Этапы проектирования базы данных. Проектирование БД

Лекция

Проектирование БД.

Модели многоуровневой архитектуры систем баз данных. Средства автоматизации проектирования

1. Модели многоуровневой архитектуры систем баз данных

В области проектирования и разработки систем баз данных используются различные средства моделирования, причем даже в рамках одной конкретной системы необходим целый комплекс моделей разного назначения.

Опубликованный в 1975 году отчет ANSI/X3/SPARC зафиксировал не только широкое признание концепций многоуровневой архитектуры систем баз данных, но и необходимость явного выделения специального концептуального уровня представления базы данных, единого для всех ее приложений и независимого от них. Кроме этого уровня предусматривались еще два уровня: внутренний уровень, который должен обеспечивать поддержку представления хранимой базы данных, и внешний, поддерживающий представления базы данных “с точки зрения” приложений. На каждом архитектурном уровне предполагалось использование той или иной модели данных. Кроме того, на внешнем (прикладном, пользовательском) уровне таких моделей может быть несколько. Модели, а также схемы, специфицируемые на их основе, называются, соответственно, внешней, концептуальной и внутренней.

Как очевидно конечной целью проектирования является построение конкретной базы данных, в той или иной степени воплощающей представление проектировщика о предметной области и задачах, решаемых пользователями с использованием созданной базы. Рассматривая базу данных как конкретную реализацию модели , мы по существу устанавливаем порядок процесса, отделяя этап определения принципов (то, какой база должна быть) от этапа воплощения этих принципов при реализации базы данных в конкретной среде СУБД, ОС и языках программирования. И, как показывает практика, между реализациями баз данных и принципами их построения всегда есть расхождения. Различия являются следствием разных причин, но чаще всего - это явный или неявный отказ от некоторых принципиальных ограничений, налагаемых, например, моделью данных или базовыми (встроенными) алгоритмами обработки, в пользу частного решения, которое, по мнению проектировщика, будет более эффективно, например, для понимания или обработки данных.

Важность отделения проектирования на абстрактном уровне от физической реализации состоит в том что, объявляя принципы, мы конструктивно ограничиваем область применения. Во-первых, размерность и сложность задачи должна быть сокращена до такого уровня, чтобы реализация стала возможной в данных конкретных условиях – ресурсах среды, профессионализме проектировщика, подготовленности пользователя и т.д. Во-вторых, поскольку база данных по определению предназначена для многофункционального использования различными пользователями, и в тоже время - для обслуживания запросов, не предвиденных при проектировании, такое явное объявление принципов позволит не вводить в заблуждение пользователя и не создавать приложения для решения задач, которые в силу своего принципиального отличия от тех, которые рассматривались при проектировании, обусловят неэффективную обработку данных . В-третьих, проектирование – это процесс своеобразного согласования точек зрения двух основных субъектов: пользователя и проектировщика базы данных. Для пользователя характерны требования высокой степени общности и широты представления (и не громоздкость детальных описаний), позволяющих ему получить достаточно сведений без затраты значительных временных или интеллектуальных ресурсов. Для администратора, выполняющего проектирование и оптимизацию системы баз данных, необходима высокая степень детализации и формализации, обеспечивающих обоснованность технических решений, а также возможность автоматизации проектирования.

7.2. Типология моделей

Основные отличия любых методов представления информации заключаются в том, каким способом фиксируется семантика предметной области. Но, следует особо отметить, что для всех уровней и для любого метода представления предметной области (но для нас важно, что в контексте создания и использования машинных баз данных ) в основе отображения (т.е., собственно формирования представления) лежит кодирование понятий и отношений между понятиями. Многоуровневая система моделей представления информации иллюстрируется слайдами 2, 3, 4 (Типология моделей) .

Ключевым этапом при разработке любой информационной системы является проведение системного анализа: формализация предметной области и представление системы как совокупности компонент. Системный анализ позволяет, с одной стороны лучше понять «что надо делать» и «кому надо делать» (аналитику, разработчику, руководителю, пользователю), а с другой - отслеживать во времени изменения рассматриваемой модели и обновлять проект.

Декомпозиция, как основа системного анализа, может быть функциональной (построение иерархий функций) или объектной.

Однако в большинстве систем, если говорить, например, о базах данных, типы данных являются более статичным элементом, чем способы их обработки. Поэтому получили интенсивное развитие такие методы системного анализа, как диаграммы массивов данных (Data Flow Diagram). Развитие реляционных баз данных в свою очередь стимулировало развитие методик построения моделей данных, и в частности, ER -диаграмм (Entity Relationship Diagram ). Но и функциональная декомпозиция и диаграммы данных дают только некоторый срез исследуемой предметной области, но не позволяют получить представление системы в целом.

Различаются и методы отображения, используемые на этапе построения даталогических моделей, отражающих способ идентификации элементов и связей, но, что особенно важно, в контексте их будущего представления в одномерном пространстве памяти вычислительной машины. Модели подразделяются на фактографические - ориентированные на представление хорошо структурированной информации, и документальные - представляющие наиболее распространенный способ отражения слабоструктурированной информации. Если в первом случае говорят о реляционной, иерархической или сетевой моделях данных, то во втором – о семантических сетях и документальных моделях. Хотя, разделение на фактографические и документальные в этой группе моделей является достаточно условным. Документ, как последовательность полей может быть представлен, в том числе, и реляционной моделью. И в этом случае выбор специализированного решения чаще всего обуславливается требованием общей эффективности.

При проектировании информационных систем свойства объектов (их характеристики) задаются атрибутами. Именно значения атрибутов позволяют выделить в предметной области как различные объекты (типы объектов), так и среди объектов одного типа – их различные экземпляры. Представление атрибутов удобнее всего моделируетсятеоретико-множественными отношениями. Отношение наглядно представляется как таблица, где каждая строка – кортеж отношения, а каждый столбец (домен) представляет множество значений атрибута. Список имен атрибутов отношения образует схему отношения, а совокупность схем отношений, ис­пользуемых для представления БД, в свою очередь образует схему базы данных.

Представление схем БД в виде схем отношений упрощает процедуру проектирования БД. Этим объясняется создание си стем, в которых проектирование БД ведется в терминах реляционной модели данных, а работа с БД поддерживается СУБД одного из описанных в данном пособии типов.

Модель данных должна, так или иначе, дать основу для описания данных и манипулирования данными, а также дать средства анализа и синтеза структур данных. Любая модель, построенная более или менее аккуратно с точки зрения математики, сама создает объекты для исследования и начинает жить как бы параллельно с практикой.

Реляционная модель дан ных в качестве основы отображения непосредственно использует понятие отношения. Она ближе всего находится к так называемой концептуальной модели предметной среды и часто лежит в основе последней.

В отличие от теоретико-графовых моделей в реляционной модели связи между отношениями реализуются неявным образом, для чего используются ключи отношений . Например, отношения иерархического типа реализуется механизмом первичных / внешних ключей, когда в подчиненном отношении должен присутствовать набор атрибутов, связывающих это отношение с основным. Такой набор атрибутов в основном отношении будет называться первичным ключом, а в подчиненном – вторичным.

Прогресс в области разработки языков программирования, связанный, в первую очередь с типизацией данных и появлением объектно-ориентированных языков, позволил подойти к анализу сложных систем с точки зрения иерархических представлений - классам объектов со свойствами инкапсуляции, наследования и полиморфизма, схемы которых отображают не только данные и их взаимосвязи, но и методы обработки данных.

В этом смысле объектно-ориентированный подход является гибридным методом и позволяет получить более естественную формализацию системы в целом. В итоге это позволяет снизить существующий барьер между аналитиками и разработчиками (проектировщиками и программистами), повысить надежность системы и упростить сопровождение, в частности, интеграцию с другими системами.

7.3. Этапы проектирования и объекты моделирования

Проектирование базы данных - это упорядоченный формализованный процесс создания системы взаимосвязанных описаний, т.е. таких моделей предметной области, которые связывают (фиксируют) хранимые в базе данные с объектами предметной области, описываемыми этими данными. Прикладное назначение таких описаний состоит в том, чтобы пользователь, практически не имеющий представления об организации данных в БД (физическом размещении в памяти данных и механизмах их поиска), обращая запрос к базе, имел бы практическую возможность получить адекватную информацию о состоянии объекта предметной области. (Слайд 5 - Стадии и объекты)

Проектирование начинается с анализа предметной области и выявления функциональных и других требований к проектируемой системе. Подробнее этот процесс будет рассмотрен ниже, а здесь отметим, что проектирование обычно выполняется человеком (группой людей) – системным аналитиком (а на практике чаще администратором базы данных), которым может быть как специально выделенный сотрудник, так и будущий пользователь базы данных, достаточно хорошо знакомый с машинной обработкой данных.

Объединяя отдельные представления о содержимом базы данных, полученные в результате опроса пользователей, и свои представления о данных, которые могут потребоваться для решения практических задач, системный аналитик сначала создает обобщенное неформальное описание создаваемой базы данных. Это описание, выполненное с использованием естественного языка, математических выражений, таблиц, графов и других средств, понятных всем людям, работающим над проектированием базы данных, называют инфологической моделью.

Такая человеко-ориентированная модель практически полностью независима от физических параметров среды хранения данных, которой может быть как память человека, так и ЭВМ. Поэтому инфологическая модель не изменяется до тех пор, пока какие-то изменения в реальном мире (той его части, которая отнесена к предметной области) не потребуют изменения в модели соответствующего фрагмента описания, чтобы эта модель продолжала адекватно отражать предметную область.

Остальные модели являются машинно-ориентированными. С их помощью СУБД дает возможность программам и пользователям осуществлять доступ к хранимым данным лишь по их именам, не заботясь о физическом расположении этих данных.

Так как доступ к данным осуществляется с помощью конкретной СУБД, то модели должны быть представлены на языке описания данных этой СУБД. Такое описание, создаваемое по инфологической модели данных, называют даталогической моделью данных.

Для размещения и поиска данных на внешних запоминающих устройствах СУБД использует физическую модель данных.

Представленная трехуровневая архитектура (инфологический, даталогический и физический уровни) позволяет обеспечить независимость хранимых данных от использующих их программ. Хранимые данные могут быть переписаны на другие носители или может быть реорганизована их физическая структура, в том числе дополнена полями для новых приложений, но это повлечет лишь изменение физической и, возможно, даталогической модели данных. Главное, такие изменения физической и даталогической моделей не будут замечены пользователями системы (окажутся "прозрачными" для них). Кроме того, независимость данных обеспечивает возможность создания новых приложений для решения новых задач без разрушения существующих.

Приведенная цитата (Слайд 6 ) по-прежнему актуальна, хотя книга издана более 20 лет назад. Действительно, средства проектирования непрерывно развиваются, но и задачи, решение которых пользователь предполагает автоматизировать с помощью систем баз данных, существенно усложнились и для эффективного применения средств формализации и автоматизации необходимо понимать природу системы моделей.

С точки зрения объектов моделирования необходимо различать модели предметной области и модели базы данных. Эти модели взаимосвязаны, поскольку представляют собой образы одного и того же оригинала – некоторого множества предметов реального мира, информацию о которых мы предполагаем хранить и обрабатывать с помощью проектируемой БД. Характер взаимосвязей (и, соответственно, отличий) проявляется и в процессе проектирования системы баз данных. Модель предметной области скорее ассоциируется с неформальным уровнем семантического моделирования, а модель базы данных – с формализованным уровнем системы (и в частности, СУБД).

