Использование частотных свойств конденсатора и катушки индуктивности. Индуктивность: формула. Измерение индуктивности. Индуктивность контура

Как ведет себя катушка индуктивности в цепи постоянного и переменного тока?

Катушка индуктивности в цепи постоянного тока

Итак, для этого опыта нам понадобится блок питания , который выдает постоянное напряжение, лампочка накаливания и собственно сама катушка индуктивности.

Чтобы сделать катушку индуктивности с хорошей индуктивностью, нам надо взять ферритовый сердечник:

Намотать на него лакированного медного провода и зачистить выводы:

Замеряем индуктивность нашей катушки с помощью LC метра :


132 микрогенри.

Теперь собираем все это вот по такой схеме:

где

L — катушка индуктивности

La — лампочка накаливания на напряжение 12 Вольт

Bat — блок питания, с выставленным напряжением 12 Вольт

Лампочка засветилась!


Как вы помните из , конденсатор у нас не пропускал постоянный электрический ток:


Делаем вывод: постоянный электрический ток почти беспрепятственно течет через катушку индуктивности. Сопротивлением обладает только сам провод, из которого намотана катушка.

Катушка индуктивности в цепи переменного тока

Для того, чтобы узнать, как ведет себя катушка индуктивности в цепи переменного тока, нам понадобится , генератор частоты , собственно сама катушка индуктивности и резистор на 100 Ом. Чем больше сопротивление, тем меньше будет проседать напряжение с моего генератора частоты, поэтому я взял резистор на 100 Ом.Он у меня будет в качестве шунта. Падение напряжения на этом резисторе будет зависеть от тока, протекающего через него

Собираем все это дело по такой схеме:


Получилось как то так:


Сразу договоримся, что у нас первый канал будет красным цветом, а второй канал — желтым. Следовательно, красная синусоида — это частота, которую нам выдает генератор частоты, а желтая синусоида — это сигнал, который снимается с резистора.

Мы с вами узнали, что при нулевой частоте (постоянный ток), катушка почти беспрепятственно пропускает через себя электрический ток. В нашем опыте мы будем подавать с генератора частоты синусоидальный сигнал с разной частотой и смотреть, меняется ли напряжение на резисторе.

Опыт N1

Для начала подаем сигнал с частотой в 1 Килогерц.


Давайте разберемся, что есть что. В зеленой рамочке я вывел автоматические замеры, которые делает осциллограф


Красный кружок с цифрой «1» — это замеры «красного»канала. Как мы видим, F (частота) =1 Килогерц, а Ма (амплитуда) = 1,96 Вольт. Ну грубо скажем 2 Вольта. Смотрим на кружочек с цифрой «2». F =1 Килогерц, а Ма =1,96 Вольт. То есть можно сказать, что сигнал на выходе точно такой же, как и на входе.

Увеличиваем частоту до 10 Килогерц


Амплитуда не уменьшилась. Сигнал какой есть, такой и остался.

Увеличиваем до 100 Килогерц


Заметили разницу? Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается вправо, то есть запаздывает, или научным языком, появляется . Красный сигнал никуда не сдвигается, запаздывает именно желтый. Это имейте ввиду.

Сдвиг фаз — это разность между начальными фазами двух измеряемых величин . В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота . Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз :

Увеличиваем частоту до 200 Килогерц


На частоте 200 Килогерц амплитуда упала вдвое, да и разность фаз стала больше.

Увеличиваем частоту до 300 Килогерц.


Амплитуда желтого сигнала упала уже до 720 милливольт. Разность фаз стала еще больше.

Увеличиваем частоту до 500 Килогерц


Амплитуда уменьшилась до 480 милливольт.

Добавляем еще частоту до 1 Мегагерц


Амплитуда желтого канала стала 280 милливольт.

Ну и добавляем частоту до предела, который позволяет выдать генератор частоты: 2 Мегагерца


Амплитуда «желтого» сигнала стала настолько маленькой, что мне пришлось ее даже увеличить в 5 раз.

И можно сказать, что сдвиг фаз стал почти 90 градусов или π/2.

Но станет ли сдвиг фаз больше, чем 90 градусов, если подать очень-очень большую частоту? Эксперименты говорят, что нет. Если сказать просто, то при бесконечной частоте сдвиг фаз будет равняться 90 градусов. Если совместить наши графики на бесконечной частоте, то можно увидеть примерно вот такой рисунок:


Так какой вывод можно сделать?

