, что ее подход к развитию технологий скорее эволюционный, чем революционный. Поэтому не надо считать, что AMD просто клонирует Intel Pentium - это не так.

Сегодня многие эксперты говорят о том, что фирма Ciryx сдала позиции почти все свои позиции, хотя по-прежнему выпускает современные и недорогие процессоры, но уже и не стремится занять, хотя бы номинально, лидерство. Данную фирму всегда отличало то, что она самостоятельно разрабатывала процессоры, но не все модели были столь удачны, как у конкурентов.

Нельзя утверждать, что компания Intel с Pentium по Pentium 4 совершила что-то сверхреволюционное в области своих разработок. Однако считается, что эта фирма идет на шаг впереди своего младшего брата.

Это заблуждение было развеяно в 2000 – 2001 годах, когда из-за неправильной политики в маркетинге Intel не смогла продвинуть свой новый процессор Pentium 4 из-за большой стоимости не столько самого чипа, сколько периферии, в частности памяти RDIMM.

Компания AMD пользуется этой ситуацией и выходит в свет с процессором Athlon, а чуть погодя - Athlon XP, который по характеристикам даже превосходил Pentium 4, а по цене был гораздо ниже.

В прессе про процессоры AMD заговорили не просто как про дешевую альтернативу, но и как про более выгодное вложение средств, по крайней мере, для домашних пользователей.

Но Intel не сдается и, несмотря на провал в маркетинге, мы понимаем, что ее процессор был куда более технологически совершенен. Что мы и видим в ситуации на рынке, AMD опять входит в роль, к которой все привыкли в роль дешевой альтернативы более дорогим, но и более быстрым и современным Pentium.

Для пользователей персональных компьютеров мы скажем, что приобретение машины с процессором Pentium - это рискованное вложение средств. Мода на компьютерном рынке меняются так стремительно, что за ней почти невозможно уследить: 75, 90, 100, 120, 133, 150, 166, 200 МГц… Закончится ли когда-нибудь эта бешеная гонка? Решением может стать MMX (Multimedia eXtension - "мультимедиа — расширение") - технология, которая может превратить "простой" Pentium ПК в мощную мультимедийную систему.

Как известно, на кристалле процессора Pentium интегрирован математический сопроцессор. Этот функциональный блок, который отвечает за "перемалывание чисел", но… а практике, подобные возможности требуются все же достаточно редко, их используют в основном системы САПР и некоторые программы, решающие чисто вычислительные задачи. У большинства пользователей этот блок просто простаивает.

Создавая технологию MMX, фирма Intel стремилась решить две задачи: во-первых, задействовать неиспользуемые возможности, а во-вторых, увеличить производительность ЦП при выполнении типичных мультимедиа-программ. С этой целью в систему команд процессора были добавлены дополнительные инструкции (всего их 57) и дополнительные типы данных, а регистры блока вычислений с плавающей запятой выполняют функции рабочих регистров.

Дополнительные машинные команды предназначены для таких операций, как быстрое преобразование Фурье (функция, используемая в видеокодеках), которые зачастую выполняются специальными аппаратными средствами.

"Процессоры, использующие технологию MMX, совместимы с большинством прикладных программ, ведь для "старого" ПО регистры MMX выглядят точно так же, как обычные регистры математического сопроцессора. Однако встречаются и исключения. Например, прикладная программа может одновременно обращаться только к одному блоку - либо вычислений с плавающей запятой, либо MMX. В ином случае результат, как правило, не определен, и нередко происходит аварийное завершение прикладной программы.

Технология MMX - это генеральное направление развития архитектуры процессоров Intel на 1997 г. В первую очередь ее преимущества смогут оценить конечные пользователи - мультимедиа-компьютеры станут заметно мощнее и дешевле. Официальное объявление новой технологии запланировано на начало октября 1996 года, однако процессор, в котором реализована технология MMX, уже существует. Он известен под кодовым названием P55C, и Intel, видимо, сознательно оттягивает момент его выпуска, давая изготовителям ПК возможность ознакомиться с достоинствами этого ЦП.

Среди компаний, которые предполагают выпустить мультимедиа-ПК с процессором P55C, есть как признанные лидеры компьютерного рынка - Compaq, Dell, Acer, так и молодые, но динамичные фирмы, например, Compulink Research (CLR).

Ожидается, что большинство популярных прикладных программ будут использовать технологию MMX, причем к концу 1997 г. их количество более чем удвоится, и пользователи вновь столкнутся с проблемой выбора. Сегодня имеются три высокопроизводительных процессора - Pentium с тактовой частотой 200 МГц, Pentium Pro с той же тактовой частотой и 200-МГцовый вариант P55C. Результаты испытаний на производительность, которые предоставила фирма CLR, позволяют сделать вывод, что ПК с процессором P55C занимают промежуточное положение в этом ряду. При выполнении типичных задач результаты этого ЦП почти не отличаются от показателей "обычных" моделей Pentium с такой же тактовой частотой. Однако при исполнении фрагментов кода, который был оптимизирован для P55C (на видео-, аудио — и графических тестах), он не уступает процессору Pentium Pro, в зависимости от типа задачи выигрыш в быстродействии достигает от 70% до 400%. Как ожидается, мультимедиа-ПК с процессором P55C будет дешевле аналогичного по функциональным возможностям компьютера.

В статье использованы материалы, предоставленные фирмой CLR".

Кроме технологических решений по увеличению количества инструкций велась работа и по улучшению процесса производства. Ведь транзисторов для обработки информации становилось все больше и больше, и они, в конце концов, просто не помещались на кристалл, что приводило к более совершенным решениям. В настоящее время процессоры Intel выпускаются по техпроцессу с нормой в 0,13 мкм, и на одном квадратном миллиметре кристалла располагается миллионы транзисторов. Intel планирует перейти на 0,09 мкм уже в 2003 году.

Что такое техпроцесс 0,13 мкм

Попробую объяснить, не вдаваясь в технологию. Обычно приведенная цифра означает длину канала КМОП-транзистора. Скорость переключения каскада на КМОП зависит от крутизны ВАХ транзисторов и емкости нагрузки. Крутизна определяется током через транзистор и отношением (ширина канала - W) / (длинна канала - L). Основная емкость в КМОП технологии - емкость затворов транзисторов - пропорциональна площади затвора = ~W * L. Очевидно, что чем меньше длина канала, тем меньше площадь затвора (причем зависимость квадратичная), при том же отношении W/L. Следовательно, можно уменьшить ток, и не потерять быстродействие. А можно уменьшить W/L за счет уменьшения ширины канала и уменьшить размер транзисторов - увеличить количество элементов на кристалле (хотя в современных технологиях ширина канала, как правило, оптимальна с точки зрения минимизации размера топологического элемента).

Новый процессор от Intel

В конце мая корпорация Intel сообщила о том, что в течение ближайшего месяца производители компьютеров намерены представить первые серверы и рабочие станции на базе процессоров Itanium. Ожидается, что в этом году около 25 компаний выпустят более 35 таких моделей, а сотни поставщиков оборудования и программного обеспечения предложат продукты, работающие с данными системами. IDC прогнозирует, что в этом году будет продано 26 тыс. систем на базе Itanium, а к 2004 году их число возрастет до 540 тыс. Иными словами, сообщение Intel означало, что начался промышленный выпуск нового процессора корпорации.

Системы на основе процессоров Itanium будут поддерживаться четырьмя ОС, включая платформу Microsoft Windows (64-разрядную версию для рабочих станций - 64-bit Edition и 64-разрядную версию для серверов - 64-bit Windows Advanced Server Limited Edition 2002); HP-UX 11i v1.5 компании Hewlett-Packard, AIX-5L корпорации IBM и Linux. 64-разрядные версии последней планируют поставлять компании Caldera International, Red Hat, SuSE Linux и Turbolinux. Уже анонсировано более 500 приложений, которые предполагается портировать для архитектуры Itanium.

Буквально в день объявления Itanium о выпуске систем на его основе заявили несколько крупных компаний, в числе которых Bull, Compaq, Dell, Fujitsu-Siemens, Hewlett-Packard, IBM, NEC, SGI и Unisys. В частности, IBM анонсировала рабочую станцию IntelliStation Z Pro и сервер X380, Dell - четырехпроцессорный сервер PowerEdge 7150 и рабочую станцию Precision Workstation 730, Bull - 4 — и 16-процессорные модели серверов Escala IL. Особо хотелось бы отметить системы, представленные Hewlett-Packard: двухпроцессорную рабочую станцию HP Workstation i2000 и 4 — и 16-процессорные серверы HP Server rx4610 и HP Server rx9610. В настоящее время HP-UX - единственная 64-разрядная система UNIX, обеспечивающая переносимость на уровне двоичного кода программных приложений заказчиков при переходе с RISC (Reduced Instruction Set Computing) на архитектуру Itanium. HP-UX оптимизирована с тем, чтобы обеспечить высокий уровень производительности, масштабируемости и надежности. Кроме того, сейчас Hewlett-Packard - единственный производитель компьютеров на платформе RISC, чью технику можно перевести на платформу Itanium без повторной компиляции приложений и ПО. А дело здесь в следующем.

Путь процессоров Itanium к потребителю в Intel обычно делят на шесть этапов: завоевание поддержки отрасли, выпуск прототипов для партнеров, выпуск прототипов для разработчиков, выпуск пилотных систем, платформы и, наконец, массовое внедрение решений. Известно, что для тестирования и разработки производителям компьютеров и пользователям было поставлено более 6500 систем. Первый этап этого пути датируется ноябрем 1997 года. Однако хотелось бы напомнить, что история Itanium началась значительно раньше

Merced, он же Itanium

Еще в июне 1994г. компании Intel и Hewlett-Packard подписали соглашение о совместной разработке новой 64-разрядной архитектуры, ориентированной на применение в серверах и рабочих станциях. Преимущества микропроцессоров с большей разрядностью очевидны. Они позволяют адресовать больший объем памяти, дают возможность оперировать с большим диапазоном чисел, повышают эффективность параллельных и матричных вычислений и т. д. Заметим, что еще в 1983 г. в Hewlett-Packard было принято решение начать проект объединения различных процессоров и ОС, используемых в трех компьютерных линейках (HP1000, HP3000 и HP9000). Результаты этого решения сегодня хорошо известны: это семейство процессоров PA-RISC (Precision Architecture Reduced Instruction Set Computing) и ОС UP-UX, которые совместно применяются в высокопроизводительных рабочих станциях и Unix-серверах (N-, V-, L — и A-класса). Первый компьютер на базе PA-RISC был представлен еще в 1985 г. Исследования и разработки ведутся в лаборатории микропроцессоров, которая входит в подразделение System VLSI Technology Operation. В 1989 г. в поисках нового, наследующего PA-RISC решения Нewlett-Packard приступила к разработке архитектуры EPIC (Explicitly Parallel Instruction Computing), впоследствии переименованной в WideWorld Architecture, а затем в SuperParallel Processor Architecture (SP-PA). Но в 1993 г., когда эта 64-разрядная архитектура была практически готова, руководители проекта поняли, что компании одной не вынести огромных расходов на разработку и изготовление нового процессора. Тогда в Нewlett-Рackard впервые рассмотрели возможность привлечь к созданию высокопроизводительного процессора другую компанию.