Разнообразие моделей связано также и с различием используемых парадигм моделирования, по существу определяющих способ представления взаимосвязи объектов на уровне структур данных . С этой точки зрения, различаются реляционные, сетевые, иерархические, объектные, объектно-реляционные, документальные и другие виды моделей. Соответственно различаются и описываемые их средствами схемы баз данных.

7.4. Подходы к проектированию базы данных

Можно выделить два основных подхода к проектированию баз данных: нисходящий и восходящий (слайд 7)

При восходящем подходе работа начинается с самого нижнего уровня атрибутов (т.е. свойств сущностей и связей), которые на основе анализа существующих между ними связей группируются в отношения, пред ставляющие типы сущностей и связи между ними. Далее будет подробно рассмотрен процесс нормализации отношений, который представляет собой вариант восходя щего подхода при проектировании баз данных. Нормализация предусматривает создание норма лизованных отношений, основанных на функциональных зависимостях между выделенными атрибутами.

Восходящий подход в наибольшей степени приемлем для проектирования простых баз данных с относительно небольшим количеством атрибутов. Однако использование этого подхода существенно усложняется при проектировании баз данных с большим количеством атрибутов, установить среди которых все суще­ ствующие функциональные зависимости затруднительно. Поскольку концептуальная и логическая модели данных для сложных баз данных могут содержать от сотен до тысяч атрибутов, очень важно выбрать подход, который помог бы упростить этап проектирования. Кроме того, на начальных стадиях формулирования требований к данным бывает труд но установить все атрибуты , которые должны быть включены в модель данных.

Более подходящей стратегией проектирования сложных баз данных является использование нисходящего подхода, который предопределяет приоритетность разработки концептуальной модели ПрО. Эта модель содержит несколько высокоуровневых сущностей и связей, которые уточняются (детализируются и расширяются) до тех пор, пока не будут выявлены все объекты, их атрибуты и связи между ними, отражающие специфику задач конкретной ПрО.

Восходящий подход часто, например, в случае сложных ПрО, представляет собой очень неудобный процесс для самого проектировщика. Более того, здесь проявляется ограниченность реляционной модели , в частности:(слайд 8)

- реляционная модель не предоставляет достаточных средств для фиксации смысла данных, т.е. семантика предметной области не фиксируется непосредственно в отношениях;

- для многих приложений трудно моделировать предметную область на основе плоских таблиц;

- хотя весь процесс проектирования происходит на основе учета зависимостей, реляционная модель не имеет средств представления (отражения семантики) этих зависимостей;

- несмотря на то, что процесс проектирования начинается с выделения некоторых существенных для приложения объектов предметной области ("сущностей") и выявления связей между этими сущностями, реляционная модель данных не предлагает какого-либо аппарата для различения сущностей и связей.

Кроме этих подходов для проектирования могут применяться другие подходы, например, подход «от общего к частному» или «смешанная стратегия проектирования». Подход «от общего к частному » напоминает нисхо дящий подход, но отличается от него тем, что вначале выявляется набор основ ных сущностей с последующим расширением круга рассматриваемых сущностей, связей и атрибутов, которые взаимодействуют с первоначально определенными сущностями. В смешанной стратегии сначала используются восходящий и нис ходящий подходы для создания разных частей модели, после чего все фрагменты собираются в единое целое.

Забегая несколько вперед, отметим взаимосвязь двух известных методов моделирования инфологического уровня - ER -диаграммы и метод нормализации, воспринимаемых зачастую как альтернативные. На самом деле нормализация с помощью хорошо формализованных методов обеспечивает декомпозицию исходных отношений (переменных) большой размерности к возможно большему набору отношений, но меньшей размерности. Эти методы не зависят от особенностей предметной области , но вследствие этого и не позволяют определить исходное отношение и, соответственно, семантику обрабатываемых данных. Для этого удобнее использовать методики, подобные ER -диаграммам - для них свойственны подходы технологии нисходящего проектирования, и которые дают представление «в целом», но именно поэтому (из-за сравнительной простоты) не позволяют провести полноценное проектирование базы.То есть, можно сказать, что метод нормализации и ER -диаграммы по существу являются взаимодополняющими.

7.5. Инфологические модели (системный анализ) предметной области

Базы данных сами по себе представляют относительную ценность. Базы данных это всегда важнейшая, но только одна из составляющих некоторой информационной системы. И надо отметить, что любая ИС, предназначенная, например, для оперативного управления предприятием или архивного хранения и поиска документов – это не только программы, данные и коммуникации, но также и люди (заказчики, пользователи, аналитики, разработчики), организационные структуры, а также цели, стимулы работы предприятия или отдельных людей. И все эти компоненты должны быть понятным как проектировщику, так и пользователю, а, кроме того, непротиворечивым образом соединены в одну систему.

Главная идея процесса такого согласования состоит в том, что его надо начинать с анализа самых главных характеристик предметной области, рассматривая самые главные содержательные аспекты. И проводить его не "мысленно" и не "на словах", а на явно изложенных описаниях (моделях) объектов предметной области, позволяющих видеть все существенные взаимосвязи. Но следует отметить, что попытки использования привычных нотаций формальных моделей (структурных, объектных или каких либо других) на этом этапе приводят к более низкому (более детальному и в тоже время ограниченному) уровню представления предметной области, чем это необходимо для общего понимания.

В общем случае существуют два подхода к определению состава и структуры предметной области.(Слайд 9 Функциональный – объектный подходы)

Функциональный подход предполагает, что проектирование начинается с анализа задач и, соответственно, функций, обеспечивающих реализацию информационных потребностей.

При объектном (предметном) подходе информационные потребности пользователей (задачи) жестко не фиксируются, а основное внимание сосредотачивается на выделении существенных объектов – предметов и связей, информация о которых может быть использована в прикладных задачах пользователя.

Условность такого деления достаточно очевидна, поэтому на практике используются компромиссные варианты, предполагающие по мере развития системы расширение как состава объектов, так и спектра прикладных задач.

Цель системного анализа предметной области как этапа проектирования – выделить предметную область как систему объектов и их взаимосвязей, определив при этом функционально-информационные требования к их последующему представлению в виде системы взаимосвязанных данных.

Главным результатом этапа системного анализа является определение парадигмы информационной (инфологической) модели: требования к средствам представления системы определяются на основании анализа уровня структурированности информации и характера восприятия ее семантики пользователем (точная/приблизительная, четкая/неопределенная).

Например, выбор атрибутивной формы представления объектов предметной области приведет, соответственно, к выбору парадигмы фактографических баз данных , а вербальной - к необходимости выбора документальных БД . В дальнейшем изложении процесс и средства проектирования мы будем рассматривать только для случая фактографических баз данных, использующих реляционную модель.

Полученный результат - концептуальная схема базы данных (в терминах семантической модели) затем преобразуется к реляционной схеме.

7.6. Даталогические модели

Задачей следующей стадии проектирования системы базы данных является выбор подходящей СУБД и отображение в ее среду (структур данных) спецификаций инфологической модели предметной области. Другими словами, модель предметной области разрабатываемой системы должна быть представлена в терминах модели данных концептуального уровня выбранной конкретной СУБД. Эту стадию называют логическим (или даталогическим) проектированием базы данных, а ее результатом является концептуальная схема базы данных, включающая определение всех информационных элементов (единиц) и связей, в том числе задание типов, характеристик и имен.

Хотя даталогическое проектирование оперирует не физическими записями, а логическими понятиями, связанными со структурой базы данных, тем не менее, особенности представления данных, правила и языки агрегирования и манипулирования данными имеют определяющее влияние. Не все виды связей, например, «многие ко многим», могут быть непосредственно отображены в логической модели.

Кроме того, может быть много вариантов отображения инфологической модели предметной области в даталогическую модель базы. Здесь следует учитывать влияние двух следующих значимых факторов, связанных с практикой разработки базы данных.

Во-первых, связи предметной области могут отображаться двумя путями, как декларативным - в логической схеме, так и процедурным – отработкой связей через программные модули, обрабатывающие (связывающие) соответствующие хранимые данные.

Во-вторых, существенным фактором может оказаться характер обработки информации. Например, частые обращения к совместно обрабатываемым данным очевидно предполагают их совместное хранение, а данные (особенно большой размерности), к которым обращаются редко, целесообразно хранить отдельно от часто используемых.

7.7. Физические модели

Стадия физического проектирования базы данных в общем случае включает:

- выбор способа организации базы данных;

- разработку спецификации внутренней схемы средствами модели данных ее внутреннего уровня;

- описание отображения концептуальной схемы во внутреннюю.

Важно заметить, что в отличие от ранних СУБД, многие современные системы не предоставляют разработчику какого-либо выбора на этой стадии. Реально к вопросам проектирования физической модели можно отнести выбор схемы размещения данных (разделение по файлам или тип RAID -массива) и определение числа и типа индексов (например, кластеризованный или некластеризованный в случае MS SQL Server ).

Способ хранения базы данных определяется механизмами СУБД автоматически “по умолчанию” на основе спецификаций концептуальной схемы базы данных, и внутренняя схема в явном виде в таких системах не используется.

Следует также отметить, что внешние схемы базы данных обычно конструируются на стадии разработки приложений.

7.8. Средства автоматизации проектирования

Формализованные знания о предметной области в общем случае могут быть представлены в виде текстовых описаний: наборов должностных инструкций, правил ведения дел и т.п. Однако текстовый способ представления модели предметной области не эффективен. Более информативным и полезным при разработке баз данных и информационных систем являются описания предметной области, выполненные при помощи специализированных графических нотаций, реализующих методики представления знаний о предметной области. Наиболее известными на сегодняшний день являются методика структурного анализа SADT (Structured Analysis and Design Technique ) и основанная на ней нотация IDEF 0, диаграммы массивов данных, методика объектно-ориентированного анализа UML (Unified Modeling Language ) и др. Любая из этих моделей описывает, с одной стороны, процессы, происходящие в предметной области, а с другой – данные, используемые этими процессами.

Наиболее полная система моделей, на которую опираются методики функционального, информационного и поведенческого моделирования ПрО, представлена в семействе стандартов IDEF (Integrated DEFinition )(слайд 10).

Методология концептуального проектирования, основанная на наглядной графической технике, предоставила в распоряжение разработчиков информационных систем строгие формализованные методы описания ИС и принимаемых технических решений. Эти модели по существу представляют собой систему соглашений, обеспечивающих взаимопонимание бизнес-аналитика, представляющего реалии предметной области, и программиста (или программного средства), создающего модель данных для отражения состояния этой ПрО. Если соглашения в точности будут реализованы в программных продуктах, основанных на этой методологии, то такая автоматизированная система, умеющая «читать» разработанные аналитиком модели, позволит контролировать синтаксис модели и в итоге сгенерировать схему данных.

Вслед за методологией концептуального проектирования появились специализированные программно-технологические средства специального класса - CASE-средства, реализующие технологию создания и сопровождения ИС.

CASE-технология представляет собой методологию проектирования ИС, а также набор инструментальных средств, позволяющих в наглядной форме моделировать предметную область, анализировать эту модель на всех этапах разработки и сопровождения ИС и разрабатывать приложения в соответствии с информационными потребностями пользователей.