С увеличением частоты сопротивление катушки растет, а также увеличивается сдвиг фаз. И чем больше частота, тем больше будет сдвиг фазы, но не более, чем 90 градусов.

Опыт N2

Давайте же уменьшим индуктивность катушки. Прогоним еще раз по тем же самым частотам. Я убрал половину витков и сделал витки на край феррита, тем самым уменьшил индуктивность до 33 микрогенри.


Итак, прогоняем все по тем же значениям частоты


При частоте в 1 Килогерц у нас значение почти не изменилось.

10 Килогерц


Здесь тоже ничего не изменилось.

100 Килогерц


Тоже почти ничего не изменилось, кроме того, что желтый сигнал стал тихонько сдвигаться.

200 Килогерц


Здесь уже видим, что амплитуда на желтом сигнале начинает проседать и сдвиг фаз наращивает обороты.

300 Килогерц


Сдвиг фаз стал больше и амплитуда просела еще больше

500 Килогерц


Сдвиг стал еще больше и амплитуда желтого сигнала тоже просела.

1 Мегагерц


Амплитуда желтого сигнала падает, сдвиг фаз прибавляется. ;-)

2 Мегагерца, предел моего генератор частоты


Сдвиг фаз стал почти равен 90 градусов, а амплитуда стала даже меньше, чем пол Вольта.

Обратите внимание на амплитуду в Вольтах на тех же самых частотах. В первом случае у нас индуктивность была больше, чем во втором случае, но амплитуда желтого сигнала во втором случае больше, чем в первом.

Отсюда вывод напрашивается сам собой:

При уменьшении индуктивности, сопротивление катушки индуктивности также уменьшается.

Реактивное сопротивление катушки индуктивности

С помощью нехитрых умозаключений, физиками была выведена формула:

где

Х L — катушки, Ом

П — постоянная и равна приблизительно 3,14

F — частота, Гц

L — индуктивность, Гн

В данном опыте мы с вами получили (ФНЧ). Как вы видели сами, на низких частотах катушка индуктивности почти не оказывает сопротивление напряжению, следовательно амплитуда и мощность на выходе такого фильтра будет почти такой же, как и на входе. Но с увеличением частоты у нас амплитуда гасится. Применив такой фильтр на динамик, можно с уверенностью сказать, что будет усиливаться только бас, то есть низкая частота звука.

Заключение

Постоянный ток протекает через катушку индуктивности без каких-либо проблем. Сопротивлением обладает только сам провод, из которого намотана катушка.

Сопротивление катушки зависит от частоты протекающего через нее тока и выражается формулой:



Добавить свою цену в базу

Комментарий

Индуктивностью называется идеализированный элемент электрической цепи, в котором происходит запасание энергии магнитного поля. Запасания энергии электрического поля или преобразования электрической энергии в другие виды энергии в ней не происходит.

Наиболее близким к идеализированному элементу – индуктивности – является реальный элемент электрической цепи – индуктивная катушка.

В отличие от индуктивности в индуктивной катушке имеют место также запасание энергии электрического поля и преобразование электрической энергии в другие виды энергии, в частности в тепловую.

Количественно способность реального и идеализированного элементов электрической цепи запасать энергию магнитного поля характеризуется параметром, называемым индуктивностью.

Таким образом термин «индуктивность» применяется как название идеализированного элемента электрической цепи, как название параметра, количественно характеризующего свойства этого элемента, и как название основного параметра индуктивной катушки.

Связь между напряжением и током в индуктивной катушке определяется законом электромагнитной индукции, из которого следует, что при изменении магнитного потока, пронизывающего индуктивную катушку, в ней наводится электродвижущая сила е, пропорциональная скорости изменения потокосцепления катушки ψ и направленная таким образом, чтобы вызываемый ею ток стремился воспрепятствовать изменению магнитного потока:

Чем выше индуктивность проводника, тем больше будет магнитное поле при одном и том же значении электрического тока. Физически индуктивность в электрической цепи – это катушка, состоящая из пассивного (диэлектрик) или активного (ферромагнитный материал, железо) сердечника и намотанного на него электрического провода.

Если протекающий ток изменяет свою величину во времени, то есть является не постоянным, а переменным, то в индуктивном контуре меняется магнитное поле, вследствие чего возникает ЭДС (электродвижущая сила) самоиндукции. Эта ЭДС также как и электрическое напряжение измеряется в вольтах (В).