К 1994 г. корпорация Intel, имеющая огромный опыт в области микропроцессоров, испытывала определенные трудности. Продолжавшаяся два года разработка 64-разрядной архитектуры Р7 натолкнулась на серьезные трудности. Впоследствии Intel отказалась от Р7 в пользу EPIC, хотя справедливости ради стоит отметить, что некоторые особенности Р7 реализованы в Itanium.

К предложению HP работать сообща в Intel отнеслись с большим энтузиазмом. Ведь открывалась реальная возможность заполучить масштабируемую ОС корпоративного уровня HP-UX, которую можно будет реализовать на новой платформе. В совместном контракте Нewlett-Рackard пришлось пойти на крупные уступки. Корпорация согласилась на то, что Intel будет принимать все конструктивные решения по новому процессору, даже те, которые затрагивают архитектуру EPIC, разработанную инженерами Нewlett-Рackard. Кстати, новый процессор получил название Merced в честь реки в Калифорнии.

Два года спустя, когда выяснилось, что мощности Merced недостаточно, чтобы при использовании HP-UX обойти архитектуру PA-RISC, в Нewlett-Рackard решили самостоятельно создавать новый процессор на том же фундаменте, что и Merced, но с иной реализацией внутренних функциональных блоков. Когда об этом проекте узнали в Intel, начались переговоры о распространении партнерства, которое первоначально ограничивалось созданием только процессора Merced, на 64-разрядную архитектуру в целом, с тем чтобы включить в соглашение и новый кристалл. Так Merced, в свое время рассматриваемый в качестве потенциального могильщика RISC-архитектуры, превратился в промежуточную ступеньку. Поскольку подписанное соглашение не имело жесткого срока, обе компании без труда расширили свое сотрудничество уже над новым 64-разрядным процессором McKinley (так называется высочайшая гора в Северной Америке). Кстати, первоначально предполагалось, что системы Merced появятся в 1997 или 1998 г. Но скоро только сказка сказывается.

Важность успеха Intel и НР в деле создания мощной 64-разрядной платформы для компьютерной индустрии невозможно переоценить. Свои ставки здесь есть у каждого. Почти все фирмы-производители компьютеров создают новые системы, а все разработчики ОС UNIX планируют перенести свои версии на новую платформу. Аналитики уверены, что Itanium заставит компании, выпускающие серверы и рабочие станции RISC/Unix, пересмотреть свой модельный ряд. Однако на очень широкий выбор компьютеров Itanium рассчитывать не приходится. Процессор разрабатывался слишком долго, к тому же с середины 1999 г. разработка то и дело наталкивалась на препятствия. В результате, большинство компаний сосредоточилось на создании компьютеров на базе McKinley.

Неудивительно, что выпуск Merced неоднократно задерживался, если учесть, что два гиганта индустрии преследовали общую цель, но использовали совершенно разные тактические подходы. Некоторые эксперты тогда утверждали, что компании оказались партнерами поневоле: их свели внешние силы рынка, разрабатываемые изделия и финансовые трудности, которые они решили преодолевать вместе.

Intel рассматривает Itanium в качестве родоначальника нового семейства процессоров, которое будет развиваться в ближайшие 25 лет. За первой моделью с кодовым названием Merced последуют McKinley, Madison, Deerfield и другие новые версии. По официальным данным, шесть моделей подобных кристаллов уже находятся на стадии разработки. Опытные партии процессора McKinley планируется выпустить в конце текущего года, а первые системы на его основе должны появиться в 2002 г. Ожидается, что этот процессор дебютирует с тактовой частотой в 1 ГГц или выше. По имеющейся информации, все 64-разрядные процессоры Intel будут содержать в своем названии слово Itanium, а McKinley, Madison и прочие имена так и останутся кодовыми названиями. Таким образом, скорее всего, официально анонсированы будут Itanium II, Itanium III и т. д.

Только через три года после подписания соглашения, в ноябре 1997 г. Intel и Hewlett-Packard представили архитектуру будущего процессора и планы разработки целого семейства IA-64 (Intel Architecture). Не полагаясь только на собственные ресурсы, в мае 1999 г. Intel объявила о создании инвестиционного фонда, получившего название Intel 64 Fund с капиталом 250 млн. долл. Эти средства должны были быть направлены на инвестиционную поддержку компаний, занимающихся разработкой Интернет-приложений и ПО уровня предприятий. В создании фонда, помимо Intel и Hewlett-Packard, приняли участие 16 компаний и организаций. Среди них не только компьютерные фирмы - Compaq, Dell, SGI, но и Reuters, Ford Motor Company, General Electric, Bank of America. На сегодняшний день более 150 млн. долл. инвестировано более чем в 40 компаний, работающих в сфере инфраструктуры Интернет, электронной торговли, производства и финансов на вертикальных рынках.

Тогда же, в 1997 г., Intel и Hewlett-Packard представили архитектуру и набор команд IA-64. В августе 1999 г. впервые появились опытные образцы процессора, а осенью Intel представила Itanium как коммерческое наименование своего первого 64-разрядного процессора, дотоле носившего рабочее название Merced. Введены были термины "семейство процессоров Itanium" (IPF, Itanium Processor Family) и "архитектура Itanium" (Itanium Architecture). Через год, в октябре 2000 г. появились пилотные образцы систем на основе Itanium. Примерно в то же время прошло второе промышленное тестирование программ и оборудования на платформе Itanium. Приоритетной задачей этого мероприятия было жесткое тестирование платформы перед пилотным выпуском, причем в программу тестирования входила проверка работы в сети и обеспечение телекоммуникаций. На территории Caesar’s Palace площадью 34 тыс. кв. футов, где проходило тестирование, было проложено более 3 миль кабеля, более ста 20-амперных силовых линий, установлены хранилища данных суммарной емкостью более 2 Тбайт. Активно проводились и другие мероприятия, включая широкое распространение ключевой технической информации и средств разработки, а также поставку более 6000 прототипов серверов, как в одно-, так и в многопроцессорной конфигурации. Кроме того, Intel открыла в разных странах мира более 30 центров разработки приложений, где инженеры Intel и разработчики программного и аппаратного обеспечения совместно работали над оптимизацией прикладных программ под системы на основе Itanium.

Особенности архитектуры

По мнению представителей Intel, архитектура процессора Itanium - это самая значительная разработка со времени презентации 386-го процессора в 1985 г. Первые образцы 64-разрядного процессора Intel представляют собой картридж размером примерно 10 х 6 см, который включает в себя кэш-память третьего уровня емкостью 2 либо 4 Мбайт и радиатор. Картридж монтируется в разъем типа Slot и имеет 418 выводов. Процессор имеет трехуровневую иерархию сверхоперативной памяти. Если кэш-память первого и второго уровней интегрирована на кристалле процессора, то микросхемы кэш-памяти третьего уровня расположены на самой плате картриджа. На реализацию процессора с соблюдением проектных норм 0,18 мкм потребовалось около 320 млн. транзисторов, из которых только 25 млн. пришлось на реализацию самого ядра, а остальные - на кэш-память. Самый большой модуль процессора - это блок вычислений с плавающей запятой, он занимает около 10% площади кристалла. Производительность Itanium составляет до 6,4 млрд. операций с плавающей запятой в секунду. Благодаря архитектуре EPIC и 15 исполнительным устройствам процессор может выполнять до 20 операций одновременно. При этом он может непосредственно адресовать до 16 Тбайт памяти при пропускной способности до 2,1 Гбайт/с. В процессоре реализована поддержка всех расширений Intel (технологий MMX, SIMD и симметричной мультипроцессорной обработки), за исключением SSE2.

Одна из самых интересных деталей в плане размещения узлов процессора - это система синхронизации работы узлов. Одновременная передача тактовых импульсов при большой площади процессора представляет сложную задачу для разработчиков, поскольку задержки в распространении импульсов тактового генератора могут вызывать рассинхронизацию узлов. Для этой цели по всей площади кристалла разместили большое число точек распространения тактовых импульсов.

Архитектура Itanium включает такие уникальные средства повышения надежности, как система расширенного самоконтроля EMCA (Enhanced Machine Check Architecture), обеспечивающая обнаружение, коррекцию и протоколирование ошибок, а также поддержку обработки кода ECC (Error Correcting Code) и контроля четности.

Для двух — и четырехпроцессорных систем Intel выпустила специальный набор микросхем Intel 460GX, которые могут включаться каскадно, увеличивая число одновременно используемых процессоров. Поскольку конфигурация таких систем изначально предусматривает объемы оперативной памяти в несколько гигабайт, то в системах Itanium применяются сравнительно недорогие микросхемы памяти типа SDRAM. При этом для увеличения производительности, по словам представителей Intel, используются такие методы, как буферирование, чередование и деление памяти на несколько банков. Набор микросхем реально поддерживает работу с 64 Гбайт памяти при максимальной пропускной способности 4,2 Гбайт/с, хотя 64-разрядная адресация памяти теоретически позволяет обращаться к гораздо большему количеству адресов.

Процессоры Itanium будут работать на тактовой частоте 800 или 733 МГц, а их стоимость в зависимости от объема кэш-памяти составит от 1177 до 4227 долл.

Современные тенденции развития микропроцессоров связаны с выполнением большего числа команд за один такт. Разработчики IA-64 полагают, что добиваться более высокого уровня суперскалярности (распараллеливания) в процессоре можно, только если отказаться от обычных последовательных кодов и ввести параллелизм прямо на уровень системы команд. В этом случае задача распараллеливания ложится не на аппаратуру процессора, а на компилятор. Как уже отмечалось, в основе IA-64 лежит технология EPIC, главная идея которой - введение явного параллелизма. Преимущества такого подхода понятны. В схемотехнических решениях процессоров исчезает сложная логика, отвечающая за внеочередное суперскалярное выполнение команд, и можно отвести больше места на кристалле под кэш-память, файл регистров и исполнительные устройства. Однако, с другой стороны, возникает необходимость разрабатывать сложные и эффективно распараллеливающие компиляторы.

Несомненно, что между технологиями EPIC и VLIW (Very Long Instruction Word) много общего. VLIW обычно рассматривают как статическую суперскалярную архитектуру. Имеется в виду, что распараллеливание кода происходит на этапе компиляции, а не динамически во время исполнения. Иными словами, в машинном коде VLIW присутствует явный параллелизм. В свою очередь, к основным особенностям EPIC относят:

большое количество регистров,

масштабируемость архитектуры до большого количества исполнительных функциональных устройств,

параллелизм в машинном коде,

предсказание ветвлений (предикацию),

спекулятивное выполнение (загрузку по предположению).