CASE-средства в соответствии с их функциональной ориентацией на те или иные процессы жизненного цикла ИС можно подразделить на следующие группы (слайд 11 – СА SE ).


Применяемые формальные языки представления предметной области не позволяют описывать все отношения, которые проектировщик считает важными. С другой стороны, многие проекты (и, в частности, рассматриваемые примеры ) воспринимаются как достаточно простые, а проектные решения кажутся очевидными. Кроме того, опытный программист всегда может предложить некоторый эмпирический и, возможно, действительно эффективный способ для целевого представления и обработки нужной информации.Однако это означает отказ от единого формализма, что при увеличении количества данных и связей значительно усложняет проблемы управления базой и в частности – понимание пользователем организации и методов доступа.

Правильнее было бы говорить о неформализованности , связанной с невозможностью обоснованного однозначного выбора (из реально существующих) объектов средств, используемых для моделирования.

Следуя принципам, описанным в этой статье, можно создать базу данных, которая работает надлежащим образом и в будущем может быть адаптирована под новые требования. Мы рассмотрим основные принципы проектирования базы данных , а также способы ее оптимизации.

Процесс проектирования базы данных

Надлежащим образом структурированная база данных:

  • Помогает сэкономить дисковое пространство за счет исключения лишних данных;
  • Поддерживает точность и целостность данных;
  • Обеспечивает удобный доступ к данным.

Разработка БД включает в себя следующие этапы:

  1. Анализ требований или определение цели базы данных;
  2. Организация данных в таблицах;
  3. Указание первичных ключей и анализ связей;
  4. Нормализация таблиц.

Рассмотрим каждый этап проектирования баз данных подробнее. Обратите внимание, что в этом руководстве рассматривается реляционная модель базы данных Эдгара Кодда , написанная на языке SQL (а не иерархическая, сетевая или объектная модели ).

Анализ требований: определение цели базы данных

Например, если вы создаете базу данных для публичной библиотеки, нужно продумать, каким образом и читатели, и библиотекари должны получать доступ к БД .

Вот несколько способов сбора информации перед созданием базы данных:

  • Опрос людей, которые будут ее использовать;
  • Анализ бизнес-форм, таких как счета-фактуры, расписания, опросы;
  • Рассмотрение всех существующих систем данных (включая физические и цифровые файлы ).

Начните со сбора существующих данных, которые будут включены в базу. Затем определите типы данных, которые нужно сохранить. А также объекты, которые описывают эти данные. Например:

Клиенты

  • Адрес;
  • Город, штат, почтовый индекс;
  • Адрес электронной почты.

Товары

  • Название;
  • Цена;
  • Количество в наличии;
  • Количество под заказ.

Заказы

  • Номер заказа;
  • Торговый представитель;
  • Дата;
  • Товар;
  • Количество;
  • Цена;
  • Стоимость.

При проектировании реляционной базы данных эта информация позже станет частью словаря данных, в котором описаны таблицы и поля БД . Разбейте информацию на минимально возможные части. Например, подумайте о том, чтобы разделить поле почтового адреса и штата, чтобы можно было фильтровать людей по штату, в котором они проживают.

После того, как вы определились с тем, какие данные будут включены в базу, откуда эти данные будут поступать, и как они будут использоваться, можно приступить к планированию фактической БД .

Структура базы данных: построение блоков

Следующим шагом будет визуальное представление базы данных. Для этого нужно точно знать, как структурируются реляционные БД . Внутри базы связанные данные группируются в таблицы, каждая из которых состоит из строк и столбцов.

Чтобы преобразовать списки данных в таблицы, начните с создания таблицы для каждого типа объектов, таких как товары, продажи, клиенты и заказы. Вот пример:

Каждая строка таблицы называется записью. Записи включают в себя информацию о чем-то или о ком-то, например, о конкретном клиенте. Столбцы (также называемые полями или атрибутами) содержат информацию одного типа, которая отображается для каждой записи, например, адреса всех клиентов, перечисленных в таблице.

Чтобы при проектировании модели базы данных обеспечить согласованность разных записей, назначьте соответствующий тип данных для каждого столбца. К общим типам данных относятся:

  • CHAR — конкретная длина текста;
  • VARCHAR — текст различной длины;
  • TEXT — большой объем текста;
  • INT — положительное или отрицательное целое число;
  • FLOAT , DOUBLE — числа с плавающей запятой;
  • BLOB — двоичные данные.

Некоторые СУБД также предлагают тип данных Autonumber , который автоматически генерирует уникальный номер в каждой строке.

В визуальном представлении БД каждая таблица будет представлена блоком на диаграмме. В заголовке каждого блока должно быть указано, что описывают данные в этой таблице, а ниже должны быть перечислены атрибуты:


При проектировании информационной базы данных необходимо решить, какие атрибуты будут служить в качестве первичного ключа для каждой таблицы, если таковые будут. Первичный ключ (PK ) — это уникальный идентификатор для данного объекта. С его помощью вы можете выбрать данные конкретного клиента, даже если знаете только это значение.

Атрибуты, выбранные в качестве первичных ключей, должны быть уникальными, неизменяемыми и для них не может быть задано значение NULL (они не могут быть пустыми ). По этой причине номера заказов и имена пользователей являются подходящими первичными ключами, а номера телефонов или адреса — нет. Также можно использовать в качестве первичного ключа несколько полей одновременно (это называется составным ключом ).

Когда придет время создавать фактическую БД , вы реализуете как логическую, так и физическую структуру через язык определения данных, поддерживаемый вашей СУБД .

Также необходимо оценить размер БД , чтобы убедиться, что можно получить требуемый уровень производительности и у вас достаточно места для хранения данных.

Создание связей между сущностями

Теперь, когда данные преобразованы в таблицы, нужно проанализировать связи между ними. Сложность базы данных определяется количеством элементов, взаимодействующих между двумя связанными таблицами. Определение сложности помогает убедиться, что вы разделили данные на таблицы наиболее эффективно.

Каждый объект может быть взаимосвязан с другим с помощью одного из трех типов связи:

Связь «один-к одному»

Когда существует только один экземпляр объекта A для каждого экземпляра объекта B, говорят, что между ними существует связь «один-к одному » (часто обозначается 1:1 ). Можно указать этот тип связи в ER-диаграмме линией с тире на каждом конце:


Если при проектировании и разработке баз данных у вас нет оснований разделять эти данные, связь 1:1 обычно указывает на то, что в лучше объединить эти таблицы в одну.

Но при определенных обстоятельствах целесообразнее создавать таблицы со связями 1:1 . Если есть поле с необязательными данными, например «описание», которое не заполнено для многих записей, можно переместить все описания в отдельную таблицу, исключая пустые поля и улучшая производительность базы данных.

Чтобы гарантировать, что данные соотносятся правильно, в нужно будет включить, по крайней мере, один идентичный столбец в каждой таблице. Скорее всего, это будет первичный ключ.

Связь «один-ко-многим»

Эта связи возникают, когда запись в одной таблице связана с несколькими записями в другой. Например, один клиент мог разместить много заказов, или у читателя может быть сразу несколько книг, взятых в библиотеке. Связи «один- ко-многим » (1:M ) обозначаются так называемой «меткой ноги вороны», как в этом примере:


Чтобы реализовать связь 1:M , добавьте первичный ключ из «одной » таблицы в качестве атрибута в другую таблицу. Если первичный ключ таким образом указан в другой таблице, он называется внешним ключом. Таблица со стороны связи «1 » представляет собой родительскую таблицу для дочерней таблицы на другой стороне.

Связь «многие-ко-многим»

Когда несколько объектов таблицы могут быть связаны с несколькими объектами другой. Говорят, что они имеют связь «многие-ко-многим » (M:N ). Например, в случае студентов и курсов, поскольку студент может посещать много курсов, и каждый курс могут посещать много студентов.

На ER-диаграмме эти связи отображаются с помощью следующих строк:


При проектировании структуры базы данных реализовать такого рода связи невозможно. Вместо этого нужно разбить их на две связи «один-ко-многим ».

Для этого нужно создать между этими двумя таблицами новую сущность. Если между продажами и продуктами существует связь M:N , можно назвать этот новый объект «sold_products », так как он будет содержать данные для каждой продажи. И таблица продаж, и таблица товаров будут иметь связь 1:M с sold_products . Этот вид промежуточного объекта в различных моделях называется таблицей ссылок, ассоциативным объектом или таблицей связей.

Каждая запись в таблице связей будет соответствовать двум сущностям из соседних таблиц. Например, таблица связей между студентами и курсами может выглядеть следующим образом:


Обязательно или нет?

Другим способом анализа связей является рассмотрение того, какая сторона связи должна существовать, чтобы существовала другая. Необязательная сторона может быть отмечена кружком на линии. Например, страна должна существовать для того, чтобы иметь представителя в Организации Объединенных Наций, а не наоборот:


Два объекта могут быть взаимозависимыми (один не может существовать без другого ).

Рекурсивные связи

Иногда при проектировании базы данных таблица указывает на себя саму. Например, таблица сотрудников может иметь атрибут «руководитель», который ссылается на другое лицо в этой же таблице. Это называется рекурсивными связями.

Лишние связи

Лишние связи — это те, которые выражены более одного раза. Как правило, можно удалить одну из таких связей без потери какой-либо важной информации. Например, если объект «ученики » имеет прямую связь с другим объектом, называемым «учителя », но также имеет косвенные отношения с учителями через «предметы », нужно удалить связь между «учениками » и «учителями ». Так как единственный способ, которым ученикам назначают учителей — это предметы.

Нормализация базы данных

После предварительного проектирования базы данных можно применить правила нормализации, чтобы убедиться, что таблицы структурированы правильно.

В то же время не все базы данных необходимо нормализовать. В целом, базы с обработкой транзакций в реальном времени (OLTP ), должны быть нормализованы.

Базы данных с интерактивной аналитической обработкой (OLAP ), позволяющие проще и быстрее выполнять анализ данных, могут быть более эффективными с определенной степенью денормализации. Основным критерием здесь является скорость вычислений. Каждая форма или уровень нормализации включает правила, связанные с нижними формами.

Первая форма нормализации

Первая форма нормализации (сокращенно 1NF ) гласит, что во время логического проектирования базы данных каждая ячейка в таблице может иметь только одно значение, а не список значений. Поэтому таблица, подобная той, которая приведена ниже, не соответствует 1NF :


Возможно, у вас возникнет желание обойти это ограничение, разделив данные на дополнительные столбцы. Но это также противоречит правилам: таблица с группами повторяющихся или тесно связанных атрибутов не соответствует первой форме нормализации. Например, приведенная ниже таблица не соответствует 1NF :


Вместо этого во время физического проектирования базы данных разделите данные на несколько таблиц или записей, пока каждая ячейка не будет содержать только одно значение, и дополнительных столбцов не будет. Такие данные считаются разбитыми до наименьшего полезного размера. В приведенной выше таблице можно создать дополнительную таблицу «Реквизиты продаж », которая будет соответствовать конкретным продуктам с продажами. «Продажи » будут иметь связь 1:M с «Реквизитами продаж ».

Вторая форма нормализации

Вторая форма нормализации (2NF ) предусматривает, что каждый из атрибутов должен полностью зависеть от первичного ключа. Каждый атрибут должен напрямую зависеть от всего первичного ключа, а не косвенно через другой атрибут.