Единицей измерения индуктивности является Гн (генри). Она названа в честь Джозефа Генри – американского ученого, открывшего явление самоиндукции. Считается, что контур (катушка индуктивности) имеет величину 1 Гн, если при изменении тока в 1 А (ампер) за одну секунду в нем возникает ЭДС величиною в 1 В (вольт). Обозначается индуктивность буквой L, в честь Эмиля Христиановича Ленца– знаменитого российского физика. Термин «индуктивность» был предложен Оливером Хевисайдом – английским ученым-самоучкой в 1886 году.

Свойства индуктивности

  • Индуктивность всегда положительна.
  • Индуктивность зависит только от геометрических размеров контура и магнитных свойств среды (сердечника).

Катушка индуктивности

Катушка индуктивности – электронный компонент, представляющий собой винтовую либо спиральную конструкцию, выполненную с применением изолированного проводника. Основным свойством катушки индуктивности, как понятно из названия – индуктивность. Индуктивность – это свойство преобразовать энергию электрического тока в энергию магнитного поля. Величина индуктивности для цилиндрической или кольцевой катушки равна

Где ψ — потокосцепление, µ 0 = 4π*10 -7 – магнитная постоянная, N – количество витков, S – площадь поперечного сечения катушки.

Также катушке индуктивности присущи такие свойства как небольшая ёмкость и малое активное сопротивление, а идеальная катушка и вовсе их лишена. Применение данного электронного компонента отмечается практически повсеместно в электротехнических устройствах.

Цели применения различны:

  • подавление помех в электрической цепи;
  • сглаживание уровня пульсаций;
  • накопление энергетического потенциала;
  • ограничение токов переменной частоты;
  • построение резонансных колебательных контуров;
  • фильтрация частот в цепях прохождения электрического сигнала;
  • формирование области магнитного поля;
  • построение линий задержек, датчиков и т.д.

Применение в технике

Катушки индуктивности применяются:


По большому счёту, во всех генераторах электрического тока любого типа, равно как и в электродвигателях, их обмотки представляют собой катушки индуктивности. Следуя традиции древних изображения плоской Земли, стоящей на трёх слонах или китах, сегодня мы могли бы с большим основанием утверждать, что жизнь на Земле покоится на катушке индуктивности.

– это качество работы катушки в цепях переменного тока. Добротность катушки индуктивности определяют как отношение её индуктивного сопротивления к активному сопротивлению. Грубо говоря, индуктивное сопротивление – это сопротивление катушки переменному току, а активное сопротивление – это сопротивление катушки постоянному току и сопротивление, обусловленное потерями электрической мощности в каркасе, сердечнике, экране и изоляции катушки. Чем меньше активное сопротивление, тем выше добротность катушки и её качество. Таким образом, можно сказать, что чем выше добротность, тем меньше потери энергии в катушке индуктивности.

Индуктивное сопротивление определяется формулой:

X L = ωL = 2πfL

Где ω = 2πf – круговая частота (f – частота, Гц); L – индуктивность катушки, Гн.

Добротность катушки индуктивности определяется формулой:

Q = X L / R = ωL / R = 2πfL / R

Где R – активное сопротивление катушки индуктивности, Ом.

Энергия магнитного поля тока

Вокруг проводника с током существует магнитное поле, которое обладает энергией. Откуда она берется? Источник тока, включенный в эл. цепь, обладает запасом энергии. В момент замыкания эл. цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля. Энергия магнитного поля равна собственной энергии тока.
Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока. Куда пропадает энергия магнитного поля после прекращения тока? – выделяется (при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги).

" говорится, что при включении и при всяком изменении тока в электрической цепи вследствие пересечения проводника своим же собственным магнитным полем в нем возникает индуктированная электродвижущая сила (ЭДС). Эту ЭДС мы назвали ЭДС самоиндукции. ЭДС самоиндукции имеет реактивный характер. Так, например, при увеличении тока в цепи ЭДС самоиндукции будет направлена против ЭДС источника напряжения, и поэтому ток в электрической цепи не может установиться сразу. И, наоборот, при уменьшении тока в цепи индуктируется ЭДС самоиндукции такого направления, что, мешая току исчезать, она поддерживает этот убывающий ток.

Рисунок 1. Цепь переменного тока, содержащая индуктивность

Как нам уже известно, ЭДС самоиндукции зависит от скорости изменения тока в цепи и от индуктивности этой цепи (числа витков, наличия стальных сердечников).