Основная особенность EPIC та же, что и у VLIW, - распараллеливанием потока команд занимается компилятор, а не процессор. Достоинства данного подхода заключаются в том, что упрощается архитектура процессора, причем он не тратит время на анализ потока команд. Кроме того, в отличие от процессора, компилятор способен проводить анализ по всей программе, а не по сравнительно небольшому ее участку. Поскольку практически любая программа должна запускаться многократно, выгоднее распараллелить ее один раз (при компиляции), а не каждый раз, когда она исполняется на процессоре.

В архитектуре Itanium насчитывается по 128 64-разрядных целочисленных регистров общего назначения и 80-разрядных регистров вещественной арифметики, а также 64 одноpазpядных пpедикатных pегистpа. Все они доступны для программирования; кроме того, имеется множество недоступных внутренних служебных регистров, используемых самим процессором. 64 одноразрядных регистра используются для организации логики предсказания ветвления и выполнения команд в порядке, отличном от последовательного.

Для достижения явного параллелизма в формат команд IA-64 введены дополнительные разряды маски, которые явно указывают на зависимости между командами. До сих пор задача определения таких зависимостей полностью ложилась на аппаратуру процессора. Здесь же вводится понятие групп команд. Все они независимы, и их следует выдавать на выполнение в разные исполнительные устройства. Разряды маски указывают на зависимости не только внутри нескольких команд, но и между группами команд. По три команды IA-64 объединяются в так называемую связку, имеющую емкость 128 разрядов. Связка содержит три команды и шаблон, в котором указано, какие есть зависимости между командами (например, можно ли с первой командой запустить параллельно вторую или же она должна выполниться только после первой и т. п.).

Заключение

В заключение отметим, что в современных процессорах активно используются методики предсказания ветвлений и спекулятивного выполнения.

Сегодня очень много времени уходит на вычисление ветвей программы, которые впоследствии не используются - и это проблема, которую решает Itanium.

При наличии в программе условного ветвления команды из разных ветвей помечаются разными предикатными регистрами (команды имеют для этого предикатные поля); далее они выполняются совместно, но их результаты не записываются, пока значения предикатных регистров не определены. При вычислении условия ветвления предикатный регистр, соответствующий правильной ветви, устанавливается в 1, а другой - в 0, и перед записью результатов процессор проверяет предикатное поле, записывает результаты только тех команд, предикатное поле которых содержит предикатный разряд, установленный в единицу.

Архитектура Itanium предсказывает и исполняет по предположению. Этот механизм является еще одной особенностью данной технологии и должен снизить простои процессора, связанные с ожиданием выполнения команд загрузки из относительно медленной основной памяти. Компилятор перемещает команды загрузки данных из памяти так, чтобы они выполнились как можно раньше. Следовательно, когда данные из памяти понадобятся какой-либо команде, процессор не будет простаивать.

Командами загрузки в данном случае называются перемещенные таким образом инструкции по предположению; они помечаются особым образом. Перед командой, использующей загружаемые по предположению данные, компилятор вставит команду проверки предположения. При возникновении исключительной ситуации во время загрузки, процессор сгенерирует исключение только тогда, когда встретит команду проверки предположения.

Например, команда загрузки выносится из ветвления, а ветвь, из которой она вынесена, не запускается. В этом случае возникшая исключительная ситуация игнорируется.

Важно отметить тот факт, что с выходом Itanium сравнение процессоров по частоте практически теряет смысл. Придется применять новые методики, учитывающие не только количество реально выполненных за один такт инструкций, но и качество анализа компилятором исполняемой программы, поскольку результирующая производительность будет сильно зависеть от этого (процессор ведь может работать с огромной скоростью, вычисляя ненужные ветви программы).

Процессор Itanium полностью совместим с современными 32-разрядными приложениями, но вряд ли эти программы будут работать на 64-разрядном кристалле быстрее.

Как полагают некоторые специалисты, возможно, придется привыкать и к более медленным темпам работы. В альтернативе то, что новые, специализированные приложения оставят всех позади. Например, уже на этапе опытного производства кристаллов архитектура процессора Itanium продемонстрировала высокое быстродействие алгоритмов защиты информации, интенсивно использующих вычислительные мощности.

Корпорация AMD тоже обнародовала свои планы создания 64-разрядных кристаллов. Она добавила 32 разряда к уже имеющимся 32, и регистры расширились до 64 разрядов, появились команды манипуляции с 64-разрядными данными, да и шина адреса увеличилась до 64 разрядов. В итоге родилась архитектура x86-64. Первоначально подобный процессор был назван Sledgehammer. Команды нового кристалла отличаются от команд процессоров x86 только наличием префикса, указывающего на их разрядность.

Здесь имеются восемь 64-разрядных регистров для операций вещественной арифметики. И это в прибавке к шестнадцати регистрам общего назначения.

Восемь первых регистров Sledgehammer обозначаются названиями, отражающими их x86-происхождение: RAX, RBX, RCX, RDX, RSP, RBP, RSI, RDI.

Восемь младших разрядов RAX фактически эквивалентны регистру A аккумулятору процессора i8080 и регистру AL i8086. Разряды 8 – 15 эквивалентны регистру AH i8086. Если объединить эти два поля, то получится регистр AX i8086. Битовое поле 0 – 31 - полный эквивалент регистра EAX в 32-разрядных 80 x 86.

А вот архитектуру нового процессора дополняют шестнадцать 128-разрядных регистров для хранения операндов SIMD-инструкций.

Итак, корпорацией AMD была обеспечена полная аппаратная поддержка выполнения инструкций x86-32 на уровне ядра. В отличие от процессора Itanium, здесь должна обеспечиваться полноценная реализация 8-, 16 — и 32-разрядных приложений без потери производительности, т. е. на одном процессоре смогут одновременно и независимо работать 16 — и 32-разрядные приложения. Данное обстоятельство должно сделать переход пользователей на новую платформу безболезненным, ведь процессоры смогут работать в двух режимах:.

в технологии Long кристалл будет работать как x86-64;

в технологии Legacy Mode кристалл будет работать как x86-процессор, совместимый с 16 — и 32-разрядными приложениями и поддерживающий расширение SSE.

В ближайшем будущем планируется выпустить две модели 64-разрядного микропроцессора: собственно Sledgehammer и младшую модель - Clawhammer. Главные отличия состоят главным образом в размере кэш-памяти второго уровня:

Clawhammer позиционируется как процессор для рабочих станций и будет поддерживать двухпроцессорные системы. Причем размер кристалла не должен превысить 100 кв. мм, что сделает его в достаточной мере дешевым;

Sledgehammer же, как планируется, будет поддерживать до восьми процессоров.

Оба процессора будут содержать интегрированный контроллер памяти, совместимый с технологией HyperTransport. Данный факт позволит напрямую работать с системной памятью, минуя системную шину и набор микросхем.

Для возможности обращения к одному и тому же сегменту памяти в мультипроцессорных системах будет использоваться архитектура NUMA (Non-Uniform Memory Access).

Каждому процессору будет отведен отдельный сегмент памяти, но при необходимости будет доступен и сегмент памяти другого процессора. AMD разрабатывает два набора микросхем с поддержкой HyperTransport. Первый чипсет Golem предназначен для серверов и оснащен мостом HyperTransport-PCI-X, а второй - Lokar для рабочих станций, имеет встроенную поддержку интерфейса AGP 8X и мост HyperTransport-AGP.

В заключение отметим, что новые процессоры будут изготавливаться с учетом проектных норм 0,13 мкм и технологии SOI (Silicon On Insulator - "кремний на изоляторе"). Т. к. массовое производство кристаллов начнется не ранее 2002 г., то говорить о конкуренции между семействами Itanium и Hammer пока рановато.

Библиографический список

http://www.bytemag.ru/.

http://www.maxwolf.ru/faq/cpu.html.

http://www.intel.com/ .

http://www.amd.com .

Человеческий ум может судить
о будущем не иначе, как обдумывая прошедшее.
А. Ферран

Процессор - важнейший элемент ЭВМ, поэтому производством процессоров занимаются многие фирмы. Наиболее массовое распространение в настоящее время получили процессоры, произведенные фирмой Intel (США).

По конструктивному признаку все процессоры делятся на разрядно-модульные (собираются из нескольких микросхем) и однокристальные (изготавливаются в виде одной микросхемы, на одной подложке, на одном кристалле). Однокристальные процессоры в настоящее время получили наибольшее распространение.

По способу представления команд (иногда говорят – инструкций) все микропроцессоры можно разделить на две группы:

  • процессоры типа CISC (Complex Instruction Set Computing) с полным набором команд;
  • процессоры типа RISC (Reduced Instruction Set Computing) с сокращенным набором команд. Эти процессоры нацелены на быстрое выполнение небольшого набора простых команд. При выполнении сложных команд RISC-процессоры работают медленнее, чем CISC-процессоры.

Заметим, что эти две архитектуры процессоров постоянно сближаются, отбирая лучшие свойства каждой. Тем не менее более перспективной считается RISC-архитектура.

Под термином «архитектура» понимается конструкция процессора и имеющаяся система команд процессора (набор инструкций).

Самым первым процессором, выпущенным фирмой Intel в 1971 году, был четырехразрядный процессор Intel 4004 (табл. 8.1).

В 1974 году был разработан восьмиразрядный процессор Intel 8080 (отечественный аналог КР580ВМ80А), а в 1978 году - процессор Intel 8086, который был совместим с микропроцессором Intel 8080. Система команд процессора насчитывала 134 команды. На базе микропроцессора 8086 и его модификации 8088 выпускались компьютеры IBM PC и IBM PC/XT.

Заметим, что в технической литературе порой используют термин «процессор», а иногда термин «микропроцессор». Различие указанных терминов заключается в уточнении технологии изготовления и габаритов процессора.

Микропроцессор (МП) изготавливается по полупроводниковой технологии и размещается на одном кристалле, в одной микросхеме (иногда говорят - в одном чипе).



Таблица 8.1. Иерархия процессоров и их характеристики

Модель МП Разрядность, бит Тактовая частота, МГц Число команд Число транзисторов, тыс. Год выпуска
Шины данных Шины адреса
4,77 2,3
4,77
4,77 и 8
8, 16 4,77 и 8
10...33
25...50
33...100
Pentium 50...150
Pentium Pro 66...200
Pentium MMX
Pentium II
Pentium III
Pentium 4
Pentium 4M

В 1980 году был анонсирован сопроцессор с плавающей точкой 8087, который расширил состав команд процессора 8086 почти на 60 новых команд.