Например, атрибут «возраст » зависит от «дня рождения », который, в свою очередь, зависит от «ID студента », имеет частичную функциональную зависимость. Таблица, содержащая эти атрибуты, не будет соответствовать второй форме нормализации.

Кроме этого таблица с первичным ключом, состоящим из нескольких полей, нарушает вторую форму нормализации, если одно или несколько полей не зависят от каждой части ключа.

Таким образом, таблица с этими полями не будет соответствовать второй форме нормализации, поскольку атрибут «название товара » зависит от идентификатора продукта, но не от номера заказа:

  • Номер заказа (первичный ключ );
  • ID товара (первичный ключ );
  • Название товара.

Третья форма нормализации

Третья форма нормализации (3NF ) : каждый не ключевой столбец должен быть независим от любого другого столбца. Если при проектировании реляционной базы данных изменение значения в одном не ключевом столбце вызывает изменение другого значения, эта таблица не соответствует третьей форме нормализации.

В соответствии с 3NF , нельзя хранить в таблице любые производные данные, такие как столбец «Налог », который в приведенном ниже примере, напрямую зависит от общей стоимости заказа:


В свое время были предложены дополнительные формы нормализации. В том числе форма нормализации Бойса-Кодда , четвертая-шестая формы и нормализации доменного ключа, но первые три являются наиболее распространенными.

Многомерные данные

Некоторым пользователям может потребоваться доступ к нескольким разрезам одного типа данных, особенно в базах данных OLAP. Например, им может потребоваться узнать продажи по клиенту, стране и месяцу. В этой ситуации лучше создать центральную таблицу, на которую могут ссылаться таблицы клиентов, стран и месяцев. Например:


Правила целостности данных

Также с помощью средств проектирования баз данных необходимо настроить БД с учетом возможности проверки данных на соответствие определенным правилам. Многие СУБД , такие как Microsoft Access , автоматически применяют некоторые из этих правил.

Правило целостности гласит, что первичный ключ никогда не может быть равен NULL . Если ключ состоит из нескольких столбцов, ни один из них не может быть равен NULL . В противном случае он может неоднозначно идентифицировать запись.

Правило целостности ссылок требует, чтобы каждый внешний ключ, указанный в одной таблице, сопоставлялся с одним первичным ключом в таблице, на которую он ссылается. Если первичный ключ изменяется или удаляется, эти изменения необходимо реализовать во всех объектах, на которые ссылается этот ключ в базе данных.

Правила целостности бизнес-логики обеспечивают соответствие данных определенным логическим параметрам. Например, время встречи должно быть в пределах стандартных рабочих часов.

Добавление индексов и представлений

Индекс — это отсортированная копия одного или нескольких столбцов со значениями в возрастающем или убывающем порядке. Добавление индекса позволяет быстрее находить записи. Вместо повторной сортировки для каждого запроса система может обращаться к записям в порядке, указанном индексом.

Хотя индексы ускоряют извлечение данных, они могут замедлять добавление, обновление и удаление данных, поскольку индекс нужно перестраивать всякий раз, когда изменяется запись.

Представление — это сохраненный запрос данных. Представления могут включать в себя данные из нескольких таблиц или отображать часть таблицы.

Расширенные свойства

После проектирования модели базы данных можно уточнить БД с помощью расширенных свойств, таких как справочный текст, маски ввода и правила форматирования, которые применяются к конкретной схеме, представлению или столбцу. Преимущество этого метода заключается в том, что, поскольку эти правила хранятся в самой базе, представление данных будет согласовано между несколькими программами, которые обращаются к данным.

SQL и UML

Унифицированный язык моделирования (UML ) — это еще один визуальный способ выражения сложных систем, созданных на объектно-ориентированном языке. Некоторые из концепций, упомянутых в этом руководстве, известны в UML под разными названиями. Например, объект в UML известен, как класс.

Сейчас UML используется не так часто. В наши дни он применяется академически и в общении между разработчиками программного обеспечения и их клиентами.

Системы управления базами данных

Структура проектируемой базы данных зависит от того, какую СУБД вы используете. Некоторые из наиболее распространенных:

  • Oracle DB ;
  • MySQL ;
  • Microsoft SQL Server ;
  • PostgreSQL ;
  • IBM DB2 .

Подходящую систему управления базами данных можно выбирать исходя из стоимости, установленной операционной системы, наличия различных функций и т. д.

Перевод статьи «Database Structure and Design Tutorial » дружной командой проекта

В первой статье из цикла «Данные в WordPress» я привела обзорные сведения об использовании реляционных баз данных в WordPress: какие таблицы используются, и какие данные…

Для защиты конфиденциальных данных в MySQL 5.7 появилась возможность шифрования данных с помощью движка InnoDB. В этой статье я объясню принципы шифрования баз данных,…

Процесс проектирования включает в себя следующие этапы.

    Инфологическое проектирование.

    Определение требований к операционной обстановке, в которой будет функционировать информационная система.

    Выбор системы управления базой данных (СУБД) и других инструментальных программных средств.

    Логическое проектирование БД.

    Физическое проектирование БД.

1.1. Инфологическое проектирование.

Процесс проектирования информационных систем является достаточно сложной задачей. Он начинается с построения инфологической модели данных, то есть, идентификации сущностей.

Инфологическая модель предметной области (ПО) представляет собой описание структуры и динамики ПО, характера информационных потребностей пользователей в терминах, понятных пользователю и не зависимых от реализации БД. Это описание выражается в терминах не отдельных объектов ПО и связей между ними, а их типов, связанных с ними ограничений целостности и тех процессов, которые приводят к переходу предметной области из одного состояния в другое.

В настоящее время применяют проектирование с использованием метода "Сущность-связь"(entity–relation, ER–method), который является комбинацией предметного и прикладного методов и обладает достоинствами обоих.

Этап инфологического проектирования начинается с моделирования ПО. Проектировщик разбивает её на ряд локальных областей, каждая из которых (в идеале) включает в себя информацию, достаточную для обеспечения запросов отдельной группы будущих пользователей или решения отдельной задачи (подзадачи). Каждое локальное представление моделируется отдельно, затем они объединяются.

Выбор локального представления зависит от масштабов ПО. Обычно она разбивается на локальные области таким образом, чтобы каждая из них соответствовала отдельному внешнему приложению и содержала 6-7 сущностей.

Сущность – это объект, о котором в системе будет накапливаться информация. Сущности бывают как физически существующие (например, СОТРУДНИК или АВТОМОБИЛЬ ), так и абстрактные (например, ЭКЗАМЕН или ДИАГНОЗ ).

Для сущностей различают класс, тип сущности и экземпляр. Существует три основных класса сущностей: стержневые , ассоциативные и характеристические , а также подкласс ассоциативных сущностей – обозначения .

Стержневая сущность (стержень ) – это независимая сущность, которая не является ни ассоциацией, ни обозначением, ни характеристикой. Такие сущности имеют независимое существование, хотя они и могут обозначать другие сущности.

Ассоциативная сущность (ассоциация ) – это связь вида "многие-ко-многим" между двумя или более сущностями или экземплярами сущности. Ассоциации рассматриваются как полноправные сущности, они могут: участвовать в других ассоциациях и обозначениях точно так же, как стержневые сущности; обладать свойствами, т.е. иметь не только набор ключевых атрибутов, необходимых для указания связей, но и любое число других атрибутов, характеризующих связь.

Характеристическая сущность ( характеристика ) – это связь вида "многие-к-одной" или "одна-к-одной" между двумя сущностями (частный случай ассоциации). Единственная цель характеристики в рамках рассматриваемой предметной области состоит в описании или уточнении некоторой другой сущности. Необходимость в них возникает в связи с тем, что сущности реального мира имеют иногда многозначные свойства.

Например, муж может иметь несколько жен, книга – несколько характеристик переиздания (исправленное, дополненное, ...) и т.д.

Существование характеристики полностью зависит от характеризуемой сущности: женщины лишаются статуса жен, если умирает их муж.

Обозначающая сущность ( обозначение ) – это связь вида "многие-к-одной" или "одна-к-одной" между двумя сущностями и отличается от характеристики тем, что не зависит от обозначаемой сущности. Обозначения используют для хранения повторяющихся значений больших текстовых атрибутов: "кодификаторы" изучаемых студентами дисциплин, наименований организаций и их отделов, перечней товаров и т.п.

Как правило, обозначения не рассматриваются как полноправные сущности, хотя это не привело бы к какой-либо ошибке. Обозначения и характеристики не являются полностью независимыми сущностями, поскольку они предполагают наличие некоторой другой сущности, которая будет "обозначаться" или "характеризоваться". Однако они все же представляют собой частные случаи сущности и могут, конечно, иметь свойства, могут участвовать в ассоциациях, обозначениях и иметь свои собственные (более низкого уровня) характеристики. Подчеркнем также, что все экземпляры характеристики должны быть обязательно связаны с каким-либо экземпляром характеризуемой сущности. Однако допускается, чтобы некоторые экземпляры характеризуемой сущности не имели связей.

Тип сущности характеризуется именем и списком свойств, а экземпляр – конкретными значениями свойств.

Типы сущностей можно классифицировать как сильные и слабые . Сильные сущности существуют сами по себе, а существование слабых сущностей зависит от существования сильных.

Например, читатель библиотеки – сильная сущность, а абонемент этого читателя – слабая, которая зависит от наличия соответствующего читателя.

Слабые сущности называют подчинёнными (дочерними) , а сильные – базовыми (основными, родительскими) .

Для каждой сущности выбираются свойства (атрибуты).

Различают:

    Идентифицирующие и описательные атрибуты . Идентифицирующие атрибуты имеют уникальное значение для сущностей данного типа и являются потенциальными ключами. Они позволяют однозначно распознавать экземпляры сущности. Из потенциальных ключей выбирается один первичный ключ (ПК). В качестве ПК обычно выбирается потенциальный ключ, по которому чаще происходит обращение к экземплярам записи. Кроме того, ПК должен включать в свой состав минимально необходимое для идентификации количество атрибутов. Остальные атрибуты называются описательными и заключают в себе интересующие свойства сущности.

    Составные и простые атрибуты . Простой атрибут состоит из одного компонента, его значение неделимо. Составной атрибут является комбинацией нескольких компонентов, возможно, принадлежащих разным типам данных (например, ФИО или адрес). Решение о том, использовать составной атрибут или разбивать его на компоненты, зависит от характера его обработки и формата пользовательского представления этого атрибута.

    Однозначные и многозначные атрибуты (могут иметь соответственно одно или много значений для каждого экземпляра сущности).

    Основные и производные атрибуты . Значение основного атрибута не зависит от других атрибутов. Значение производного атрибута вычисляется на основе значений других атрибутов (например, возраст студента вычисляется на основе даты его рождения и текущей даты).

Спецификация атрибута состоит из его названия , указания типа данных и описания ограничений целостности – множества значений (или домена), которые может принимать данный атрибут.

Далее осуществляется спецификация связей внутри локального представления. Связи могут иметь различный содержательный смысл (семантику). Различают связи типа "сущность-сущность", "сущность-атрибут" и "атрибут-атрибут" для отношений между атрибутами, которые характеризуют одну и ту же сущность или одну и ту же связь типа "сущность-сущность".