В цепи переменного тока ЭДС самоиндукции возникает непрерывно, так как ток в цепи непрерывно изменяется.

На рисунке 1 представлена схема цепи переменного тока, содержащей катушку с индуктивностью L без стального сердечника. Для простоты будем считать сначала, что активное сопротивление катушки очень мало и им можно пренебречь.

Рассмотрим внимательнее изменение переменного тока за время одного периода. На рисунке 2 показана кривая изменения переменного тока. Первая половина периода разбита на мелкие одинаковые части.

Рисунок 2. Определение скорости изменения переменного тока

За промежуток времени 0 - 1 величина тока изменилась от нуля до 1 - 1 ’. Прирост величины тока за это время равен а .

За время, обозначенное отрезком 1 - 2 , мгновенная величина выросла до 2 - 2 ’, причем прирост величины тока равен б .

В течение времени, обозначенного отрезком 2 - 3 , ток увеличивается до 3 - 3 ’, прирост тока показывает отрезок в и так далее.

Так, с течением времени переменный ток возрастет до максимума (при 90°). Но, как видно из чертежа, прирост тока делается все меньше и меньше, пока, наконец, при максимальном значении тока этот прирост не станет равным нулю.

При дальнейшем изменении тока от максимума до нуля убыль величины тока становится все больше и больше, пока, наконец, около нулевого значения ток, изменяясь с наибольшей скоростью, не исчезнет, но тут же появляется вновь, протекая в обратном направлении.

Рассматривая изменение тока в течение периода, мы видим, что с наибольшей скоростью изменяется ток около своих нулевых значений. Около максимальных значений скорость изменения тока падает, а при максимальном значении тока прирост его равен нулю. Таким образом, переменный ток меняется не только по величине и направлению, но также и по скорости своего изменения. Переменный ток, проходя по виткам катушки, создает переменное магнитное поле. Магнитные линии этого поля, пересекая витки своей же катушки, индуктируют в них ЭДС самоиндукции.

На рисунке 3 кривая i показывает изменение переменного тока в катушке. Как было уже указано, величина ЭДС самоиндукции зависит от скорости изменения тока и от индуктивности катушки. Но так как индуктивность катушки в нашем случае остается без изменения, ЭДС самоиндукции будет зависеть только от скорости изменения тока. Выше было показано, что наибольшая скорость изменения тока имеет место около нулевых значений тока. Следовательно, наибольшее изменение ЭДС самоиндукции имеет те же моменты.


Рисунок 3. ЭДС самоиндукции в катушке, включенной в цепь переменного тока

В момент а ток резко и быстро увеличивается от нуля, а поэтому, как следует из вышеприведенной формулы, ЭДС самоиндукции (кривая e L ) имеет отрицательное максимальное значение. Так как ток увеличивается, то ЭДС самоиндукции по правилу Ленца должна препятствовать изменению (здесь увеличению) тока. Поэтому ЭДС самоиндукции при возрастании тока будет иметь направление, обратное току (положение б ), что следует также из указанной формулы. Скорость изменения тока по мере приближения его к максимуму уменьшается. Поэтому ЭДС самоиндукции также уменьшается, пока, наконец, при максимуме тока, когда изменения его будут равны нулю, она не станет равной нулю (положение в ).

Переменный ток, достигнув максимума, начинает убывать. По правилу Ленца ЭДС самоиндукции будет мешать току убывать и, направленная уже в сторону протекания тока, будет его поддерживать (положение г ).

При дальнейшем изменении переменный ток быстро убывает до нуля. Резкое уменьшение тока в катушке повлечет за собой также быстрое уменьшение магнитного поля и в результате пересечения магнитными линиями витков катушки в них будет индуктироваться наибольшая ЭДС самоиндукции (положение д ).

Рисунок 4. Ток в катушке опережает ЭДС самоиндукции по фазе на 90°

Во вторую половину периода изменения тока картина повторяется и снова при возрастании тока ЭДС самоиндукции будет мешать ему, имея направление, обратное току (положение е ).

При убывании тока ЭДС самоиндукции, имея направление в сторону тока, будет поддерживать его, не давая ему исчезнуть сразу (положение з ).

На рисунке видно, что ЭДС самоиндукции отстает по фазе от тока на 90° или на ¼ периода. Так как магнитный поток совпадает по фазе с током, то можно сказать, что ЭДС, наводимая магнитным потоком, отстает от него по фазе на 90° или на ¼ периода.