Сопроцессор - это специальная микросхема (помощник), которая берет на себя часть важных функций процессора, чаще всего выполнение арифметических операций с плавающей точкой.

Сопроцессор реализует арифметические операции аппаратным способом, что осуществляется намного быстрее по сравнению с программным способом вычислений, которым реализуются операции процессором без использования сопроцессора. По этой причине его иногда называют математическим сопроцессором.

Разработанный в 1982 году микропроцессор Intel 80286 еще больше усовершенствовал конструкцию МП 8086. Была реализована защита памяти, расширено адресное пространство, а также добавлено несколько команд.

Заметим, что во многих литературных источниках вместо полного наименования марки процессоров используются их сокращенные названия. Например, вместо Intel 80286 пишут 286, а вместо Intel 80386 - 386. Порой для общего обозначения процессоров серий 80286, 80386, 80486 записывают 80`86 (и даже `86). Название фирмы Intel иногда сокращают до одной буквы, например i80486.

Процессор Intel 80286 может выполнять программы, разработанные для процессора Intel 8086. Способность процессора последующей модификации выполнять программы, разработанные для процессоров предыдущей конструкции, называется совместимостью процессоров снизу вверх. Другими словами, программы, разработанные для предыдущих конструкций процессоров, работают без исправлений и дополнений на процессорах новых конструкций.

Начиная с МП 80286, процессоры фирмы Intel поддерживают режим выполнения нескольких задач - так называемый многозадачный режим. При работе в многозадачном режиме процессор поочередно переключается от одной задачи к другой, но в каждый текущий момент времени обслуживается лишь одна программа.

Для процессора 80286 выпускался сопроцессор 80287. На базе этих микросхем, начиная с 1984 году, компания IBM производила персональные компьютеры IBM PC/AT.

В 1987 году появился микропроцессор 80386. Начиная с этого процессора, во всех процессорах используется конвейерное выполнение команд - одновременное выполнение в разных частях МП нескольких последовательно записанных в ОЗУ команд. Конвейерное выполнение команд увеличивает быстродействие ЭВМ в 2–3 раза.

МП 80386 может функционировать в двух основных режимах:

  • режиме реальной адресации, который характеризуется тем, что МП работает как очень быстрый процессор 8086 с 32-разрядными шинами;
  • режиме защищенной виртуальной адресации, который характеризуется параллельным выполнением нескольких задач, как бы несколькими процессорами 8086, по одному на каждую задачу.

Процессор 80486 разработан в 1989 году и содержит более миллиона транзисторов.

Процессоры i486SX и i486DX - это 32-разрядные процессоры, у которых внутренняя кэш-память первого уровня имеет емкость 8 Кбайт. Основное отличие одного от другого заключается в том, что в процессоре i486DX впервые сопроцессор размещен на общей подложке (на одном кристалле) с процессором. В МП i486SX отсутствует встроенный сопроцессор для выполнения операций с плавающей точкой. Поэтому он имеет меньшую цену и применяется в ЭВМ, для которых не очень важна производительность при обработке вещественных чисел. По желанию пользователя такие ЭВМ могут быть укомплектованы дополнительным сопроцессором i487SX, который изготовляется в виде отдельной микросхемы.

В процессоре i486DX2 применяется технология удвоения внутренней тактовой частоты. Это позволяет увеличить производительность процессора почти на 70%. Процессор i486DX4/100 использует технологию утроения тактовой частоты. Он работает с внутренней тактовой частотой 99 МГц, в то время как внешняя тактовая частота составляет 33 МГц (частота, на которой работает системная шина).

В процессоре Pentium (появился в 1993 году) стали использоваться элементы структуры RISC-процессоров. Он изготовлен по 0,8-микрометровой технологии и содержит 3,1 млн транзисторов. Процессор Pentium иногда обозначают P5 или 80586.

Термин «0,8-микронная технология» означает, что каждый транзистор размещается на кристалле внутри квадрата с указанным размером стороны.

Первоначальная реализация процессора Pentium была рассчитана на работу с тактовыми частотами 60 и 66 МГц. Впоследствии были разработаны процессоры Pentium, работающие с тактовыми частотами 75, 90, 100, 120, 133, 150, 166, 200 МГц.

Прогресс в области разработки и производства процессоров идет непрерывно.

1 ноября 1995 года появился первый процессор Pentium Pro (80686, Р6) с тактовой частотой 150 МГц.

Технология ММХ (Multimedia Extension мультимедийное расширение) предполагает включение в состав команд процессора Pentium набора из 57 новых команд. Новые команды предназначены в первую очередь для реализации алгоритмов обработки видео- и аудиоданных: фильтрации, преобразований Фурье, свертки и пр.

Технология Intel MMX позволяет обрабатывать несколько пакетов данных одинаковым образом, т. е. использует технологию SIMD.

Число транзисторов в процессоре Pentium MMX составляет 4,5 млн штук, а кэш-память первого уровня имеет объем 32 Кбайта. Как показали испытания, MMX-процессор увеличивает производительность по сравнению с обычным процессором Pentium на величину до 34%.

В 1995–1997 годах корпорация Intel выпустила еще несколько моделей: Pentium MMX 266 МГц и Pentium Pro 200 МГц.

15 апреля 1998 года фирма Intel представила модели Pentium II с тактовыми частотами 350 и 400 МГц.

Процессор Pentium II изготавлен по так называемой 0,25-микрометровой технологии. При этом каждый транзистор умещается в квадрате со сторонами в четверть микрометра. На срезе человеческого волоса можно уместить 30 000 таких транзисторов. В будущем предстоит переход на технологии 0,18 и 0,13 микрометра.

С целью завоевания рынка фирма Intel выпустила недорогой процессор Celeron, в котором первоначально отсутствовала кэш-память второго уровня.

24 августа 1998 года фирма Intel представила еще два процессора семейства Celeron - 300A и 333. Новые процессоры выполнены по 0,25-микрометровой технологии и содержат кэш-память второго уровня размером 128 Кбайт.

По сравнению с Pentium II в нем для увеличения быстродействия еще больше усилено распараллеливание процессов.

Кроме того, Pentium III отличается наличием уникального идентификационного номера, который может быть считан программно для определения личности пользователя (например, при совершении покупок через Интернет).

В ноябре 2000 года выпущен процессор Pentium 4 с тактовыми частотами 1,4 и 1,5 ГГц. Процессор Pentium 4 изготавливается по 0,18-микрометровой технологии. В процессоре используется 144 новых команд (инструкций), предназначенных для ускорения обработки видео-, мультимедиа, трехмерной графики и криптографии.

Рис. 8.1. Зависимость числа транзисторов в процессорах фирмы Intel от даты выпуска

В 1965 году один из будущих руководителей компании Intel Гордон Мур сделал предсказание, что плотность транзисторов на кристалле будет удваиваться каждые полтора-два года с соответствующим возрастанием производительности процессора. «Закон Мура» с некоторыми оговорками действует до сих пор. На гистограмме схематично показан процесс увеличения числа транзисторов в процессорах фирмы Intel.

История развития процессоров


Основные характеристики процессоров и ЭВМ

Характеристики ЭВМ:

· Быстродействие – количество операций в секунду.

· Ёмкость (объём памяти) – предельное количество информации.

· Точность вычислений – количество разрядов, используемых для представления одного числа.

· Система команд – перечень команд, которые способен выполнить процессор.

· Надёжность

Характеристики процессора:

· Тактовая частота

· Производительность

· Энергопотребление

· Нормы литографического процесса

· Архитектура

Базовая архитектура процессора (основные регистры и их назначение)

Счетчик команд (СК) служит для организации обращений к ячейкам памяти, в которых хранятся команды программы. После исполнения любой команды СК указывает адрес ячейки памяти, содержащей следующую команду программы. Так как команды могут размещаться в любой из 2048 = 211 ячеек памяти, то СК имеет 11 разрядов.

Регистр адреса (РА) 11-разрядный регистр, содержащий значение исполнительного адреса (адреса ячейки памяти, к которой обращается ЭВМ за командой или данными).

Регистр команд (РК). Этот 16-разрядный регистр используется для хранения кода команды, непосредственно выполняемой машиной.

Регистр данных (РД). Используется для временного хранения 16-рязрядных слов при обмене информацией между памятью и процессором.

Аккумулятор (А). 16-разрядный регистр, являющийся одним из главных элементов процессора. Машина может одновременно выполнять арифметические и логические операции только с одним или двумя операндами. Один из операндов находится в аккумуляторе, а второй (если их два) - в регистре данных. Результат помещается в А.

Регистр переноса (С) - это одноразрядный регистр, выступающий в качестве продолжения аккумулятора и заполняющийся при переполнении А. Этот регистр используется при выполнении сдвигов.

Арифметическо-логическое устройство (АЛУ) может выполнять такие арифметические операции, как сложение и сложение с учетом переноса, полученного в результате выполнения предыдущей операции. Кроме того, оно способно выполнять операции логического умножения, инвертирования, циклического сдвига.

Система команд базовой ЭВМ

Классификация команд. ЭВМ способна понимать и выполнять точно определенный набор команд. При составлении программы пользователь ограничен этими командами. В зависимости от того, к каким блокам базовой ЭВМ обращается команда или на какие блоки она ссылается, команды можно разделить на три группы:

· обращения к памяти (адресные команды);

· обращения к регистрам (регистровые или безадресные команды);

· команды ввода-вывода.

Команды обращения к памяти предписывают машине производить действия с содержимым ячейки памяти, адрес которой указан в адресной части команды.

Безадресные команды выполняют различные действия без ссылок на ячейку памяти. Например, команда CLA (табл. 1.1) предписывает ЭВМ очистить аккумулятор (записать в А код нуля). Это команда обработки операнда, расположенного в конкретном месте, "известном" машине. Другой пример безадресной команды - команда HLT.

Команды ввода-вывода осуществляют обмен данными между процессором и внешними устройствами ЭВМ.

Асинхронный обмен данными

Программа такого обмена строится так: сначала проверяется готовность ВУ к обмену и если оно готово, то дается команда на обмен. ВУ сообщает о готовности установкой флага.

Легко заметить, что при асинхронном обмене ЭВМ должна тратить время на ожидание момента готовности, а так как готовность проверяется командным путем (команда TSF), то в это время ЭВМ не может выполнять никакой другой работы по преобразованию данных.

Основные понятия защищенного режима

Защищенный режим предназначен для обеспечения независимости выполнения нескольких задач, что подразумевает защиту ресурсов одной задачи от возможного воздействия другой задачи (под задачами подразумеваются как прикладные, так и задачи операционной системы).

Основным защищаемым ресурсом является память, в которой хранятся коды, данные и различные системные таблицы (например, таблица прерываний). Защищать требуется и совместно используемую аппаратуру, обращение к которой обычно происходит через операции ввода-вывода и прерывания. В защищенном режиме процессор 80286 аппаратно реализует многие функции защиты, необходимые для построения супервизора многозадачной ОС, поддерживая и механизм виртуальной памяти.