Каждая связь характеризуется именем, обязательностью , типом и степенью . Различают факультативные и обязательные связи. Если вновь порождённый объект одного типа оказывается по необходимости связанным с объектом другого типа, то между этими типами объектов существует обязательная связь (обозначается двойной линией). Иначе связь является факультативной .

По типу различают множественные связи "один к одному" (1:1), "один ко многим" (1:n) и "многие ко многим" (m:n). ER–диаграмма, содержащая различные типы связей, приведена на рис. 1. Обратите внимание, что обязательные связи на рис. 1 выделены двойной линией.

Степень связи определяется количеством сущностей, которые охвачены данной связью. Пример бинарной связи – связь между отделом и сотрудниками, которые в нём работают. Примером тернарной связи является связь типа экзамен между сущностями ДИСЦИПЛИНА , СТУДЕНТ , ПРЕПОДАВАТЕЛЬ . Из последнего примера видно, что связь также может иметь атрибуты (в данном случае это Дата проведения и Оценка ). Пример ER–диаграммы с указанием сущностей, их атрибутов и связей приведен на рис. 2.

Принимаемые проектные решения можно описать языком инфологического моделирования (ЯИМ), основанном на языке SQL, который позволяет дать удобное и полное описание любой сущности и, следовательно, всей базы данных. Например:

СОЗДАТЬ ТАБЛИЦУ Блюда *(Стержневая сущность)

ПЕРВИЧНЫЙ КЛЮЧ (БЛ)

ПОЛЯ (БЛ Целое, Блюдо Текст 60, Вид Текст 7)

ОГРАНИЧЕНИЯ (1. Значения поля Блюдо должны быть

уникальными; при нарушении вывод

сообщения "Такое блюдо уже есть".

2. Значения поля Вид должны принадлежать

набору: Закуска, Суп, Горячее, Десерт,

Напиток; при нарушении вывод сообщения

"Можно лишь Закуска, Суп, Горячее,

Десерт, Напиток");

СОЗДАТЬ ТАБЛИЦУ Состав *(Связывает Блюда и Продукты)

ПЕРВИЧНЫЙ КЛЮЧ (БЛ, ПР)

ВНЕШНИЙ КЛЮЧ (БЛ ИЗ Блюда

NULL-значения НЕ ДОПУСТИМЫ

УДАЛЕНИЕ ИЗ Блюда КАСКАДИРУЕТСЯ

ОБНОВЛЕНИЕ Блюда.БЛ КАСКАДИРУЕТСЯ)

ВНЕШНИЙ КЛЮЧ (ПР ИЗ Продукты

NULL-значения НЕ ДОПУСТИМЫ

УДАЛЕНИЕ ИЗ Продукты ОГРАНИЧИВАЕТСЯ

ОБНОВЛЕНИЕ Продукты.ПР КАСКАДИРУЕТСЯ)

ПОЛЯ (БЛ Целое, ПР Целое, Вес Целое)

ОГРАНИЧЕНИЯ (1. Значения полей БЛ и ПР должны принадлежать

набору значений из соответствующих полей таблиц

Блюда и Продукты; при нарушении вывод сообщения

"Такого блюда нет" или "Такого продукта нет".

2. Значение поля Вес должно лежать в пределах от 0.1 до 500 г.);

Однако такое описание не отличается наглядностью. Для достижения большей иллюстративности целесообразно дополнять проект используя языки инфологического моделирования "Сущность-связь" или "Таблица-связь

В ER диаграммах "Сущность-связь" сущности изображаются (рис.2) помеченными прямоугольниками , ассоциации помеченными ромбами или шестиугольниками , атрибуты помеченными овалами , а связи между ними – ненаправленными ребрами (линиями, соединяющими геометрические фигуры), над которыми может проставляться степень связи (1 или буква, заменяющая слово "много") и необходимое пояснение.

В языке инфологического моделирования "Таблица-связь" (рис.3) все сущности изображаются одностолбцовыми таблицами с заголовками , состоящими из имени и типа сущности . Строки таблицы – это перечень атрибутов сущности, а те из них, которые составляют первичный ключ, располагаются рядом и обводятся рамкой. Связи между сущностями указываются стрелками, направленными от первичных ключей или их составляющих.

(стержень)

(ассоциация)

(характеристика)

После того, как созданы локальные представления, выполняется их объединение. При небольшом количестве локальных областей (не более пяти) они объединяются за один шаг. В противном случае обычно выполняют бинарное объединение в несколько этапов.

При объединении проектировщик может формировать конструкции, производные по отношению к тем, которые были использованы в локальных представлениях. Такой подход может преследовать следующие цели:

    объединение в единое целое фрагментарных представлений о различных свойствах одного и того же объекта;

    введение абстрактных понятий, удобных для решения задач системы, установление их связи с конкретными понятиями, использованными в модели;

    образование классов и подклассов подобных объектов (например, класс "изделие" и подклассы типов изделий, производимых на предприятии).

На этапе объединения необходимо выявить и устранить все противоречия. Например, одинаковые названия семантически различных объектов или связей или несогласованные ограничения целостности на одни и те же атрибуты в разных приложениях. Устранение противоречий вызывает необходимость возврата к этапу моделирования локальных представлений с целью внесения в них соответствующих изменений.

По завершении объединения результаты проектирования являют собой концептуальную инфологическую модель предметной области. Модели локальных представлений – это внешние инфологические модели.

      ОПРЕДЕЛЕНИЕ ТРЕБОВАНИЙ К ОПЕРАЦИОННОЙ

ОБСТАНОВКЕ.

На этом этапе производится оценка требований к вычислительным ресурсам, необходимым для функционирования системы, определение типа и конфигурации конкретной ЭВМ, выбор типа и версии операционной системы. Объём вычислительных ресурсов зависит от предполагаемого объёма проектируемой базы данных и от интенсивности их использования. Если БД будет работать в многопользовательском режиме, то требуется подключение её к сети и наличие соответствующей многозадачной операционной системы.

Этапы проектирования базы данных

Процесс проектирования включает в себя следующие этапы:

  • 1. Инфологическое проектирование.
  • 2. Определение требований к операционной обстановке, в которой будет функционировать информационная система.
  • 3. Выбор системы управления базой данных (СУБД) и других инструментальных программных средств.
  • 4. Даталогическое(логическое) проектирование БД.
  • 5. Физическое проектирование БД.

На первом этапе разработчик (администратор базы данных), объединяя частные представления о содержимом базы данных, полученные в результате опроса пользователей, и свои собственные представления о данных, которые могут потребоваться в будущих приложениях, создает обобщенное неформальное описание базы данных . Это описание выполняется с использованием естественного языка, математических формул, таблиц, графиков и других средств, понятных всем людям, работающих над проектированием базы данных. Такое описание предметной области называется инфологической моделью данных.

Инфологическая модель данных является человеко-ориентированной моделью и полностью независима от физических параметров среды хранения данных. Такой средой хранения данных может быть память человека, а не компьютер. Поэтому инфологическая модель не изменяется до тех пор, пока какие-то изменения в реальном мире не потребуют внесения в нее соответствующих изменений так, чтобы эта модель продолжала отражать предметную область.

Остальные модели, даталогическая и физическая, являются компьютеро-ориентированными. С их помощью СУБД дает возможность программам и пользователям осуществлять доступ к хранимым данным лишь по их именам, не заботясь о физическом расположении этих данных. Нужные данные отыскиваются СУБД на внешних запоминающих устройствах по физической модели данных .

Так как указанный доступ осуществляется с помощью конкретной СУБД, то модели должны быть описаны на языке описания данных этой СУБД. Такое описание называют даталогической моделью данных .

Трехуровневая архитектура (инфологический, даталогический и физический уровни) позволяет обеспечить независимость хранимых данных от использующих их программ. Разработчик может при необходимости переписать хранимые данные на другие носители информации или реорганизовать их физическую структуру, изменив лишь физическую модель данных. АБД может подключить к системе любое число новых пользователей (новых приложений), дополнив, если надо, даталогическую модель. Указанные изменения физической и даталогической моделей не будут замечены существующими пользователями системы (окажутся "прозрачными" для них), так же как не будут замечены и новые пользователи. Следовательно, независимость данных обеспечивает возможность развития системы баз данных без разрушения существующих приложений.

Инфологическая (информационно-логическая) модель. Цель инфологического этапа проектирования состоит в получении семантических (концептуальных) моделей, отражающих предметную область и информационные потребности пользователей. Поэтому этот этап называют еще как семантическое моделирование. Семантическое моделирование представляет собой моделирование структуры данных, опираясь на смысл этих данных.

Понятие “Предметная область” - базисное в теории БД и не имеет строгого определения. Оно вытекает из понятий “объект” и “предмет”. Предметная область (ПО) - часть реального мира, подлежащая изучению с целью организации управления и, в конечном итоге, автоматизации. ПО представляется множеством фрагментов , которые характеризуются множеством объектов , множеством процессов, использующих объекты, а также множеством пользователей, характеризуемых единым взглядом на предметную область.

Объектом называется явление внешнего мира. Это либо нечто реально существующее - человек, товар, изделие, либо процесс - учет рождаемости, получение товаров, выпуск изделий. Каждый объект обладает огромным количеством свойств.

Примеры.

Объект "Человек " обладает свойствами: рост, имя, дата рождения … ,

объект - "Изделие " обладает свойствами: качество, дата изготовления, внешний вид….

Между объектами существуют многочисленные связи. Например:

  • · Человек покупает, продает, производит Изделие
  • · Изделие создается, покупается, продается Человеком .

Предмет - модель реального объекта, в котором зафиксированы лишь выделенные для ИС свойства и связи. Совокупность отобранных предметов образует объектное ядро предметной области, а совокупность их взаимосвязей - структуру фрагмента действительности . Т.о. понятие “Предметная область” соответствует точке зрения потребителя на объектное ядро: в ней выделены только те объекты, свойства объектов и связи между объектами, которые представляют ценность для ИС и должны быть сохранены в БД.

Все действия по выявлению ядра предметной области производятся на этапе анализа ИС.

Объектное ядро системы в течение ЖЦ ИС не остается постоянным: пропадают и возникают объекты, меняются их свойства и взаимосвязи. Зафиксированные во времени цепочки этих изменений называются траекториями предметной области, а совокупность общих свойств траекторией - семантикой предметной области

Имеется целый ряд методик моделирования предметной области. Одна из наиболее популярных в настоящее время методик базируется на использовании графических диаграмм, включающих небольшое число разнородных компонентов ERD (Entity-Relationship Diagrams). В русскоязычной литературе эти диаграммы называют "объект - отношение" либо "сущность - связь".

Модель ERD была предложена в 1976 г. Питером Пин-Шэн Ченом . В дальнейшем многими авторами были разработаны свои варианты подобных моделей: нотация (notation - система обозначения, записи) Мартина, нотация IDEF1X, нотация Баркера), но все они базируются на графических диаграммах, предложенных Ченом.

На использовании разновидностей ER-модели основано большинство современных подходов к проектированию реляционных баз данных.

По сути, все варианты диаграмм сущность-связь исходят из одной идеи - рисунок всегда нагляднее текстового описания. Все такие диаграммы используют графическое изображение сущностей предметной области, их свойств (атрибутов), и взаимосвязей между сущностями.

Мы познакомимся с ER-диаграммами в нотации Баркера, как довольно легкой в понимании основных идей.

Основные понятия ER-диаграмм. Основными понятиями ER-модели являются сущность, связь и атрибут.

