Импульсные диоды. Импульсные диоды - доклад

Огромное количество современных электронных устройств используют в своей работе электрические импульсы. Это могут быть слаботочные сигналы или токовые импульсы (что гораздо серьезнее в техническом отношении) в цепях блоков питания и прочих импульсных преобразователей, инверторов и т.д.

А действие импульсов в преобразователях - это всегда критичность к длительности форнтов и спадов, имеющих временные границы примерно того же порядка, что и переходные процессы в электронных компонентах, в частности - в тех же диодах. Поэтому, при использовании в импульсных схемах диодов, следует обязательно принимать во внимание переходные процессы в самих диодах - во время их включения и выключения (во время открывания и закрывания p-n-перехода).

В принципе, чтобы сократить время переключения диода из неповодящего состояния - в проводящее и обратно, в некоторых низковольтных схемах целесообразно прибегать .

Диоды данной технологии отличаются от обычных выпрямительных диодов наличием перехода металл-полупроводник, который хоть и обладает выраженным выпрямительным эффектом, но в то же самое время имеет сравнительно малую проходную емкость перехода, заряд в которой накапливается в настолько некритичных количествах и так быстро рассасывается, что схема с диодами Шоттки может работать на достаточно высокой частоте, когда время переключения имеет порядок единиц наносекунд.

Еще один плюс диодов Шоттки - падение напряженя на их переходе составляет всего около 0,3 вольт. Итак, главное достоинство диодов Шоттки - в них не затрачивается времени на накопление и рассасывание зарядов, быстродействие здесь зависит только от скорости перезаряда небольшой барьерной емкости.

Что касается , то изначальное предназначение данных компонентов вообще не предполагает работу в импульсных режимах. Импульсный режим для выпрямительного диода - это нетипичный, нештатный рижим, поэтому и особо высоких требований к быстродействию выпрямительных диодов разработчиками не предъявляется.

Выпрямительные диоды используются в основном для преобразования низкочастотного переменного тока в постоянный или пульсирующий, где вовсе не требуется малая проходная емкость p-n-перехода и быстродействие, чаще нужны просто большая проводимость и соответственно высокая стойкость к относительно длительному непрерываному току.

Выпрямительные диоды отличаюстя поэтому малым сопротивлением в открытом состоянии, большей площадью p-n-перехода, способностью пропускать большие токи. Но за счет значительной площади перехода емкость диода получаетсвя больше - порядка сотен пикофарад. Это очень много для импульного диода. Для сравнения, у диодов Шоттки проходная емкость имеет порядок десятков пикофарад.

Итак, импульсные диоды - это специально разрабатываемые диоды для работы именно в импульсных режимах в высокочастотных цепях. Их принципиальной отличительной особенностью от выпрямительных диодов является кратковременность переходных процессов в силу очень малой емкости p-n-перехода, которая может доходить до единиц пикофарад и быть еще меньше.

Уменьшение емкости p-n-перехода в импульсных диодах достигается путем уменьшения площади перехода. Как следствие, рассеиваемая на корпусе диода мощность не должна быть очень большой, средний ток через переход малой площади не должен превышать максимально допустимого значения, указываемого к документации на диод.

Часто в качестве быстродействующих диодов используют диоды Шоттки, однако они редко отличаются высоким обратным напряжением, поэтому импульсные диоды выделены как отдельный тип диодов.

1. Общая емкость диода С д (доли пикофарада – несколько пикофарад).

2. Максимальное импульсное прямое напряжение U пр.и. max .

3. Максимально допустимый импульсный прямой ток I пр.и. max .

4. Время установления прямого напряжения диода t уст – интервал времени от подачи импульса прямого тока на диод до достижения заданного значения прямого напряжения на нем (доли нс – доли мкс).

5. Время восстановления обратного сопротивления диода t вос – интервал времени, прошедший с момента прохождения тока через нуль (после изменения полярности приложенного напряжения) до момента, когда обратный ток достигнет заданного малого значения (порядка 0,1 I, где I – ток при прямом напряжении; t вос – доли нс – доли мкс).