Сегментация, дескрипторы

Защита памяти основана на использовании сегментации. Сегмент - это блок адресного пространства памяти определенного назначения. К элементам сегмента возможно обращение с помощью различных инструкций процессора, использующих разные режимы адресации для формирования адреса в пределах сегмента. Максимальный размер сегмента для процессоров 8086 и80286 составлял 64 Кб, в 32-разрядных процессорах этот предел отодвигается до 4 Гб. Сегменты памяти выделяются задачам операционной системой, но в реальном режиме любая задача может переопределить значение сегментных регистров, задающих положение сегмента в пространстве памяти, и “залезть” в чужую область данных или кода. В защищенном режиме сегменты тоже распределяются операционной системой, но прикладная программа сможет использовать только разрешенные для нее сегменты памяти, выбирая их с помощью селекторов из предварительно сформированныхтаблиц дескрипторов сегментов. Селекторы представляют собой 16-битные указатели, загружаемые в сегментные регистры процессора.

Дескрипторы - это структуры данных, используемые для определения свойств программных элементов (сегментов, вентилей и таблиц). Дескриптор определяет положение элемента в памяти, размер занимаемой им области (лимит), его назначение и характеристики защиты. Защита памяти с помощью сегментации не позволяет:

Использовать сегменты не по назначению (например, пытаться трактовать область данных как коды инструкций);

Нарушать права доступа (пытаться модифицировать сегмент, предназначенный только для чтения, обращаться к сегменту, не имея достаточных привилегий, и т. п.);

Адресоваться к элементам, выходящим за лимит сегмента;

Изменять содержимое таблиц дескрипторов (то есть параметров сегментов), не имея достаточных привилегий.

Переключение задач

Защищенный режим предоставляет средствапереключения задач. Состояние каждой задачи (значение всех связанных с ней регистров процессора) может быть сохранено в специальном сегменте состояния задачи (TSS), на который указывает селектор в регистре задачи. При переключении задач достаточно загрузить новый селектор в регистр задачи, и состояние предыдущей задачи автоматически сохранится в ее TSS, а в процессор загрузится состояние новой (возможно, и ранее прерванной) задачи и начнется (продолжится) ее выполнение.

Обмен данными по прерыванию

Аппаратные прерывания вызываются внешними устройствами и теми компонентами компьютера, которые требуют немедленной обработки своей информации и приходят асинхронно по отношению к исполняемой программе. Прерывание можно рассматривать как некоторое особое событие в системе, которое заставляет процессор приостановить выполнение своей программы для реализации некоторой затребованной деятельности. Программные обработчики аппаратных прерываний инициализируют блочный обмен или выполняют одиночную операцию пересылки по системной шине с внешним устройством. Практически это основной способ инициализации обмена. Прерывания существенно увеличивают эффективность вычислительной системы, поскольку они позволяют внешним устройствам "обращать на себя внимание" процессора только по мере надобности.

Основные понятия и концепции ввода-вывода. Режимы управления вводом-выводом

Программирование ввода-вывода является наиболее сложным и трудоемким, требующим очень высокой квалификации. Поэтому код, реализующий операции ввода-вывода, сначала стали оформлять в виде системных библиотечных процедур, а потом и вовсе вывели из систем программирования, включив в операционную систему. Это позволило не писать такой код в каждой программе, а только обращаться к нему - системы программирования стали генерировать обращения к системному коду ввода-вывода. Таким образом, управление вводом-выводом - это одна из основных функций любой операционной системы.

Самым главным является следующий принцип: любые операции по управлению вводом-выводом объявляются привилегированными и могут выполняться только кодом самой операционной системы. Для обеспечения этого принципа в большинстве процессоров даже вводятся режимы пользователя и супервизора. Последний еще называют привилегированным режимом, или режимом ядра. Как правило, в режиме супервизора выполнение команд ввода-вывода разрешено, а в пользовательском режиме - запрещено. Обращение к командам ввода-вывода в пользовательском режиме вызывает исключение, и управление через механизм прерываний передается коду операционной системы. Хотя возможны и более сложные схемы, в которых в ряде случаев пользовательским программам может быть разрешено непосредственное выполнение команд ввода-вывода.

Как известно, имеется два основных режима ввода-вывода: режим обмена с опросом готовности устройства ввода-вывода и режим обмена с прерываниями.

1)Режим обмена с прерываниями по своей сути является режимом асинхронного управления. Для того чтобы не потерять связь с устройством (после выдачи процессором очередной команды по управлению обменом данными и переключения его на выполнение других программ), может быть запущен отсчет времени, в течение которого устройство обязательно должно выполнить команду и выдать-таки сигнал запроса на прерывание. Максимальный интервал времени, в течение которого устройство ввода-вывода или его контроллер должны выдать сигнал запроса на прерывание, часто называют установкой тайм-аута. Если это время истекло после выдачи устройству очередной команды, а устройство так и не ответило, то делается вывод о том, что связь с устройством потеряна и управлять им больше нет возможности. Пользователь и/или задача получают соответствующее диагностическое сообщение.

2)Устройство ввода-вывода (или его устройство управления) выдает сигнал готовности, который сообщает процессору о том, что можно выдать новую команду для продолжения обмена данными. Однако поскольку быстродействие устройства ввода-вывода намного меньше быстродействия центрального процессора (порой на несколько порядков), то сигнал готовности приходится очень долго ожидать, постоянно опрашивая соответствующую линию интерфейса на наличие или отсутствие нужного сигнала. Посылать новую команду, не дождавшись сигнала готовности, сообщающего об исполнении предыдущей команды, бессмысленно. В режиме опроса готовности драйвер, управляющий процессом обмена данными с внешним устройством, как раз и выполняет в цикле команду «проверить наличие сигнала готовности». До тех пор пока сигнал готовности не появится, драйвер ничего другого не делает. При этом, естественно, нерационально используется время центрального процессора. Гораздо выгоднее, выдав команду ввода-вывода, на время забыть об устройстве ввода-вывода и перейти на выполнение другой программы. А появление сигнала готовности трактовать как запрос на прерывание от устройства ввода-вывода. Именно эти сигналы готовности и являются сигналами запроса на прерывание

Сигналы AWARD BIOS

Сигналов нет. Неисправен или не подключен к материнской плате блок питания.
Непрерывный сигнал. Неисправен блок питания.
1 короткий. Ошибок не обнаружено.
2 коротких. Обнаружены незначительные ошибки. На экране монитора появляется предложение войти в программу CMOS Setup Utility и исправить ситуацию. Проверьте надежность крепления шлейфов в разъемах жесткого диска и материнской платы.
3 длинных. Ошибка контроллера клавиатуры. Перегрузите компьютер.
1 длинный+1 короткий. Проблемы с оперативной памятью.
1 длинный+2 коротких. Проблема с видеокартой -- наиболее часто встречающаяся неисправность. Рекомендуется вытащить плату и заново вставить. Также проверьте подключение монитора.
1 длинный+3 коротких. Возникла ошибка инициализации клавиатуры. Проверьте качество соединения последней с разъемом на материнской плате.
1 длинный+9 коротких. Возникла ошибка при чтении данных из микросхемы постоянной памяти. Перегрузите компьютер или перепрошейте содержимое микросхемы.
1 длинный повторяющийся. Неправильная установка модулей памяти.
1 короткий повторяющийся. Проблемы с блоком питания. Попробуйте убрать накопившуюся в нем пыль.

Доступ к памяти

§ DMA - доступ к памяти, в этом режиме основной памятью считается встроенная видеопамять на карте, текстуры копируются туда перед использованием из системной памяти компьютера. Этот режим работы не был новым, по тому же принципу работают звуковые карты, некоторые контроллеры и т. п.

§ DME - в этом режиме основная и видеопамять находятся как бы в общем адресном пространстве. Общее пространство эмулируется с помощью таблицы отображения адресов блоками по 4 Кб. Таким образом копировать данные из основной памяти в видеопамять уже не требуется, этот процесс называют AGP-текстурированием.

Очередь запросов:

Передача данных из основной памяти в видеопамять карты осуществляется в два этапа, сначала передаётся 64-битный адрес, откуда данные нужно считать, затем идут сами данные. Шина AGP предусматривает два варианта передачи:

§ первый - совместим с шиной PCI - запросы данных и адреса происходят по одному каналу;

§ второй - в режиме SBA (SideBand Addressing), по отдельной боковой шине, таким образом, можно посылать запросы на новые данные, не дожидаясь получения предыдущих.

Первое поколение

Ранние компьютерные шины были группой проводников, подключающей компьютерную память и периферию к процессору. Почти всегда для памяти и периферии использовались разные шины, с разным способом доступа, задержками, протоколами.

Одним из первых усовершенствований стало использование прерываний. До их внедрения компьютеры выполняли операции ввода-вывода в цикле ожидания готовности периферийного устройства. Это было бесполезной тратой времени для программ, которые могли делать другие задачи. Также, если программа пыталась выполнить другие задачи, она могла проверить состояние устройства слишком поздно и потерять данные. Поэтому инженеры дали возможность периферии прерывать процессор. Прерывания имели приоритет, так как процессор может выполнять только код для одного прерывания в один момент времени, а также некоторые устройства требовали меньших задержек, чем другие.

Некоторое время спустя компьютеры стали распределять память между процессорами. На них доступ к шине также получил приоритеты.

Классический и простой способ обеспечить приоритеты прерываний или доступа к шине заключался в цепном подключении устройств.

Второе поколение

Компьютерные шины «второго поколения», например NuBus

Решали некоторые из вышеперечисленных проблем. Они обычно разделяли компьютер на две «части», процессор и память в одной и различные устройства в другой. Между частями устанавливался специальный контроллер шин (bus controller ). Такая архитектура позволила увеличивать скорость процессора без влияния на шину, разгрузить процессор от задач управления шиной. При помощи контроллера устройства на шине могли взаимодействовать друг с другом без вмешательства центрального процессора. Новые шины имели лучшую производительность, но также требовали более сложных карт расширения. Проблемы скорости часто решались увеличением разрядности шины данных, с 8-ми битных шин первого поколения до 16 или 32-х битных шин во втором поколении. Также появилась программная настройка устройств для упрощения подключения новых устройств, ныне стандартизованная как Plug-n-play.

Однако новые шины, так же как и предыдущее поколение, требовали одинаковых скоростей от устройств на одной шине. Процессор и память теперь были изолированы на собственной шине и их скорость росла быстрее, чем скорость периферийной шины. В результате, шины были слишком медленны для новых систем и машины страдали от нехватки данных.