Для большей выразительности и лучшего понимания имя сущности может сопровождаться примерами конкретных объектов этого типа.

Определение 1 . Сущность - это реальный или представляемый объект, информация о котором должна сохраняться и быть доступна. Сущностями могут быть люди, места, самолеты, рейсы, вкус, цвет и т.д.

Каждая сущность должна иметь наименование, выраженное существительным в единственном числе. При этом имя сущности - это имя типа, а не некоторого конкретного экземпляра этого типа. Понятие тип сущности относится к набору однородных личностей, предметов, событий или идей, выступающих как целое.

Примерами сущностей могут быть такие классы объектов как "Поставщик", "Сотрудник", "Накладная".

Каждая сущность в модели изображается в виде прямоугольника, содержащего имя сущности:

Определение 2 . Экземпляр сущности - это конкретный представитель данной сущности.

Например, представителем сущности "Сотрудник" может быть "Сотрудник Иванов".

Экземпляры сущностей должны быть различимы , т.е. сущности должны иметь некоторые свойства, уникальные для каждого экземпляра этой сущности.

Определение 3 . Атрибут сущности - это поименованная характеристика сущности. Его наименование должно быть уникальным для конкретного типа сущности, но может быть одинаковым для различного типа сущностей (например, ЦВЕТ может быть определен для многих сущностей: СОБАКА, АВТОМОБИЛЬ, КРАСКА и т.д.). Атрибуты используются для определения того, какая информация должна быть собрана о сущности. Примерами атрибутов для сущности АВТОМОБИЛЬ являются ТИП, МАРКА, НОМЕРНОЙ ЗНАК, ЦВЕТ и т.д.

Здесь также существует различие между типом атрибута и экземпляром. Тип атрибута ЦВЕТ имеет много экземпляров или значений: Красный, Синий, Банановый, Белая ночь и т.д., однако каждому экземпляру сущности присваивается только одно значение атрибута.

Абсолютное различие между типами сущностей и атрибутами отсутствует. Атрибут является таковым только в связи с типом сущности. В другом контексте атрибут может выступать как самостоятельная сущность. Например, для автомобильного завода цвет - это только атрибут продукта производства, а для лакокрасочной фабрики цвет - тип сущности.

Каждый атрибут обеспечивается именем, уникальным в пределах сущности. Наименование атрибута должно быть выражено существительным в единственном числе (возможно, с характеризующими прилагательными).

Примерами атрибутов сущности "Сотрудник" могут быть такие атрибуты как "Табельный номер", "Фамилия", "Имя", "Отчество", "Должность", "Зарплата" и т.п.

Атрибуты изображаются в пределах прямоугольника, определяющего сущность:

Атрибуты могут классифицироваться по принадлежности к одному из трех различных типов: описательные, указывающие, вспомогательные.

Описательные атрибуты представляют факты, внутренне присущие каждому экземпляру сущности.

Указывающие атрибуты используются для присвоения имени или обозначения экземплярам сущности.

Вспомогательные атрибуты используются для связи экземпляра одной сущности с экземпляром другого. Атрибуты подчиняются строго определенным правилам.

Определение 4 . Ключ сущности - минимальный набор атрибутов, по значениям которых можно однозначно найти требуемый экземпляр сущности. Минимальность означает, что исключение из набора любого атрибута не позволяет идентифицировать сущность по оставшимся.

Например, для сущности Расписание ключом является атрибут Номер_рейса или набор: Пункт_отправления , Время_вылета и Пункт_назначения (при условии, что из пункта в пункт вылетает в каждый момент времени один самолет).

Сущность может иметь несколько различных ключей.

Ключевые атрибуты изображаются на диаграмме подчеркиванием:

Определение 5 . Связь - это некоторая ассоциация между двумя сущностями. Одна сущность может быть связана с другой сущностью или сама с собою. Связи позволяют по одной сущности находить другие сущности, связанные с нею.

Если бы назначением базы данных было только хранение отдельных, не связанных между собой данных, то ее структура могла бы быть очень простой. Однако одно из основных требований к организации базы данных - это обеспечение возможности отыскания одних сущностей по значениям других, для чего необходимо установить между ними определенные связи. А так как в реальных базах данных нередко содержатся сотни или даже тысячи сущностей, то теоретически между ними может быть установлено более миллиона связей. Наличие такого множества связей и определяет сложность инфологических моделей.

Например, связи между сущностями могут выражаться следующими фразами - "СОТРУДНИК может иметь несколько ДЕТЕЙ", "каждый СОТРУДНИК обязан числиться ровно в одном ОТДЕЛЕ".

Графически связь изображается линией, соединяющей две сущности:

Каждая связь имеет два конца и одно или два наименования. Наименование обычно выражается в неопределенной глагольной форме: "иметь", "принадлежать" и т.п. Каждое из наименований относится к своему концу связи. Иногда наименования не пишутся ввиду их очевидности.

Каждая связь может иметь один из следующих типов связи :

Связь типа один-к-одному означает, что один экземпляр первой сущности (левой) связан с одним экземпляром второй сущности (правой). Связь один-к-одному чаще всего свидетельствует о том, что на самом деле мы имеем всего одну сущность, неправильно разделенную на две.

Связь типа один-ко-многим означает, что один экземпляр первой сущности (левой) связан с несколькими экземплярами второй сущности (правой). Это наиболее часто используемый тип связи. Левая сущность (со стороны "один") называется родительской , правая (со стороны "много") - дочерней . (см. рис. графического изображения связи)

Связь типа много-ко-многим означает, что каждый экземпляр первой сущности может быть связан с несколькими экземплярами второй сущности, и каждый экземпляр второй сущности может быть связан с несколькими экземплярами первой сущности. Тип связи много-ко-многим является временным типом связи, допустимым на ранних этапах разработки модели. В дальнейшем этот тип связи должен быть заменен двумя связями типа один-ко-многим путем создания промежуточной сущности.

Каждая связь может иметь одну из двух модальностей связи :

Модальность "может может быть связан с одним или несколькими экземплярами другой сущности, а может быть и не связан ни с одним экземпляром.

Модальность "должен " означает, что экземпляр одной сущности обязан быть связан не менее чем с одним экземпляром другой сущности.

Связь может иметь разную модальность с разных концов.

Описанный графический синтаксис позволяет однозначно читать диаграммы, пользуясь следующей схемой построения фраз:

<Каждый экземпляр СУЩНОСТИ 1> <МОДАЛЬНОСТЬ СВЯЗИ> <НАИМЕНОВАНИЕ СВЯЗИ> <ТИП СВЯЗИ> <экземпляр СУЩНОСТИ 2>.

Каждая связь может быть прочитана как слева направо, так и справа налево. Например, связь, представленная на рисунке выше 4 читается так:

Слева направо: "каждый сотрудник может иметь несколько детей".

Справа налево: "Каждый ребенок обязан принадлежать ровно одному сотруднику".

Нормальные формы ER-схем. Как и в реляционных схемах баз данных, в ER-диаграмах вводится понятие нормальных форм, причем их смысл очень близко соответствует смыслу реляционных нормальных форм. Приведем только очень краткие и неформальные определения трех первых нормальных форм.

В первой нормальной форме ER-диаграммы устраняются повторяющиеся атрибуты или группы атрибутов, т.е. производится выявление неявных сущностей, "замаскированных" под атрибуты.

Во второй нормальной форме устраняются атрибуты, зависящие только от части уникального идентификатора (ключа сущности). Эта часть уникального идентификатора определяет отдельную сущность.

В третьей нормальной форме устраняются атрибуты, зависящие от атрибутов, не входящих в уникальный идентификатор (ключ сущности). Эти атрибуты являются основой отдельной сущности.

При правильном определении сущностей, полученные таблицы будут сразу находиться в 3НФ. Основное достоинство метода состоит в том, модель строится методом последовательных уточнений первоначальных диаграмм.

Получение реляционной схемы из ER-схемы:

Шаг 1. Каждая простая сущность превращается в таблицу. Простая сущность - сущность, не являющаяся подтипом и не имеющая подтипов. Имя сущности становится именем таблицы.

Шаг 2. Каждый атрибут становится возможным столбцом с тем же именем; может выбираться более точный формат. Столбцы, соответствующие необязательным атрибутам, могут содержать неопределенные значения; столбцы, соответствующие обязательным атрибутам, - не могут.

Шаг 3. Компоненты уникального идентификатора сущности превращаются в первичный ключ таблицы. Если имеется несколько возможных уникальных идентификатора, выбирается наиболее используемый. Если в состав уникального идентификатора входят связи, к числу столбцов первичного ключа добавляется копия уникального идентификатора сущности, находящейся на дальнем конце связи (этот процесс может продолжаться рекурсивно). Для именования этих столбцов используются имена концов связей и/или имена сущностей.

Шаг 4. Связи многие-к-одному (и один-к-одному) становятся внешними ключами. Т.е. делается копия уникального идентификатора с конца связи "один", и соответствующие столбцы составляют внешний ключ. Необязательные связи соответствуют столбцам, допускающим неопределенные значения; обязательные связи - столбцам, не допускающим неопределенные значения.

Шаг 5. Индексы создаются для первичного ключа (уникальный индекс), внешних ключей и тех атрибутов, на которых предполагается в основном базировать запросы.

Шаг 6. Если в концептуальной схеме присутствовали подтипы, то возможны два способа:

  • · все подтипы в одной таблице (а)
  • · для каждого подтипа - отдельная таблица (б)

При применении способа (а) таблица создается для наиболее внешнего супертипа, а для подтипов могут создаваться представления. В таблицу добавляется по крайней мере один столбец, содержащий код ТИПА; он становится частью первичного ключа.

При использовании метода (б) для каждого подтипа первого уровня (для более нижних - представления) супертип воссоздается с помощью представления UNION (из всех таблиц подтипов выбираются общие столбцы - столбцы супертипа).

Все в одной таблице

Таблица - на подтип

Преимущества

Все хранится вместе

Легкий доступ к супертипу и подтипам

Требуется меньше таблиц

Более ясны правила подтипов

Программы работают только с нужными таблицами

Недостатки

Слишком общее решение

Требуется дополнительная логика работы с разными наборами столбцов и разными ограничениями

Потенциальное узкое место (в связи с блокировками)

Столбцы подтипов должны быть необязательными

В некоторых СУБД для хранения неопределенных значений требуется дополнительная память

Слишком много таблиц

Смущающие столбцы в представлении UNION

Потенциальная потеря производительности при работе через UNION

Над супертипом невозможны модификации

Шаг 7. Имеется два способа работы при наличии исключающих связей:

  • · общий домен (а)
  • · явные внешние ключи (б)

Если остающиеся внешние ключи все в одном домене, т.е. имеют общий формат (способ (а)), то создаются два столбца: идентификатор связи и идентификатор сущности. Столбец идентификатора связи используется для различения связей, покрываемых дугой исключения. Столбец идентификатора сущности используется для хранения значений уникального идентификатора сущности на дальнем конце соответствующей связи.

Если результирующие внешние ключи не относятся к одному домену, то для каждой связи, покрываемой дугой исключения, создаются явные столбцы внешних ключей; все эти столбцы могут содержать неопределенные значения.

Пример разработки простой ER-модели. При разработке ER-моделей мы должны получить следующую информацию о предметной области:

  • 1. Список сущностей предметной области.
  • 2. Список атрибутов сущностей.
  • 3. Описание взаимосвязей между сущностями.