Наличие времени восстановления обусловлено зарядом, накопленным в базе диода при инжекции. Для запирания диода этот заряд должен быть «ликвидирован». Это происходит за счет рекомбинаций и обратного перехода неосновных носителей заряда в эмиттер. Последнее приводит к увеличению обратного тока. После изменения полярности напряжения в течение некоторого времени t 1 меняется мало и ограничен только сопротивлением внешней цепи. Временная диаграмма изменения тока через диод при подключении обратного напряжения приведена на рисунке 2.14. По истечении времени t 1 концентрация

Рис. 2.14. Изменение тока через диод при подключении обратного напряжения. Условное обозначение диода Шотки

неосновных носителей заряда на границе перехода равна равновесной, но в глубине базы еще имеется неравновесный заряд. С этого момента обратный ток диода уменьшается до своего статического значения. Изменение его прекратится в момент полного рассасывания заряда, накопленного в базе.

В быстродействующих импульсных цепях широко используются диоды Шотки, в которых переход выполнен на основе контакта металл – полупроводник. У этих диодов не затрачивается время на накопление и рассасывание зарядов в базе, их быстродействие зависит только от скорости процесса перезарядки барьерной емкости. Вольт–амперная характеристика диодов Шотки напоминает характеристику диодов на основе р–n переходов. Отличие состоит в том, что прямая ветвь в пределах 8–10 декад приложенного напряжения представляет почти идеальную экспоненциальную кривую, а обратные токи малы (доли – десятки наноампер). Конструктивно диоды Шотки выполняются в виде пластины низкоомного кремния, на которую нанесена высокоомная эпитаксиальная пленка с электропроводностью того же типа. На поверхность пленки вакуумным напылением нанесен слой металла.

Диоды Шотки применяют также в выпрямителях больших токов и в логарифмирующих устройствах. Условное обозначение диода Шотки приведено на рис. 2.14.


Полупроводниковые стабилитроны. Полупроводниковые стабилитроны, называемые также опорными диодами, предназначены для стабилизации напряжений. Их работа основана на использовании явления электрического пробоя р–n перехода при включении диода в обратном напряжении.

Механизм пробоя может быть туннельным, лавинным или смешанным. У низковольтных стабилитронов (с низким сопротивлением базы) более вероятен туннельный пробой. У стабилитронов с высокоомной базой (сравнительно высокоомных) пробой носит лавинный характер. Материалы, используемые для создания р–n переходов стабилитронов имеют высокую концентрацию примесей. При этом напряженность электрического поля в р–n переходе значительно выше, чем у обычных диодов. При относительно небольших обратных напряжениях в р–n переходе возникает сильное электрическое поле, вызывающее электрический пробой, В этом режиме нагрев диода не носит лавинообразного характера, поэтому пробой не переходит в тепловой. На рисунке 2.15 приведены вольт–амперные характеристики стабилитрона КС510А при различных температурах.

Рис. 2.15. Вольт–амперные характеристики стабилитрона

Правила по оформлению Вопросов на ГОСы 2012 (ЕС-08):

1. Оформлять в формате.doc (Word2003); в крайнем случае - .docx (Word2007/2010).

2. Установить в файле на листе поля 0.7 см на каждую сторону, ориентация книжная.

3. Должны чётко выделяться абзацы, примерно 1см (Формат\Абзац\Первая строка: Отступ, 1см)

4. Текст упорядочить по ширине, картинки - по центру.

5. ВЕСЬ текст должен быть 14 шрифтом Times New Roman (без уплотнения или разрежения шрифта).

6. Междустрочный интервал – Одинарный, можно варьировать от 0.9 до 1.2 для заполнения страницы (Одинарный = Точно: 16пт).

7. Каждый вопрос желательно должен занимать 1 или 2 страницы текста (с картинками или без), но НЕ БОЛЕЕ 3 (трёх) страниц (если большие картинки).

8. КАЖДЫЙ вопрос должен начинаться с новой страницы, используйте Ctrl + Enter для перехода на новую страницу в Word.