Нам уже известно, что две синусоиды, сдвинутые одна относительно другой на 90°, можно изобразить векторами, расположенными под углом 90° (рисунок 4).

Так как ЭДС самоиндукции в цепях переменного тока непрерывно противодействует изменениям тока, то, чтобы дать возможность току протекать по виткам катушки, напряжение сети должно уравновешивать ЭДС самоиндукции. Иными словами, напряжение сети в каждый момент времени должно быть равно и противоположно ЭДС самоиндукции.

Рисунок 5. Приложенное к катушке напряжение сети опережает ток на 90° и противоположно ЭДС самоиндукции

Вектор напряжения сети, равный и противоположный ЭДС самоиндукции e L , мы обозначим через U (рисунок 5). Только при условии, что к зажимам катушки будет приложено напряжение сети, равное и противоположное ЭДС самоиндукции, и, стало быть, это напряжение сети U уравновесит ЭДС самоиндукции e L , по катушке сможет проходить переменный ток I .

Но в этом случае напряжение сети U будет опережать по фазе ток I на 90°.

Таким образом, в цепях переменного тока ЭДС самоиндукции, возникая непрерывно, вызывает сдвиг фаз между током и напряжением. Возвращаясь к рисунку 3, мы видим, что ток i по катушке будет проходить и тогда, когда напряжение сети (кривая u L ) равно нулю (положение в ), и даже тогда, когда напряжение сети направлено в сторону, обратную току (положение г и з ).

Итак отметим, что в цепи переменного тока, когда ЭДС самоиндукции отсутствует, напряжение сети и ток совпадают по фазе. Индуктивная же нагрузка в цепях переменного тока (обмотки электродвигателей и генераторов, обмотки трансформаторов, индуктивные катушки) всегда вызывает сдвиг фаз между током и напряжением.

Можно показать, что скорость изменения тока пропорциональна угловой частоте ω. Следовательно, действующее значение ЭДС самоиндукции e L может быть найдено по формуле:

e L = ω × L × I = 2 × π × f × L × I .

Как было отмечено выше, напряжение, приложенное к зажимам цепи, содержащей индуктивность, в каждый момент времени должно быть по величине равно ЭДС самоиндукции:

u L = e L .

u L = 2 × π × f × L × I .

Обозначая 2 × π × f × L = x L , получим

u L = x L × I .

Формула закона Ома для цепи переменного тока, содержащего индуктивность, будет такова:

Величина x L называется индуктивным сопротивлением цепи , или реактивным сопротивлением индуктивности , и измеряется в омах. Таким образом, реактивное индуктивное сопротивление представляет собой своеобразное препятствие, которое оказывает цепь изменениям тока в ней. Оно равно произведению индуктивности на угловую частоту. Формула индуктивного сопротивления имеет вид:

x L = ω × L .

Индуктивное сопротивление проводника зависит от частоты переменного тока и индуктивности проводника. Поэтому индуктивное сопротивление катушки, включаемой в цепь токов различной частоты, будет различным. Например, если имеется катушка индуктивностью 0,05 Гн, то путем расчета индуктивного сопротивления выяснится, что в цепи частотой 50 Гц ее индуктивное сопротивление будет:

x L1 = 2 × π × f 1 × L = 2 × 3,14 × 50 × 0,05 = 15,7 Ом,

а в цепи тока частотой 400 Гц

x L2 = 2 × π × f 2 × L = 2 × 3,14 × 400 × 0,05 = 125,6 Ом.

Та часть напряжения сети, которая идет на преодоление (уравновешивание) ЭДС самоиндукции, называется индуктивным падением напряжения или реактивной слагающей напряжения .

u L = x L × I .

Рассмотрим теперь, какая мощность потребляется от источника переменного напряжения, если к его зажимам подключена индуктивность.


Рисунок 6. Кривые мгновенных значений напряжения, тока и мощности для цепи, содержащей индуктивность

На рисунке 6 даны кривые мгновенных значений напряжения, тока и мощности для этого случая. Мгновенное значение мощности равно произведению мгновенных значений напряжения и тока:

p = u × i .

Из чертежа видно, что если u и i имеют одинаковые знаки, то кривая p положительная и располагается выше оси ωt . Если же u и i имеют разные знаки, то кривая p отрицательна и располагается ниже оси ωt .