ER-диаграммы удобны тем, что процесс выделения сущностей, атрибутов и связей является итерационным. Разработав первый приближенный вариант диаграмм, мы уточняем их, опрашивая экспертов предметной области. При этом документацией, в которой фиксируются результаты бесед, являются сами ER-диаграммы.

Предположим, что перед нами стоит задача разработать информационную систему по заказу некоторой оптовой торговой фирмы. В первую очередь мы должны изучить предметную область и процессы, происходящие в ней. Для этого мы опрашиваем сотрудников фирмы, читаем документацию, изучаем формы заказов, накладных и т.п.

Например, в ходе беседы с менеджером по продажам, выяснилось, что он (менеджер) считает, что проектируемая система должна выполнять следующие действия:

  • · Хранить информацию о покупателях.
  • · Печатать накладные на отпущенные товары.
  • · Следить за наличием товаров на складе.

Выделим все существительные в этих предложениях - это будут потенциальные кандидаты на сущности и атрибуты, и проанализируем их (непонятные термины будем выделять знаком вопроса):

  • · Покупатель
  • · Накладная - явный кандидат на сущность.
  • · Товар - явный кандидат на сущность
  • · (?)Склад - а вообще, сколько складов имеет фирма? Если несколько, то это будет кандидатом на новую сущность.
  • · (?)Наличие товара - это, скорее всего, атрибут, но атрибут какой сущности?

Сразу возникает очевидная связь между сущностями - "покупатели могут покупать много товаров" и "товары могут продаваться многим покупателям". Первый вариант диаграммы выглядит так:

Задав дополнительные вопросы менеджеру, мы выяснили, что фирма имеет несколько складов. Причем, каждый товар может храниться на нескольких складах и быть проданным с любого склада.

Куда поместить сущности "Накладная" и "Склад" и с чем их связать? Спросим себя, как связаны эти сущности между собой и с сущностями "Покупатель" и "Товар"?

  • · Покупатели покупают товары, получая при этом накладные, в которые внесены данные о количестве и цене купленного товара.
  • · Каждый покупатель может получить несколько накладных.
  • · Каждая накладная обязана выписываться на одного покупателя.
  • · Каждая накладная обязана содержать несколько товаров (не бывает пустых накладных). Каждый товар, в свою очередь, может быть продан нескольким покупателям через несколько накладных.
  • · Кроме того, каждая накладная должна быть выписана с определенного склада, и с любого склада может быть выписано много накладных.

Таким образом, после уточнения, диаграмма будет выглядеть следующим образом:

инфологический атрибут информационный отображение

Пора подумать об атрибутах сущностей. Беседуя с сотрудниками фирмы, мы выяснили следующее:

  • · Каждый покупатель является юридическим лицом и имеет наименование, адрес, банковские реквизиты.
  • · Каждый товар имеет наименование, цену, а также характеризуется единицами измерения.
  • · Каждая накладная имеет уникальный номер, дату выписки, список товаров с количествами и ценами, а также общую сумму накладной. Накладная выписывается с определенного склада и на определенного покупателя.
  • · Каждый склад имеет свое наименование.

Снова выпишем все существительные, которые будут потенциальными атрибутами, и проанализируем их:

  • · Юридическое лицо - термин риторический, мы не работаем с физическими лицами. Не обращаем внимания.
  • · Наименование покупателя
  • · Адрес - явная характеристика покупателя.
  • · Банковские реквизиты - явная характеристика покупателя.
  • · Наименование товара
  • · (?)Цена товара - похоже, что это характеристика товара. Отличается ли эта характеристика от цены в накладной?
  • · Единица измерения - явная характеристика товара.
  • · Номер накладной - явная уникальная характеристика накладной.
  • · Дата накладной - явная характеристика накладной.
  • · (?)Список товаров в накладной - список не может быть атрибутом. Вероятно, нужно выделить этот список в отдельную сущность.
  • · (?)Количество товара в накладной - это явная характеристика, но характеристика чего? Это характеристика не просто "товара", а "товара в накладной".
  • · (?)Цена товара в накладной - опять же это должна быть не просто характеристика товара, а характеристика товара в накладной. Но цена товара уже встречалась выше - это одно и то же?
  • · Сумма накладной - явная характеристика накладной. Эта характеристика не является независимой. Сумма накладной равна сумме стоимостей всех товаров, входящих в накладную.
  • · Наименование склада - явная характеристика склада.

В ходе дополнительной беседы с менеджером удалось прояснить различные понятия цен. Оказалось, что каждый товар имеет некоторую текущую цену. Эта цена, по которой товар продается в данный момент. Естественно, что эта цена может меняться со временем. Цена одного и того же товара в разных накладных, выписанных в разное время, может быть различной. Таким образом, имеется две цены - цена товара в накладной и текущая цена товара.

С возникающим понятием "Список товаров в накладной" все довольно ясно.

Сущности "Накладная" и "Товар" связаны друг с другом отношением типа много-ко-многим . Такая связь, как мы отмечали ранее, должна быть расщеплена на две связи типа один-ко-многим. Для этого требуется дополнительная сущность.

Этой сущностью и будет сущность "Список товаров в накладной". Связь ее с сущностями "Накладная" и "Товар" характеризуется следующими фразами

- "каждая накладная обязана иметь несколько записей из списка товаров в накладной",

  • - "каждая запись из списка товаров в накладной обязана включаться ровно в одну накладную",
  • -"каждый товар может включаться в несколько записей из списка товаров в накладной",
  • - "каждая запись из списка товаров в накладной обязана быть связана ровно с одним товаром".

Атрибуты "Количество товара в накладной" и "Цена товара в накладной" являются атрибутами сущности " Список товаров в накладной".

Точно также поступим со связью, соединяющей сущности "Склад" и "Товар". Введем дополнительную сущность "Товар на складе". Атрибутом этой сущности будет "Количество товара на складе". Таким образом, товар будет числиться на любом складе и количество его на каждом складе будет свое.

Теперь можно внести все это в диаграмму:

Концептуальные и физические ER-модели. Разработанный выше пример ER-диаграммы является примером концептуальной диаграммы . Это означает, что диаграмма не учитывает особенности конкретной СУБД. По данной концептуальной диаграмме можно построить физическую диаграмму , которая уже будут учитываться такие особенности СУБД, как допустимые типы и наименования полей и таблиц, ограничения целостности и т.п. Физический вариант приведенной диаграммы может выглядеть, например, следующим образом:


На данной диаграмме каждая сущность представляет собой таблицу базы данных, каждый атрибут становится колонкой соответствующей таблицы. Обращаем внимание на то, что во многих таблицах, например, "CUST_DETAIL" и "PROD_IN_SKLAD", соответствующих сущностям "Запись списка накладной" и "Товар на складе", появились новые атрибуты, которых не было в концептуальной модели - это ключевые атрибуты родительских таблиц, мигрировавших в дочерние таблицы для того, чтобы обеспечить связь между таблицами посредством внешних ключей.

Полученные таблицы находятся в 3НФ.

Диаграммы сущность-связь позволяют использовать наглядные графические обозначения для моделирования сущностей и их взаимосвязей.

Различают концептуальные и физические ER-диаграммы. Концептуальные диаграммы не учитывают особенностей конкретных СУБД. Физические диаграммы строятся по концептуальным и представляют собой прообраз конкретной базы данных. Сущности, определенные в концептуальной диаграмме становятся таблицами, атрибуты становятся колонками таблиц (при этом учитываются допустимые для данной СУБД типы данных и наименования столбцов), связи реализуются путем миграции ключевых атрибутов родительских сущностей и создания внешних ключей.

Более сложные элементы ER-модели. Мы остановились только на самых основных и наиболее очевидных понятиях ER-модели данных. К числу более сложных элементов модели относятся следующие:

· Подтипы и супертипы сущностей. Как в языках программирования с развитыми типовыми системами (например, в языках объектно-ориентированного программирования), вводится возможность наследования типа сущности, исходя из одного или нескольких супертипов.

Сущность может быть расщеплена на два или более взаимно исключающих подтипа, каждый из которых включает общие атрибуты и/или связи. Эти общие атрибуты и/или связи явно определяются один раз на более высоком уровне. В подтипах могут определяться собственные атрибуты и/или связи. В принципе подтипизация может продолжаться на более низких уровнях, но опыт показывает, что в большинстве случаев оказывается достаточно двух-трех уровней.

Сущность, на основе которой определяются подтипы, называется супертипом. Подтипы должны образовывать полное множество, т.е. любой экземпляр супертипа должен относиться к некоторому подтипу. Иногда для полноты приходится определять дополнительный подтип ПРОЧИЕ.

Пример: Супертип ЛЕТАТЕЛЬНЫЙ АППАРАТ

Как полагается это читать? От супертипа: ЛЕТАТЕЛЬНЫЙ АППАРАТ, который должен быть АЭРОПЛАНОМ, ВЕРТОЛЕТОМ, ПТИЦЕЛЕТОМ или ДРУГИМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ. От подтипа: ВЕРТОЛЕТ, который относится к типу ЛЕТАТЕЛЬНОГО АППАРАТА. От подтипа, который является одновременно супертипа: АЭРОПЛАН, который относится к типу ЛЕТАТЕЛЬНОГО АППАРАТА и должен быть ПЛАНЕРОМ или МОТОРНЫМ САМОЛЕТОМ.

Иногда удобно иметь два или более разных разбиения сущности на подтипы. Например, сущность ЧЕЛОВЕК может быть разбита на подтипы по профессиональному признаку (ПРОГРАММИСТ, ДОЯРКА и т.д.), а может - по половому признаку (МУЖЧИНА, ЖЕНЩИНА).

  • · Связи "many-to-many". Иногда бывает необходимо связывать сущности таким образом, что с обоих концов связи могут присутствовать несколько экземпляров сущности (например, все члены кооператива сообща владеют имуществом кооператива). Для этого вводится разновидность связи "многие-со-многими".
  • · Уточняемые степени связи. Иногда бывает полезно определить возможное количество экземпляров сущности, участвующих в данной связи (например, служащему разрешается участвовать не более, чем в трех проектах одновременно). Для выражения этого семантического ограничения разрешается указывать на конце связи ее максимальную или обязательную степень.
  • · Каскадные удаления экземпляров сущностей. Некоторые связи бывают настолько сильными (конечно, в случае связи "один-ко-многим"), что при удалении опорного экземпляра сущности (соответствующего концу связи "один") нужно удалить и все экземпляры сущности, соответствующие концу связи "многие". Соответствующее требование "каскадного удаления" можно сформулировать при определении сущности.
  • · Домены . Как и в случае реляционной модели данных бывает полезна возможность определения потенциально допустимого множества значений атрибута сущности (домена).

Наиболее правильной интуитивной трактовкой понятия домена является понимание домена как допустимого потенциального множества значений данного типа. Например, домен "Имена" определен на базовом типе строк символов, но в число его значений могут входить только те строки, которые могут изображать имя (в частности, такие строки не могут начинаться с мягкого знака).

Следует отметить также семантическую нагрузку понятия домена: данные считаются сравнимыми только в том случае, когда они относятся к одному домену. В нашем примере значения доменов "Номера пропусков" и "Номера групп" относятся к типу целых чисел, но не являются сравнимыми.