Третье поколение

Шины «третьего поколения» обычно позволяют использовать как большие скорости, необходимые для памяти, видеокарт и межпроцессорного взаимодействия, так и небольшие при работе с медленными устройствами, например, приводами дисков. Также они стремятся к большей гибкости в терминах физических подключений, позволяя использовать себя и как внутренние и как внешние шины, например для объединения компьютеров. Это приводит к сложным проблемам при удовлетворении различных требований, так что большая часть работ по данным шинам связана с программным обеспечением, а не с самой аппаратурой. В общем, шины третьего поколения больше похожи на компьютерные сети, чем на изначальные идеи шин, с большими накладными расходами, чем у ранних систем. Также они позволяют использовать шину нескольким устройствам одновременно.

Прерывание (англ. interrupt ) - сигнал, сообщающий процессору о наступлении какого-либо события. При этом выполнение текущей последовательности команд приостанавливается и управление передаётся обработчику прерывания, который реагирует на событие и обслуживает его, после чего возвращает управление в прерванный код.

В зависимости от источника возникновения сигнала прерывания делятся на:

§ асинхронные или внешние (аппаратные) - события, которые исходят от внешних источников (например, периферийных устройств) и могут произойти в любой произвольный момент: сигнал от таймера, сетевой карты или дискового накопителя, нажатие клавиш клавиатуры, движение мыши. Факт возникновения в системе такого прерывания трактуется как запрос на прерывание

§ синхронные или внутренние - события в самом процессоре как результат нарушения каких-то условий при исполнении машинного кода: деление на ноль или переполнение, обращение к недопустимым адресам или недопустимый код операции;

§ программные (частный случай внутреннего прерывания) - инициируются исполнением специальной инструкции в коде программы. Программные прерывания как правило используются для обращения к функциям встроенного программного обеспечения (firmware), драйверов и операционной системы.

Термин «ловушка» (англ. trap ) иногда используется как синоним термина «прерывание» или «внутреннее прерывание». Как правило, словоупотребление устанавливается в документации производителя конкретной архитектуры процессора.

В зависимости от возможности запрета внешние прерывания делятся на:

§ маскируемые - прерывания, которые можно запрещать установкой соответствующих битов в регистре маскирования прерываний (в x86-процессорах - сбросом флага IF в регистре флагов);

§ немаскируемые (англ. Non maskable interrupt, NMI ) - обрабатываются всегда, независимо от запретов на другие прерывания. К примеру, такое прерывание может быть вызвано сбоем в микросхеме памяти.

Обработчики прерываний обычно пишутся таким образом, чтобы время их обработки было как можно меньшим, поскольку во время их работы могут не обрабатываться другие прерывания, а если их будет много (особенно от одного источника), то они могут теряться.

До окончания обработки прерывания обычно устанавливается запрет на обработку этого типа прерывания, чтобы процессор не входил в цикл обработки одного прерывания. Приоритезация означает, что все источники прерываний делятся на классы и каждому классу назначается свой уровень приоритета запроса на прерывание. Приоритеты могут обслуживаться как относительные и абсолютные.

§ Относительное обслуживание прерываний означает, что если во время обработки прерывания поступает более приоритетное прерывание, то это прерывание будет обработано только после завершения текущей процедуры обработки прерывания.

§ Абсолютное обслуживание прерываний означает, что если во время обработки прерывания поступает более приоритетное прерывание, то текущая процедура обработки прерывания вытесняется, и процессор начинает выполнять обработку вновь поступившего более приоритетного прерывания. После завершения этой процедуры процессор возвращается к выполнению вытесненной процедуры обработки прерывания.

Программное прерывание - синхронное прерывание, которое может осуществить программа с помощью специальной инструкции.

SCSI - представляет собой набор стандартов для физического подключения и передачи данных между компьютерами и периферийными устройствами. SCSI стандарты определяют команды, протоколы и электрические и оптические интерфейсы. Разработан для объединения на одной шине различных по своему назначению устройств, таких как жёсткие диски, накопители на магнитооптических дисках, приводы CD, DVD, стримеры, сканеры, принтеры и т. д.

SCSI широко применяется на серверах, высокопроизводительных рабочих станциях; RAID-массивы на серверах часто строятся на жёстких дисках со SCSI-интерфейсом (однако, в серверах нижнего ценового диапазона всё чаще применяются RAID-массивы на основе SATA). В настоящее время устройства на шине SAS постепенно вытесняют устаревшую шину SCSI.

Система команд SCSI на уровне программного обеспечения употребляется в единых стеках поддержки устройств хранения данных в ряде операционных систем, таких, как Microsoft Windows.

Существует реализация системы команд SCSI поверх оборудования (контроллеров и кабелей) IDE/ATA/SATA, называемая ATAPI - ATA Packet Interface. Все используемые в компьютерной технике подключаемые по IDE/ATA/SATA приводы CD/DVD/Blu-Ray используют эту технологию.

Также система команд SCSI реализована поверх протокола USB, что является частью спецификации класса Mass Storage device. Это позволяет подключать через интерфейс USB любые хранилища данных (от флеш-накопителей до внешних жёстких дисков), не разрабатывая для них собственного протокола обмена, а вместо этого используя имеющийся в операционной системе драйвер SCSI.

В терминологии SCSI взаимодействие идёт между инициатором и целевым устройством. Инициатор посылает команду целевому устройству, которое затем отправляет ответ инициатору.

Команды SCSI посылаются в виде блоков описания команды (англ. Command Descriptor Block, CDB ). Длина каждого блока может составлять 6, 10, 12, 16 или 32 байта. В последних версиях SCSI блок может иметь переменную длину. Блок состоит из однобайтового кода команды и параметров команды.

После получения команды целевое устройство возвращает значение 00h в случае успешного получения, 02h в случае ошибки или 08h в случае, если устройство занято. В случае, если устройство вернуло ошибку, инициатор обычно посылает команду запроса состояния. Устройство возвращает Key Code Qualifier (KCQ).

Все команды SCSI делятся на четыре категории: N (non-data), W (запись данных от инициатора целевым устройством), R (чтение данных) и B (двусторонний обмен данными). Всего существует порядка 60 различных команд SCSI, из которых наиболее часто используются:

§ Test unit ready - проверка готовности устройства, в том числе наличия диска в дисководе.

§ Inquiry - запрос основных характеристик устройства.

§ Send diagnostic - указание устройству провести самодиагностику и вернуть результат.

§ Request sense - возвращает код ошибки предыдущей команды.

§ Read capacity - возвращает ёмкость устройства.

§ Read (4 варианта) - чтение.

§ Write (4 варианта) - запись.

§ Write and verify - запись и проверка.

§ Mode select - установка параметров устройства.

§ Mode sense - возвращает текущие параметры устройства.

Каждое устройство на SCSI-шине имеет как минимум один номер логического устройства (LUN - англ. Logical Unit Number ). В некоторых более сложных случаях одно физическое устройство может представляться набором LUN.

Для возможности работы нескольких независимых целевых устройств SCSI, в UNIX-подобных операционных системах применяется адресация из произвольно назначаемого драйвером идентификатора целевого устройства (SCSI target id) и номера LUN, сконфигурированного на нём.

Для устройств типа приводов CD/DVD/Blu-Ray, в том числе их разновидностей с возможностью записи, разработан MMC - Multimedia Command Set. Некоторые приводы, например, производства Asus и Pioneer, используют конкурирующий стандарт Mt. Fuji, отличающийся от MMC в некоторых нюансах.

История развития процессоров

История развития производства процессоров полностью соответствует истории развития технологии производства прочих электронных компонентов и схем.

Первым этапом, затронувшим период с 40-х по конец 50-х годов, было создание процессоров с использованием электромеханических реле, ферритовых сердечников (устройств памяти) и вакуумных ламп. Они устанавливались в специальные разъёмы на модулях, собранных в стойки. Большое количество таких стоек, соединённых проводниками, в сумме представляли процессор. Отличительной особенностью была низкая надёжность, низкое быстродействие и большое тепловыделение.

Вторым этапом, с середины 50-х до середины 60-х, стало внедрение транзисторов. Транзисторы монтировались уже на близкие к современным по виду платам, устанавливаемым в стойки. Как и ранее, в среднем процессор состоял из нескольких таких стоек. Возросло быстродействие, повысилась надёжность, уменьшилось энергопотребление.

Третьим этапом, наступившим в середине 60-х годов, стало использование микросхем. Первоначально использовались микросхемы низкой степени интеграции, содержащие простые транзисторные и резисторные сборки, затем по мере развития технологии стали использоваться микросхемы, реализующие отдельные элементы цифровой схемотехники (сначала элементарные ключи и логические элементы, затем более сложные элементы - элементарные регистры, счётчики, сумматоры), позднее появились микросхемы, содержащие функциональные блоки процессора - микропрограммное устройство, арифметико-логическое устройство, регистры, устройства работы с шинами данных и команд.

Четвёртым этапом, в начале 70-х годов, стало создание, благодаря прорыву в технологии создания БИС и СБИС (больших и сверхбольших интегральных схем, соответственно), микропроцессора - микросхемы, на кристалле которой физически были расположены все основные элементы и блоки процессора. Фирма Intel в 1971 году создала первый в мире 4-х разрядный микропроцессор 4004, предназначенный для использования в микрокалькуляторах. Постепенно практически все процессоры стали выпускаться в формате микропроцессоров. Исключением долгое время оставались только малосерийные процессоры, аппаратно оптимизированные для решения специальных задач (например суперкомпьютеры или процессоры для решения ряда военных задач), либо процессоры, к которым предъявлялись особые требования по надёжности, быстродействию или защите от электромагнитных импульсов и ионизирующей радиации. Постепенно, с удешевлением и распространением современных технологий, эти процессоры также начинают изготавливаться в формате микропроцессора. Сейчас слова микропроцессор и процессор практически стали синонимами, но тогда это было не так, потому что обычные (большие) и микропроцессорные ЭВМ мирно сосуществовали ещё по крайней мере 10-15 лет, и только в начале 1980-х годов микропроцессоры вытеснили своих старших собратьев. Тем не менее, центральные процессорные устройства некоторых суперкомпьютеров даже сегодня представляют собой сложные комплексы, построенные на основе микросхем большой и сверхбольшой степени интеграции. Надо сказать, что переход к микропроцессорам позволил потом создать персональные компьютеры, которые теперь проникли почти в каждый дом.