В первую четверть периода ток, а в месте с ним и магнитный поток катушки увеличиваются. Катушка забирает из сети мощность. Площадь, заключенная между кривой p и осью ωt , есть работа (энергия) электрического тока. За первую четверть периода энергия, забираемая из сети, идет на создание магнитного поля вокруг витков катушки (мощность положительная). Количество энергии, запасаемое в магнитном поле за время роста тока, можно определить по формуле:

За вторую четверть периода ток убывает. ЭДС самоиндукции, которая в первую четверть периода стремилась помешать возрастанию тока, теперь, когда ток начинает уменьшаться, будет мешать ему уменьшаться. Сама катушка становится как бы генератором электрической энергии. Она возвращает в сеть энергию, запасенную в ее магнитном поле. Мощность отрицательна, и на рисунке 6 кривая p располагается ниже оси ωt .

За вторую половину периода явление повторяется. Таким образом, между источником переменного напряжения и катушкой, содержащей индуктивность, происходит обмен мощностью. В течение первой и третьей четвертей периода мощность поглощается катушкой, в течение второй и четвертой мощность возвращается источнику.

В этом случае, в среднем, расхода мощности не будет, несмотря на то, что на зажимах цепи есть напряжение U и в цепи протекает ток I .

Тот же результат мы получим, если вычислим среднюю или активную мощность по формуле, приведенной выше:

P = U × I × cos φ .

В нашем случае между напряжением и током существует сдвиг фаз, равный 90°, и cos φ = 90° = 0.

Поэтому активная мощность также равна нулю, то есть расхода мощности нет.

Катушки индуктивности позволяют запасать электрическую энергию в магнитном поле. Типичными областями их применения являются сглаживающие фильтры и различные селективные цепи.

Электрические характеристики катушек индуктивности определяются их конструкцией, свойствами материала магнитопровода и его конфигурацией, числом витков обмотки.

Ниже приведены основные факторы, которые следует учитывать при выборе катушки индуктивности:

а) требуемое значение индуктивности (Гн, мГн, мкГн, нГн),

б) максимальный ток катушки. Большой ток очень опасен из-за слишком сильного нагрева, при котором повреждается изоляция обмоток. Кроме того, при слишком большом токе может произойти насыщение магнитопровода магнитным потоком, что приведет к значительному уменьшению индуктивности,

в) точность выполнения индуктивности,

г) температурный коэффициент индуктивности,

д) стабильность, определяемая зависимостью индуктивности от внешних факторов,

е) активное сопротивление провода обмотки,

ж) добротность катушки. Она обычно определяется на рабочей частоте как отношение индуктивною и активного сопротивлений,

з) частотный диапазон катушки.

В настоящее время выпускаются радиочастотные катушки индуктивности на фиксированые значения частоты с индуктивностями от 1 мкГн до 10 мГн. Для подстройки резонансных контуров желательно иметь катушки с регулируемой индуктивностью.

Однослойные с незамкнутым магнитопроводом катушки индуктивности применяются в цепях настройки приборов.

Многослойные с не замкнутым магнитопроводом катушки используются в фильтрах и высокочастотных трансформаторах. Многослойные катушки индуктивности броневого типа с сердечником из феррита применяются в фильтрах низких и средних частот и трансформаторах, а аналогичные катушки, но со стальным сердечником используются в сглаживающих дросселях и низкочастотных фильтрах.

Формулы для расчета катушки индуктивности

Основные аппроксимирующие соотношения, используемые при проектировании катушек индуктивности, имеют следующий вид.

1. Параметры однослойных катушек индуктивности у которых отношение длины к диаметру больше 5, определяются в виде

где L - индуктивность, мкГн, М- число витков, d - диаметр катушки, см, l - длина намотки, см.

2. Параметры многослойных катушек индуктивности, у которых отношение диаметра к длине больше 1, определяются в виде

где L - индуктивность, мкГн, N - число витков, d м - средний диаметр обмотки, см, d - толщина обмотки, см.

Одно- и многослойные катушки с незамкнутым ферритовым магнитопроводом будут иметь индуктивность в 1,5 - 3 раза больше в зависимости от свойств и конфигурации сердечника. Латунный сердечник, вставленный вместо ферритового. уменьшит индуктивность до 60-90% по сравнению с ее значением без сердечника.

Для сокращения числа витков при сохранении той же индуктивности можно использовать ферритовый сердечник.