Эти и другие более сложные элементы модели данных "Сущность-Связи" делают ее существенно более мощной, но одновременно несколько усложняют ее использование.

Перевод цикла из 15 статей о проектировании баз данных.
Информация предназначена для новичков.
Помогло мне. Возможно, что поможет еще кому-то восполнить пробелы.

Руководство по проектированию баз данных.

1. Вступление.
Если вы собираетесь создавать собственные базы данных, то неплохо было бы придерживаться правил проектирования баз данных, так как это обеспечит долговременную целостность и простоту обслуживания ваших данных. Данное руководство расскажет вам что представляют из себя базы данных и как спроектировать базу данных, которая подчиняется правилам проектирования реляционных баз данных.

Базы данных – это программы, которые позволяют сохранять и получать большие объемы связанной информации. Базы данных состоят из таблиц , которые содержат информацию . Когда вы создаете базу данных необходимо подумать о том, какие таблицы вам нужно создать и какие связи существуют между информацией в таблицах. Иначе говоря, вам нужно подумать о проекте вашей базы данных. Хороший проект базы данных, как было сказано ранее, обеспечит целостность данных и простоту их обслуживания.
База данных создается для хранения в ней информации и получения этой информации при необходимости. Это значит, что мы должны иметь возможность помещать, вставлять (INSERT ) информацию в базу данных и мы хотим иметь возможность делать выборку информации из базы данных (SELECT ).
Язык запросов к базам данных был придуман для этих целей и был назван Структурированный язык запросов или SQL. Операции вставки данных (INSERT) и их выборки (SELECT) – части этого самого языка. Ниже приведен пример запроса на выборку данных и его результат.

SQL – большая тема для повествования и его рассмотрение выходит за рамки данного руководства. Данная статья строго сфокусирована на изложении процесса проектирования баз данных . Позднее, в отдельном руководстве, я расскажу об основах SQL.

Реляционная модель.
В этом руководстве я покажу вам как создавать реляционную модель данных. Реляционная модель – это модель, которая описывает как организовать данные в таблицах и как определить связи между этими таблицами.

Правила реляционной модели диктуют, как информация должна быть организована в таблицах и как таблицы связаны друг с другом. В конечном счете результат можно предоставить в виде диаграммы базы данных или, если точнее, диаграммы «сущность-связь», как на рисунке (Пример взят из MySQL Workbench).

Примеры.
В качестве примеров в руководстве я использовал ряд приложений.

РСУБД.

РСУБД, которую я использовал для создания таблиц примеров – MySQL. MySQL – наиболее популярная РСУБД и она бесплатна.

Утилита для администрирования БД.

После установки MySQL вы получаете только интерфейс командной строки для взаимодействия с MySQL. Лично я предпочитаю графический интерфейс для управления моими базами данных. Я часто использую SQLyog. Это бесплатная утилита с графическим интерфейсом. Изображения таблиц в данном руководстве взяты оттуда.

Визуальное моделирование.

Существует отличное бесплатное приложение MySQL Workbench. Оно позволяет спроектировать вашу базу данных графически. Изображения диаграмм в руководстве сделаны в этой программе.

Проектирование независимо от РСУБД.
Важно знать, что хотя в данном руководстве и приведены примеры для MySQL, проектирование баз данных независимо от РСУБД. Это значит, что информация применима к реляционным базам данных в общем, не только к MySQL. Вы можете применить знания из этого руководства к любым реляционным базам данных, подобным Mysql, Postgresql, Microsoft Access, Microsoft Sql or Oracle.

В следующей части я коротко расскажу об эволюции баз данных. Вы узнаете откуда взялись базы данных и реляционная модель данных.

2. История.
В 70-х – 80-х годах, когда компьютерные ученые все еще носили коричневые смокинги и очки с большими, квадратными оправами, данные хранились бесструктурно в файлах, которые представляли собой текстовый документ с данными, разделенными (обычно) запятыми или табуляциями.

Так выглядели профессионалы в сфере информационных технологий в 70-е. (Слева внизу находится Билл Гейтс).

Текстовые файлы и сегодня все еще используются для хранения малых объемов простой информации. Comma-Separated Values (CSV) - значения, разделённые запятыми, очень популярны и широко поддерживаются сегодня различным программным обеспечением и операционными системами. Microsoft Excel – один из примеров программ, которые могут работать с CSV–файлами. Данные, сохраненные в таком файле могут быть считаны компьютерной программой.

Выше приведен пример того, как такой файл мог бы выглядеть. Программа, производящая чтение данного файла, должна быть уведомлена о том, что данные разделены запятыми. Если программа хочет выбрать и вывести категорию, в которой находится урок "Database Design Tutorial" , то она должна строчка за строчкой производить чтение до тех пор, пока не будут найдены слова "Database Design Tutorial" и затем ей нужно будет прочитать следующее за запятой слово для того, чтобы вывести категорию Software .

Таблицы баз данных.
Чтение файла строчка за строчкой не является очень эффективным. В реляционной базе данных данные хранятся в таблицах. Таблица ниже содержит те же самые данные, что и файл. Каждая строка или “запись” содержит один урок. Каждый столбец содержит какое-то свойство урока. В данном случае это заголовок (title) и его категория (category).

Компьютерная программа могла бы осуществить поиск в столбце tutorial_id данной таблицы по специфическому идентификатору tutorial_id для того, чтобы быстро найти соответствующие ему заголовок и категорию. Это намного быстрее, чем поиск по файлу строка за строкой, подобно тому, как это делает программа в текстовом файле.

Современные реляционные базы данных созданы так, чтобы позволять делать выборку данных из специфических строк, столбцов и множественных таблиц, за раз, очень быстро.

История реляционной модели.
Реляционная модель баз данных была изобретена в 70-х Эдгаром Коддом (Ted Codd), британским ученым. Он хотел преодолеть недостатки сетевой модели баз данных и иерархической модели. И он очень в этом преуспел. Реляционная модель баз данных сегодня всеобще принята и считается мощной моделью для эффективной организации данных.

Сегодня доступен широкий выбор систем управления базами данных: от небольших десктопных приложений до многофункциональных серверных систем с высокооптимизированными методами поиска. Вот некоторые из наиболее известных систем управления реляционными базами данных (РСУБД):

- Oracle – используется преимущественно для профессиональных, больших приложений.
- Microsoft SQL server – РСУБД компании Microsoft. Доступна только для операционной системы Windows.
- Mysql – очень популярная РСУБД с открытым исходным кодом. Широко используется как профессионалами, так и новичками. Что еще нужно?! Она бесплатна.
- IBM – имеет ряд РСУБД, наиболее известна DB2.
- Microsoft Access – РСУБД, которая используется в офисе и дома. На самом деле – это больше, чем просто база данных. MS Access позволяет создавать базы данных с пользовательским интерфейсом.
В следующей части я расскажу кое-что о характеристиках реляционных баз данных.

3. Характеристики реляционных баз данных.
Реляционные базы данных разработаны для быстрого сохранения и получения больших объемов информации. Ниже приведены некоторые характеристики реляционных баз данных и реляционной модели данных.
Использование ключей.
Каждая строка данных в таблице идентифицируется уникальным “ключом”, который называется первичным ключом. Зачастую, первичный ключ это автоматически увеличиваемое (автоинкрементное) число (1,2,3,4 и т.д). Данные в различных таблицах могут быть связаны вместе при использовании ключей. Значения первичного ключа одной таблицы могут быть добавлены в строки (записи) другой таблицы, тем самым, связывая эти записи вместе.

Используя структурированный язык запросов (SQL), данные из разных таблиц, которые связаны ключом, могут быть выбраны за один раз. Для примера вы можете создать запрос, который выберет все заказы из таблицы заказов (orders), которые принадлежат пользователю с идентификатором (id) 3 (Mike) из таблицы пользователей (users). О ключах мы поговорим далее, в следующих частях.


Столбец id в данной таблице является первичным ключом. Каждая запись имеет уникальный первичный ключ, часто число. Столбец usergroup (группы пользователей) является внешним ключом. Судя по ее названию, она видимо ссылается на таблицу, которая содержит группы пользователей.

Отсутствие избыточности данных.
В проекте базы данных, которая создана с учетом правил реляционной модели данных, каждый кусочек информации, например, имя пользователя, хранится только в одном месте. Это позволяет устранить необходимость работы с данными в нескольких местах. Дублирование данных называется избыточностью данных и этого следует избегать в хорошем проекте базы данных.
Ограничение ввода.
Используя реляционную базу данных вы можете определить какой вид данных позволено сохранять в столбце. Вы можете создать поле, которое содержит целые числа, десятичные числа, небольшие фрагменты текста, большие фрагменты текста, даты и т.д.


Когда вы создаете таблицу базы данных вы предоставляете тип данных для каждого столбца. К примеру, varchar – это тип данных для небольших фрагментов текста с максимальным количеством знаков, равным 255, а int – это числа.

Помимо типов данных РСУБД позволяет вам еще больше ограничить возможные для ввода данные. Например, ограничить длину или принудительно указать на уникальность значения записей в данном столбце. Последнее ограничение часто используется для полей, которые содержат регистрационные имена пользователей (логины), или адреса электронной почты.

Эти ограничения дают вам контроль над целостностью ваших данных и предотвращают ситуации, подобные следующим:

Ввод адреса (текста) в поле, в котором вы ожидаете увидеть число
- ввод индекса региона с длинной этого самого индекса в сотню символов
- создание пользователей с одним и тем же именем
- создание пользователей с одним и тем же адресом электронной почты
- ввод веса (числа) в поле дня рождения (дата)

Поддержание целостности данных.
Настраивая свойства полей, связывая таблицы между собой и настраивая ограничения, вы можете увеличить надежность ваших данных.
Назначение прав.
Большинство РСУБД предлагают настройку прав доступа, которая позволяет назначать определенные права определенным пользователям. Некоторые действия, которые могут быть позволены или запрещены пользователю: SELECT (выборка), INSERT (вставка), DELETE (удаление), ALTER (изменение), CREATE (создание) и т.д. Это операции, которые могут быть выполнены с помощью структурированного языка запросов (SQL).
Структурированный язык запросов (SQL).
Для того, чтобы выполнять определенные операции над базой данных, такие, как сохранение данных, их выборка, изменение, используется структурированный язык запросов (SQL). SQL относительно легок для понимания и позволяет в т.ч. и уложненные выборки, например, выборка связанных данных из нескольких таблиц с помощью оператора SQL JOIN. Как и упоминалось ранее, SQL в данном руководстве обсуждаться не будет. Я сосредоточусь на проектировании баз данных.

То, как вы спроектируете базу данных будет оказывать непосредственное влияние на запросы, которые вам будет необходимо выполнить, чтобы получить данные из базы данных. Это еще одна причина, почему вам необходимо задуматься о том, какой должна быть ваша база. С хорошо спроектированной базой данных ваши запросы могут быть чище и проще.

Переносимость.
Реляционная модель данных стандартна. Следуя правилам реляционной модели данных вы можете быть уверены, что ваши данные могут быть перенесены в другую РСУБД относительно просто.

Как говорилось ранее, проектирование базы данных – это вопрос идентификации данных, их связи и помещение результатов решения данного вопроса на бумагу (или в компьютерную программу). Проектирование базы данных независимо от РСУБД, которую вы собираетесь использовать для ее создания.

В следующей части подробнее рассмотрим первичные ключи.




Top