9. Название вопроса с номером выделяется жирным с подчёркиванием, 14 шрифт.

10. В теле вопроса нужные слова (определения) можно выделять жирным, но НЕ курсивом и НЕ подчёркнутым и НЕ РеГиСтРоМ.

11. Вопрос желательно должен занимать оптимальное место на странице, т.е. заполнять страницу полностью. Для этого можно варьировать междустрочный интервал от 0.9 до 1.2 (исходя из установки Одинарный).

12. Обозначения (буквы, символы) на картинке желательно должны быть 14 размера (т.е. как текст в теле вопроса), но НЕ МЕНЬШЕ, чем в 2 раза меньше от 14 размера шрифта.

13. Каждая картинка (рисунок) должна быть подписана.

14. Цвет картинок не играет роли, если в тексте нет привязки к цвету.

15. Картинки должны быть чёткими, иметь читабельные обозначения.

16. Для всех картинок в меню «Обтекание текстом» выбрать «В тексте», в редких случаях (маленький или сильно вытянутый по вертикали рисунок) можно «Вокруг рамки» и придвинуть картинку к левому или правому полю листа.

17. В редких случаях допускается не подписывать название картинки (если маленькая, напр. УГО диода, etc.).

18. Картинка может содержать название рисунка (рис.2.12, последняя страница)

19. Не надо вставлять номера страниц на листы.

20. Тематика найденного материала должна абсолютно совпадать с названием вопроса, много воды лить не надо.

Все пункты правил имеют практическую пользу, неоднократно проверялись и являются обязательными; позволят продуктивно редактировать, а в последствии и скатывать собранный нами материал. (подробности? – в личку) by ZX

1.10 Импульсные диоды

Импульсный диод – это полупроводниковый диод, имеющий малую длительность переходных процессов и предназначенный для применения в импульсных режимах работы.

Импульсные режимы – это такие режимы, когда диоды переключаются с прямого напряжения на обратное через короткие промежутки времени, порядка долей микросекунды, при этом важную роль играют здесь переходные процессы. Основное назначение импульсных диодов – работа в качестве коммутирующих элементов. Условия работы импульсных диодов обычно соответствует высокому уровню инжекции, т. е. относительно большим прямым токам. Вследствие этого свойства и параметры импульсных диодов определяются переходными процессами.

Одной из первых была разработана конструкция точечного импульсного диода (рис. 2.11). Точечный диод состоит из кристалла германия, припаянного к кристаллодержателю, контактного электрода в виде тонкой проволоки и стеклянного баллона. Особенностью точечных диодов является большое сопротивление базы, что приводит к увеличению прямого напряжения на диоде.

Рис. 2.11. Конструкция импульсного диода:

1 – кристалл полупроводника; 2 – кристаллодержатель; 3 – припой; 4 – контактная пружина;5 – стеклянный корпус; 6 – коваровая трубка; 7 – внешние выводы

В связи с недостатками точечных диодов они практически полностью вытеснены импульсными диодами, производство которых основано на современных производительных и контролируемых методах формирования p-n-переходов (планарной технологии, эпитаксиального наращивания). Основным исходным полупроводниковым материалом при этом служит кремний, а иногда арсенид галлия.

Для ускорения переходных процессов в кремниевых импульсных диодах и для уменьшения значения времени восстановления обратного сопротивления этих диодов в исходный кремний вводят примесь золота. Эта примесь обеспечивает появление в запрещенной зоне кремния энергетических уровней рекомбинационных ловушек и уменьшение времени жизни неосновных носителей.

В настоящее время большинство конструкций имеет металлокерамический, металлостеклянный или металлический корпус с ленточными выводами.

Рассмотрим процесс переключения такого диода при воздействии на него прямоугольного импульса (рис. 2.12).