При изготовлении катушек индуктивностью от 100 мкГн до 100 мГн для областей низких и средних частот целесообразно применить чашечные ферритовые броневые сердечники серии КМ. Магнитопровод в этом случае состоит из двух подогнанных друг к другу чашек, к которым прилагаются односекционная катушка, две крепежные клипсы и подстроечный стержень.

Необходимая индуктивность и число витков могут быть вычислены по формулам

где N - число витков, L - индуктивность, нГн, Аl - коэффициент индуктивности, нГн/ вит.

Всегда нужно помнить о том, что прежде, чем рассчитывать индуктивность, следует определить число витков, которые могут поместиться на данной катушке.

Чем меньше диаметр провода, тем больше число витков, но тем больше сопротивление провода и, естественно, его нагрев из-за выделяющейся мощности, равной I 2 R . Действующее значение тока катушки не должно превышать 100 мА для провода диаметром 0,2 мм. 750 мА - для 0,5 мм и 4 А - для 1 мм.

Небольшие замечания и советы

Индуктивность катушек со стальным сердечником очень быстро уменьшается с ростом постоянной составляющей тока обмотки. Это нужно иметь в виду особенно при проектировании сглаживающих фильтров источников электропитания.

Максимальный ток катушки индуктивности зависит от температуры окружающей среда, причем он дал жен уменьшаться с ее увеличением. Поэтому для обеспечения надежной работы устройства следует обеспечить большой запас по току.

Ферритовые тороидальные сердечники эффективны для изготовления фильтров и трансформаторов на частотах выше 30 МГц. При этом обмотки состоят всего лишь из нескольких витков.

При использовании любых типов сердечников часть магнитных силовых линий замыкается не по магнитопроводу, а через окружающее его пространство. Особенно сильно этот эффект проявляется в случае незамкнутых магнитопроводов. Заметим, что эти магнитные поля рассеяния являются источниками помех, поэтому в аппаратуре сердечники нужно размещать так, чтобы по возможности уменьшить эти помехи.

Как ведет себя катушка индуктивности в цепи постоянного и переменного тока?

Катушка индуктивности в цепи постоянного тока

Итак, для этого опыта нам понадобится блок питания , который выдает постоянное напряжение, лампочка накаливания и собственно сама катушка индуктивности.

Чтобы сделать катушку индуктивности с хорошей индуктивностью, нам надо взять ферритовый сердечник:

Намотать на него лакированного медного провода и зачистить выводы:

Замеряем индуктивность нашей катушки с помощью LC метра :


132 микрогенри.

Теперь собираем все это вот по такой схеме:

где

L — катушка индуктивности

La — лампочка накаливания на напряжение 12 Вольт

Bat — блок питания, с выставленным напряжением 12 Вольт

Лампочка засветилась!


Как вы помните из , конденсатор у нас не пропускал постоянный электрический ток:


Делаем вывод: постоянный электрический ток почти беспрепятственно течет через катушку индуктивности. Сопротивлением обладает только сам провод, из которого намотана катушка.

Катушка индуктивности в цепи переменного тока

Для того, чтобы узнать, как ведет себя катушка индуктивности в цепи переменного тока, нам понадобится , генератор частоты , собственно сама катушка индуктивности и резистор на 100 Ом. Чем больше сопротивление, тем меньше будет проседать напряжение с моего генератора частоты, поэтому я взял резистор на 100 Ом.Он у меня будет в качестве шунта. Падение напряжения на этом резисторе будет зависеть от тока, протекающего через него

Собираем все это дело по такой схеме:


Получилось как то так:


Сразу договоримся, что у нас первый канал будет красным цветом, а второй канал — желтым. Следовательно, красная синусоида — это частота, которую нам выдает генератор частоты, а желтая синусоида — это сигнал, который снимается с резистора.

Мы с вами узнали, что при нулевой частоте (постоянный ток), катушка почти беспрепятственно пропускает через себя электрический ток. В нашем опыте мы будем подавать с генератора частоты синусоидальный сигнал с разной частотой и смотреть, меняется ли напряжение на резисторе.

Опыт N1

Для начала подаем сигнал с частотой в 1 Килогерц.


Давайте разберемся, что есть что. В зеленой рамочке я вывел автоматические замеры, которые делает осциллограф


Красный кружок с цифрой «1» — это замеры «красного»канала. Как мы видим, F (частота) =1 Килогерц, а Ма (амплитуда) = 1,96 Вольт. Ну грубо скажем 2 Вольта. Смотрим на кружочек с цифрой «2». F =1 Килогерц, а Ма =1,96 Вольт. То есть можно сказать, что сигнал на выходе точно такой же, как и на входе.