Первым общедоступным микропроцессором был 4-разрядный Intel 4004, представленный 15 ноября 1971 года корпорацией Intel. Он содержал 2300 транзисторов, работал на тактовой частоте 92,6 кГц и стоил 300 долл.
Далее его сменили 8-разрядный Intel 8080 и 16-разрядный 8086, заложившие основы архитектуры всех современных настольных процессоров. Из-за распространённости 8-разрядных модулей памяти был выпущен дешевый 8088, упрощенная версия 8086, с 8-разрядной шиной памяти. Затем проследовала его модификация 80186. В процессоре 80286 появился защищённый режим с 24-битной адресацией, позволявший использовать до 16 Мб памяти. Процессор Intel 80386 появился в 1985 году и привнёс улучшенный защищённый режим, 32-битную адресацию, позволившую использовать до 4 Гб оперативной памяти и поддержку механизма виртуальной памяти. Эта линейка процессоров построена на регистровой вычислительной модели. Параллельно развиваются микропроцессоры, взявшие за основу стековую вычислительную модель.

За годы существования микропроцессоров было разработано множество различных их архитектур. Многие из них (в дополненном и усовершенствованном виде) используются и поныне. Например Intel x86, развившаяся вначале в 32-битную IA-32, а позже в 64-битную x86-64 (которая у Intel называется EM64T). Процессоры архитектуры x86 вначале использовались только в персональных компьютерах компании IBM (IBM PC), но в настоящее время всё более активно используются во всех областях компьютерной индустрии, от суперкомпьютеров до встраиваемых решений. Также можно перечислить такие архитектуры как Alpha, POWER, SPARC, PA-RISC, MIPS (RISC-архитектуры) и IA-64 (EPIC-архитектура).

В современных компьютерах процессоры выполнены в виде компактного модуля (размерами около 5×5×0,3 см), вставляющегося в ZIF-сокет. Большая часть современных процессоров реализована в виде одного полупроводникового кристалла, содержащего миллионы, а с недавнего времени даже миллиарды транзисторов.

Продолжая тему первой статьи - история эволюции процессоров с конца XX века по начала XXI века.

Во многих процессорах 80-х годов использовалась архитектура CISC (Complex instruction set computing). Чипы были довольно сложными и дорогими, а также не достаточно производительными. Возникла необходимость в модернизации производства и увеличения количества транзисторов.

Архитектура RISC

В 1980 году стартовал проект Berkeley RISC, которым руководили американские инженеры Дэвид Паттерсон и Карло Секвин. RISC (restricted instruction set computer) - архитектура процессора с увеличенным быстродействием благодаря упрощенным инструкциям.

Руководители проекта Berkeley RISC - Дэвид Паттерсон и Карло Секвин

После нескольких лет плодотворной работы, на рынке появилось несколько образцов процессоров с сокращенным набором команд. Каждая инструкция платформы RISC была простой и выполнялась за один такт. Также присутствовало намного больше регистров общего назначения. Кроме того использовалась конвейеризация с упрощенными командами, что позволяло эффективно наращивать тактовую частоту.

RISC I вышел в 1982 году и содержал более чем 44 420 транзисторов. Он имел всего 32 инструкции и работал на частоте 4 МГц. Следующий за ним RISC II насчитывал 40 760 транзисторов, использовал 39 инструкций и был более быстрым.

Процессор RISC II

Процессоры MIPS: R2000, R3000, R4000 и R4400

Архитектура процессоров MIPS (Microprocessor without Interlocked Pipeline Stages) предусматривала наличие вспомогательных блоков в составе кристалла. В MIPS использовался удлиненный конвейер.

В 1984 году группа исследователей во главе с американским ученым Джоном Хеннесси основала компанию, проектирующую микроэлектронные устройства. MIPS лицензировала микропроцессорную архитектуру и IP-ядра для устройств умного дома, сетевых и мобильных применений. В 1985 году вышел первый продукт компании - 32-битный R2000, который в 1988 году был доработан в R3000. У обновленной модели имелась поддержка многопроцессорности, кэш-памяти инструкций и данных. Процессор нашел применение в SG-сериях рабочих станций разных компаний. Также R3000 стал основой игровой консоли Sony PlayStation.

Процессор R3000

В 1991 году вышла линейка нового поколения R4000. Данный процессор обладал 64-битной архитектурой, встроенным сопроцессором и работал на тактовой частоте 100 МГц. Внутренняя кэш-память составляла 16 Кб (8 Кб кэш-команд и 8 Кб кэш-данных).

Через год вышла доработанная версия процессора - R4400. В этой модели увеличился кэш до 32 Кб (16 Кб кэш-команд и 16 Кб кэш-данных). Процессор мог работать на частоте 100 МГц - 250 МГц.

Процессоры MIPS: R8000 и R10000

В 1994 году появился первый процессор с суперскалярной реализацией архитектуры MIPS - R8000. Емкость кэш-памяти данных составляла 16 Кб. У этого CPU была высокая пропускная способность доступа к данным (до 1.2 Гб/с) в сочетании с высокой скоростью выполнения операций. Частота достигала 75 МГц - 90 МГц. Использовалось 6 схем: устройство для целочисленных команд, для команд с плавающей запятой, три вторичных дескриптора кэш-памяти ОЗУ и кэш-контроллер ASIC.

Процессор R8000

В 1996 году вышла доработанная версия - R10000. Процессор включал в себя 32 Кб первичной кэш-памяти данных и команд. Работал CPU на частоте 150 МГц - 250 МГц.

В конце 90-х компания MIPS занялась продажей лицензий на 32-битную и 64-битную архитектуры MIPS32 и MIPS64.

Процессоры SPARC

Ряды процессоров пополнили продукты компании Sun Microsystems, которая разработала масштабируемую архитектуру SPARC (Scalable Processor ARChitecture). Первый одноименный процессор вышел в конце 80-х и получил название SPARC V7. Его частота достигала 14.28 МГц - 40 МГц.

В 1992 году появилась следующая 32-битная версия под названием SPARC V8, на базе которой был создан процессор microSPARC. Тактовая частота составляла 40 МГц - 50 МГц.

Над созданием следующего поколения архитектуры SPARC V9 с компанией Sun Microsystems совместно работали Texas Instruments, Fujitsu, Philips и другие. Платформа расширилась до 64 бит и являлась суперскалярной с 9-стадийным конвейером. SPARC V9 предусматривала использование кэш-памяти первого уровня, разделенного на инструкции и данные (каждая объемом по 16 Кб), а также второго уровня емкостью 512 Кб - 1024 Кб.

Процессор UltraSPARC III

Процессоры StrongARM

В 1995 году стартовал проект по разработке семейства микропроцессоров StrongARM, реализовавших набор инструкций ARM V4. Эти CPU представляли собой классическую скалярную архитектуру с 5-стадийным конвейером, включая блоки управления памятью и поддерживая кэш-память инструкций и данных объемом по 16 Кб каждая.

StrongARM SA-110

И уже в 1996 году был выпущен первый процессор на базе StrongARM - SA-110. Он работал на тактовых частотах 100 МГц, 160 МГц или 200 МГц.

Также на рынок вышли модели SA-1100, SA-1110 и SA-1500.

Процессор SA-110 в Apple MessagePad 2000

Процессоры POWER, POWER2 и PowerPC

В 1985 году компания IBM начала разработку RISC-архитектуры следующего поколения в рамках проекта America Project. Разработка процессора POWER (Performance Optimization With Enhanced RISC) и набора инструкций для него длилась 5 лет. Он был весьма производительный, но состоял из 11 различных микросхем. И поэтому в 1992 году вышел другой вариант процессора, что умещался в одном чипе.

Чипсет POWER

В 1991 году совместными усилиями альянса компаний IBM, Apple и Motorola была разработана архитектура PowerPC (сокращенно PPC). Она состояла из базового набора функций платформы POWER, а также поддерживала работу в двух режимах и была обратно совместима с 32-битным режимом работы для 64-разрядной версии. Основным назначением являлись персональные компьютеры.

Процессор PowerPC 601 использовался в Macintosh.

Процессор PowerPC

В 1993 году был представлен POWER2 с расширенным набором команд. Тактовая частота процессора варьировалась от 55 МГц до 71.5 МГц, а кэш-память данных и инструкций была 128-256 Кб и 32 Кб. Микросхемы процессора (их было 8) содержали 23 миллиона транзисторов, а изготавливался он по 0.72-микрометровой CMOS-технологии.

В 1998 году IBM выпустила третью серию процессоров POWER3 на 64 бита, полностью совместимых со стандартом PowerPC.

В период с 2001 по 2010 вышли модели POWER4 (до восьми параллельно выполняющихся команд), двухядерные POWER5 и POWER6, четырех-восьми ядерный POWER7.

Процессоры Alpha 21064A

В 1992 году компания Digital Equipment Corporation (DEC) выпустила процессор Alpha 21064 (EV4). Это был 64-разрядный суперскалярный кристалл с конвейерной архитектурой и тактовой частотой 100 МГц - 200 МГц. Изготовлен по 0,75-мкм техпроцессу, со внешней 128-разрядной шиной процессора. Присутствовало 16 Кб кэш-памяти (8 Кб данных и 8 Кб инструкций).

Следующей моделью в серии стал процессор 21164 (EV5), который вышел в 1995 году. Он обладал двумя целочисленными блоками и насчитывал уже три уровня кэш-памяти (два в процессоре, третий - внешний). Кэш-память первого уровня разделялась на кэш данных и кэш инструкций объемом по 8 Кб каждый. Объем кэш-памяти второго уровня составлял 96 Кб. Тактовая частота процессора варьировалась от 266 МГц до 500 МГц.

DEC Alpha AXP 21064

В 1996 году вышли процессоры Alpha 21264 (EV6) с 15,2 миллионами транзисторов, изготовленные по 15,2-мкм техпроцессу. Их тактовая частота составляла от 450 МГц до 600 МГц. Целочисленные блоки и блоки загрузки/сохранения были объединены в единый модуль Ebox, а блоки вычислений с плавающей запятой - в модуль Fbox. Кэш первого уровня сохранил разделение на память для инструкций и для данных. Объем каждой части составлял 64 Кб. Объем кэш-памяти второго уровня был от 2 Мб до 8 Мб.

В 1999 году DEC купила компания Compaq. В результате чего большая часть производства продукции, использовавшей Alpha, была передана компании API NetWorks, Inc.

Процессоры Intel P5 и P54C

По макету Винода Дхама был разработан процессор пятого поколения под кодовым названием P5. В 1993 году CPU вышли в производство под названием Pentium.

Процессоры на ядре P5 производились с использованием 800-нанометрового техпроцесса по биполярной BiCMOS-технологии. Они содержали 3,1 миллиона транзисторов. У Pentium была 64-битная шина данных, суперскалярная архитектура. Имелось раздельное кэширование программного кода и данных. Использовалась кэш-память первого уровня объемом 16 Кб, разделенная на 2 сегмента (8 Кб для данных и 8 Кб для инструкций). Первые модели были с частотами 60 МГц - 66 МГц.

Процессор Intel Pentium

В том же году Intel запустила в продажу процессоры P54C. Производство новых процессоров было переведено на 0,6-мкм техпроцесс. Скорость работы процессоров составляла 75 МГц, а с 1994 года - 90 МГц и 100 МГц. Через год архитектура P54C (P54CS) была переведена на 350-нм техпроцесс и тактовая частота увеличилась до 200 МГц.