При прямом напряжении на участке происходит инжекция носителей из эмиттерной области в базовую и их накопление там. При смене полярности напряжения на обратную в первый момент величина обратного тока будет значительна, а обратное сопротивление диода резко уменьшится, так как накопленные в базе неосновные носители под действием изменившегося направления напряженности электрического поля начнут двигаться в сторону p-n-перехода, образуя импульс обратного тока. По мере перехода их в эмиттерную область, их количество уменьшится и через некоторое время обратный ток достигнет нормального установившегося значения, а сопротивление диода в обратном направлении восстановится до нормальной величины.

Рис. 2.12. Переходные процессы в импульсном диоде

Процесс уменьшения накопленного заряда в базе называется рассасыванием, а время, в течение которого обратный ток изменяется от максимального значения до установившегося, называется временем восстановления обратного сопротивления. Время восстановления обратного сопротивления – один из важнейших параметров импульсных диодов. Чем оно меньше, тем диод лучше. Для улучшения свойств импульсных диодов исходный полупроводник выбирают с малым временем жизни носителей заряда (для более интенсивного процесса рекомбинации в базе), а сам p-n-переход делают с малой площадью, чтобы снизить величину барьерной емкости перехода.

Выводы:

    Импульсные диоды работают в режиме электронного ключа.

    Длительность импульсов может быть очень мала, поэтому диод должен очень быстро переходить из одного состояния в другое.

    Основным параметром, характеризующим быстродействие импульсных диодов является время восстановления обратного сопротивления.

    Для уменьшения используют специальные меры, ускоряющие процесс рассасывания неосновных носителей заряда в базе.

    Требованиям, предъявляемым к импульсным диодам, хорошо удовлетворяют диоды на основе барьера Шоттки, которые имеют очень малую инерционность благодаря отсутствию инжекции и накопления неосновных носителей заряда в базе.

Импульсные диоды.

Это обычные диоды, с обычной ВАХ, однако работающие в режиме переключения. Их область применения – цифровые схемы, элементы которых находятся либо в открытом состоянии «0», либо в закрытом «1». Поэтому в этом приложении представляют интерес временные параметры диода: как быстро он переходит из закрытого в открытое состояние и наоборот. На рис. показан импульсный диод на основе несимметричного контакта. Примем условие, что эмиттер имеет n – проводимость. Это дает основание рассматривать поведение и ток только электронов. При обратной несимметрии вся сказанное будет относиться к дыркам.

Рассмотрим процессы при переключении. Подадим на него прямое напряжение – идеальную ступень, рис. а). первоначально начнут движение электроны обладающие наибольшей энергией, находящиеся непосредственно вблизи p-n перехода, далее к ним присоединятся те, которые находятся внутри n области. Таким образом, из за различия энергий носителей постепенно увеличивается их число, постепенно увеличивается и прямой ток. Этот процесс во времени показан на рис. б), а для оценки вводится параметр tуст – время установления открытого состояния. При большом времени ток не меняется и в области «p» перехода скапливается большое количество неосновных носителей, электронов. Возникает неравновесная концентрация носителей в p области кристалла.

Подадим на переход столь же резко изменяющуюся обратную полярность напряжения. Неравновесные электроны накопившиеся в «p» области начнут выводится под действием электрического поля в «n» область. Концентрация их велика, поэтому обратный ток в течении какого – то времени будет большим. Эта стадия процесса показана на рис. б), как t1. в конце концов, процесс вывода закончится, переход становится в закрытое состояние. Теперь есть две полупроводящие области p и n b и слой диэлектрика между ними. Это конденсатор, который начинает заряжаться под действием обратного напряжения. Ток заряда будет уменьшаться по закону экспоненты, на рис. б) это время t2. В целом время восстановления закрытого состояния равно t1+t2=tвосст.

Рис. Импульсный диод

Рис. Процессы в импульсном диоде.

Обычно t восст. >> чем t восст. Для улучшения параметров диода для изготовления используются материалы с высокой подвижностью носителей (Ge), площадь перехода делают маленькой, применяют p-i-n структуры. Пример применения импульсного диода приведен на рис. Форма напряжения на нагрузочном сопротивлении повторяет форму тока на рис.

Рис. Работа импульсного диода




Top