Увеличиваем частоту до 10 Килогерц


Амплитуда не уменьшилась. Сигнал какой есть, такой и остался.

Увеличиваем до 100 Килогерц


Заметили разницу? Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается вправо, то есть запаздывает, или научным языком, появляется . Красный сигнал никуда не сдвигается, запаздывает именно желтый. Это имейте ввиду.

Сдвиг фаз — это разность между начальными фазами двух измеряемых величин . В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота . Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз :

Увеличиваем частоту до 200 Килогерц


На частоте 200 Килогерц амплитуда упала вдвое, да и разность фаз стала больше.

Увеличиваем частоту до 300 Килогерц.


Амплитуда желтого сигнала упала уже до 720 милливольт. Разность фаз стала еще больше.

Увеличиваем частоту до 500 Килогерц


Амплитуда уменьшилась до 480 милливольт.

Добавляем еще частоту до 1 Мегагерц


Амплитуда желтого канала стала 280 милливольт.

Ну и добавляем частоту до предела, который позволяет выдать генератор частоты: 2 Мегагерца


Амплитуда «желтого» сигнала стала настолько маленькой, что мне пришлось ее даже увеличить в 5 раз.

И можно сказать, что сдвиг фаз стал почти 90 градусов или π/2.

Но станет ли сдвиг фаз больше, чем 90 градусов, если подать очень-очень большую частоту? Эксперименты говорят, что нет. Если сказать просто, то при бесконечной частоте сдвиг фаз будет равняться 90 градусов. Если совместить наши графики на бесконечной частоте, то можно увидеть примерно вот такой рисунок:


Так какой вывод можно сделать?

С увеличением частоты сопротивление катушки растет, а также увеличивается сдвиг фаз. И чем больше частота, тем больше будет сдвиг фазы, но не более, чем 90 градусов.

Опыт N2

Давайте же уменьшим индуктивность катушки. Прогоним еще раз по тем же самым частотам. Я убрал половину витков и сделал витки на край феррита, тем самым уменьшил индуктивность до 33 микрогенри.


Итак, прогоняем все по тем же значениям частоты


При частоте в 1 Килогерц у нас значение почти не изменилось.

10 Килогерц


Здесь тоже ничего не изменилось.

100 Килогерц


Тоже почти ничего не изменилось, кроме того, что желтый сигнал стал тихонько сдвигаться.

200 Килогерц


Здесь уже видим, что амплитуда на желтом сигнале начинает проседать и сдвиг фаз наращивает обороты.

300 Килогерц


Сдвиг фаз стал больше и амплитуда просела еще больше

500 Килогерц


Сдвиг стал еще больше и амплитуда желтого сигнала тоже просела.

1 Мегагерц


Амплитуда желтого сигнала падает, сдвиг фаз прибавляется. ;-)

2 Мегагерца, предел моего генератор частоты


Сдвиг фаз стал почти равен 90 градусов, а амплитуда стала даже меньше, чем пол Вольта.

Обратите внимание на амплитуду в Вольтах на тех же самых частотах. В первом случае у нас индуктивность была больше, чем во втором случае, но амплитуда желтого сигнала во втором случае больше, чем в первом.

Отсюда вывод напрашивается сам собой:

При уменьшении индуктивности, сопротивление катушки индуктивности также уменьшается.

Реактивное сопротивление катушки индуктивности

С помощью нехитрых умозаключений, физиками была выведена формула:

где

Х L — катушки, Ом

П — постоянная и равна приблизительно 3,14

F — частота, Гц

L — индуктивность, Гн

В данном опыте мы с вами получили (ФНЧ). Как вы видели сами, на низких частотах катушка индуктивности почти не оказывает сопротивление напряжению, следовательно амплитуда и мощность на выходе такого фильтра будет почти такой же, как и на входе. Но с увеличением частоты у нас амплитуда гасится. Применив такой фильтр на динамик, можно с уверенностью сказать, что будет усиливаться только бас, то есть низкая частота звука.

Заключение

Постоянный ток протекает через катушку индуктивности без каких-либо проблем. Сопротивлением обладает только сам провод, из которого намотана катушка.

Сопротивление катушки зависит от частоты протекающего через нее тока и выражается формулой:




Top