В 1997 году P5 получила последнее обновление - P55C (Pentium MMX). Появилась поддержка набора команд MMX (MultiMedia eXtension). Процессор состоял из 4,5 миллиона транзисторов и производится по усовершенствованной 280-нанометровой CMOS-технологии. Объем кэш-памяти первого уровня увеличился до 32 Кб (16 Кб для данных и 16 Кб для инструкций). Частота процессора достигла 233 МГц.

Процессоры AMD K5 и K6

В 1995 году компания AMD выпустила процессор K5. Архитектура представляла собой RISC-ядро, но работала со сложными CISC-инструкциями. Процессоры изготавливались с использованием 350- или 500-нанометрового техпроцесса, с 4,3 миллионами транзисторов. Все K5 имели пять целочисленных блоков и один блок вычислений с плавающей запятой. Объем кэш-памяти инструкций составлял 16 Кб, а данных - 8 Кб. Тактовая частота процессоров варьировалась от 75 МГц до 133 МГц.

Процессор AMD K5

Под маркой K5 выпускалось два варианта процессоров SSA/5 и 5k86. Первый работал на частотах от 75 МГц до 100 МГц. Процессор 5k86 работал на частотах от 90 МГц до 133 МГц.

В 1997 году компания представила процессор K6, архитектура которого существенно отличалась от K5. Процессоры изготавливались по 350-нанометровому техпроцессу, включали в себя 8,8 миллионов транзисторов, поддерживали изменение порядка выполнения инструкций, набор команд MMX и блок вычислений с плавающей запятой. Площадь кристалла составляла 162 мм². Объем кэш-памяти первого уровня насчитывал 64 Кб (32 Кб данные и 32 Кб инструкции). Работал процессор на частоте 166 МГц, 200 МГц и 233 МГц. Частота системной шины была 66 МГц.

В 1998 году AMD выпустила чипы с улучшенной архитектурой K6-2, с 9,3 миллионами транзисторов изготавливаемого по 250-нанометровому техпроцессу. Максимальная частота чипа составляла 550 МГц.

Процессор AMD K6

В 1999 году вышла третья генерация - архитектура K6-III. Кристалл сохранил все особенности K6-2, но при этом появилась встроенная кэш-память второго уровня объемом 256 Кб. Объем кэша первого уровня составлял 64 Кб.

Процессоры AMD K7

В том же 1999 году на смену К6 пришли процессоры К7. Они выпускались по 250-нм технологии с 22 миллионами транзисторов. У CPU присутствовал новый блок целочисленных вычислений (ALU). Системная шина EV6 обеспечивала передачу данных по обоим фронтам тактового сигнала, что давало возможность при физической частоте 100 МГц получить эффективную частоту 200 МГц. Объем кэш-памяти первого уровня составлял 128 Кб (64 Кб инструкций и 64 Кб данных). Кэш второго уровня достигал 512 Кб.

Процессор AMD K7

Несколько позже появились кристаллы, базировавшиеся на ядре Orion. Они производилось по 180-нм техпроцессу.

Выход ядра Thunderbird внес необычные изменения в процессоры. Кэш-память 2-го уровня была перенесена непосредственно в процессорное ядро и работала на одинаковой с ним частоте. Кэш был с эффективным объемом 384 Кб (128 Кб кэша первого уровня и 256 Кб кэша второго уровня). Увеличилась тактовая частота системной шины - теперь она функционировала с частотой 133 МГц.

Процессоры Intel P6

Архитектура P6 пришла на смену P5 в 1995 году. Процессор являлся суперскалярным и поддерживал изменения порядка выполнения операций. Процессоры использовали двойную независимую шину, которая значительно увеличила пропускную способность памяти.

В том же 1995 году были представлены процессоры следующего поколения Pentium Pro. Кристаллы работали на частоте 150 МГц - 200 МГц, имели 16 Кб кэш-памяти первого уровня и до 1 Мб кэша второго уровня.

Процессор Intel Pentium Pro

В 1999 году были представлены первые процессоры Pentium III. Они базировались на новой генерации ядра P6 под названием Katmai, которые являлись модифицированными версиями Deschutes. В ядро была добавлена поддержка инструкций SSE, а также улучшился механизм работы с памятью. Тактовая частота процессоров Katmai достигала 600 МГц.

В 2000 году вышли первые процессоры Pentium 4 с ядром Willamette. Эффективная частота системной шины составляла 400 МГц (физическая частота - 100 МГц). Кэш-данных первого уровня достигал объема 8 Кб, а кэш-память второго уровня - 256 Кб.

Следующим ядром линейки стало Northwood (2002 год). Процессоры содержали 55 миллионов транзисторов и производились по новой 130-нм КМОП-технологии с медными соединениями. Частота системной шины составляла 400 МГц, 533 МГц или 800 МГц.

Intel Pentium 4

В 2004 году производство процессоров вновь перевели на более тонкие технологические нормы - 90 нм. Вышли Pentium 4 на ядре Prescott. Кэш данных первого уровня увеличился до 16 Кб, а кэш второго уровня достиг 1 Мб. Тактовая частота составляла 2,4 ГГц - 3,8 ГГц, частота системной шины - 533 МГц или 800 МГц.

Последним ядром, которое использовалось в процессорах Pentium 4 стало одноядерное Cedar Mill. Выпускалось по новому техпроцессу - 65 нм. Существовало четыре модели: 631 (3 ГГц), 641 (3,2 ГГц), 651 (3,4 ГГц), 661 (3,6 ГГц).

Процессоры Athlon 64 и Athlon 64 X2

В конце 2003 года AMD выпустила новую 64-битную архитектуру K8, построенную по 130-нанометровому техпроцессу. В процессоре был встроенный контроллер памяти и шина HyperTransport. Она работала на частоте 200 МГц. Новые продукты AMD получили название Athlon 64. Процессоры поддерживали множество наборов команд, таких как MMX, 3DNow!, SSE, SSE2 и SSE3.

Процессор Athlon 64

В 2005 году на рынок вышли процессоры компании AMD под названием Athlon 64 X2. Это были первые двухъядерные процессоры для настольных компьютеров. В основе модели лежали два ядра, выполненных на одном кристалле. Они имели общий контроллер памяти, шину HyperTransport и очередь команд.

Процессор Athlon 64 X2

В течение 2005 и 2006 годов AMD выпустила четыре поколения двухъядерных чипов: три 90-нм ядра Manchester, Toledo и Windsor, а также 65-нм ядро Brisbane. Процессоры отличались объемом кэш-памяти второго уровня и энергопотреблением.

Процессоры Intel Core

Процессоры Pentium M обеспечивали большую производительность, чем настольные процессоры на базе микроархитектуры NetBurst. И поэтому их архитектурные решения стали основой для микроархитектуры Core, которая вышла в 2006 году. Первым настольным четырехядерным процессором стал Intel Core 2 Extreme QX6700 с тактовой частотой 2.67 ГГц и 8 Мб кэш-памяти второго уровня.

Кодовое имя первого поколения мобильных процессоров компании Intel было Yonah. Они производились с использованием техпроцесса 65 нм, основанного на архитектуре Banias/Dothan Pentium M, с добавленной технологией защиты LaGrande. Процессор мог обрабатывать до четырех инструкций за такт. В Core был переработан алгоритм обработки 128-битных инструкций SSE, SSE2 и SSE3. Если раньше каждая команда обрабатывалась за два такта, то теперь для операции требовался лишь один такт.

Intel Core 2 Extreme QX6700

В 2007 году вышла 45-нм микроархитектура Penryn с использованием металлических затворов Hi-k без содержания свинца. Технология использовалась в семействе процессоров Intel Core 2 Duo. В архитектуру добавилась поддержка инструкций SSE4, а максимальный объем кэш-памяти 2-го уровня у двухъядерных процессоров увеличился с 4 Мб до 6 Мб.

Процессор AMD Phenom II X6

В 2008 году вышла архитектура следующего поколения - Nehalem. Процессоры обзавелись встроенным контроллером памяти, поддерживающим 2 или 3 канала DDR3 SDRAM или 4 канала FB-DIMM. На смену шине FSB, пришла новая шина QPI. Объем кэш-памяти 2-го уровня уменьшился до 256 Кб на каждое ядро.

Intel Core i7

Вскоре Intel перевела архитектуру Nehalem на новый 32-нм техпроцесс. Эта линейка процессоров получила название Westmere.
Первой моделью новой микроархитектуры стал Clarkdale, обладающий двумя ядрами и интегрированным графическим ядром, производимым по 45-нм техпроцессу.

Процессоры AMD K10

Компания AMD старалась не отставать от Intel. В 2007 году она выпустила поколение архитектуры микропроцессоров x86 - K10. Четыре ядра процессора были объединены на одном кристалле. В дополнение к кэшу 1-го и 2-го уровней модели K10 наконец получили L3 объемом 2 Мб. Объем кэша данных и инструкций 1-го уровня составлял 64 Кб каждый, а кэш-памяти 2-го уровня - 512 Кб. Также появилась перспективная поддержка контроллером памяти DDR3. В K10 использовалось два 64-битных контроллера. Каждое процессорное ядро имело 128-битный модуль вычислений с плавающей запятой. Вдобавок ко всему, новые процессоры работали через интерфейс HyperTransport 3.0.

В 2007 году с архитектурой K10 вышли многоядерные центральные процессоры Phenom фирмы AMD, предназначенные для использования в стационарных персональных компьютерах. Решения на базе K10 производились по 65- и 45-нм техпроцессу. В новой версии архитектуры (К10,5) контроллер памяти работал с памятью DDR2 и DDR3.

Процессор AMD Phenom

В 2011 году вышла новая архитектура Bulldozer. Каждый модуль содержал два ядра со своим блоком целочисленных вычислений и кэш-памятью 1-го уровня. Поддерживалась кэш-память 3-го уровня объемом 8 Мб, шины HyperTransport 3.1, технологии увеличения частоты ядер Turbo Core второго поколения и наборов инструкций AVX, SSE 4.1, SSE 4.2, AES. Также процессоры Bulldozer были наделены двухканальным контроллером памяти DDR3 с эффективной частотой 1866 МГц.

Процессор AMD Bulldozer

В 2013 году компания представила следующее поколение процессоров - Piledriver. Данная модель являлась улучшенной архитектурой Bulldozer. Были доработаны блоки предсказания ветвлений, возросла производительность модуля операций с плавающей запятой и целочисленных вычислений, а также тактовая частота.

Просматривая историю, можно проследить этапы развития процессоров, изменения в их архитектуре, усовершенствования технологий разработки и многое другое. Современные CPU отличаются от тех, которые выходили раньше, но при этом имеют и общие черты.




Top