Биометрическая аутентификация: удобство или безопасность? Биометрическая аутентификация: истоки, хаки и будущее

Помимо использования пароля в качестве аутентификационного контроля, существует ряд биометрических возможностей, которые обладают большей надежностью.

Биометрия - это методы автоматической аутентификации человека и подтверждения личности человека, основанные на физиологических или поведенческих характеристиках. Примерами физиологических характеристик являются отпечатки пальцев, форма руки, характеристика лица, радужная оболочка глаза. К поведенческим характеристикам относятся особенности или характерные черты, либо приобретенные или появившиеся со временем, то есть динамика подписи, идентификация голоса, динамика нажатия на клавиши. Биометрия - уникальная, измеримая характеристика человека для автоматической идентификации или верификации. Термин «автоматически» означает, что биометрические технологии должны распознавать или верифицировать человека быстро и автоматически, в режиме реального времени. Идентификация с помощью биометрических технологий предполагает сравнение ранее внесенного биометрического образца с вновь поступившими биометрическими данными.

Все биометрические системы работают практически по одинаковой схеме. Во-первых, система запоминает образец биометрической характеристики (это и называется процессом записи). Во время записи некоторые биометрические системы могут попросить сделать несколько образцов для того, чтобы составить наиболее точное изображение биометрической характеристики. Затем полученная информация обрабатывается и преобразовывается в математический код.

Кроме того, система может попросить произвести еще некоторые действия для того, чтобы «приписать» биометрический образец к определенному человеку. Например, персональный идентификационный номер (PIN) прикрепляется к определенному образцу, либо смарт-карта, содержащая образец, вставляется в считывающее устройство. В таком случае, снова делается образец биометрической характеристики и сравнивается с представленным образцом.

Аутентификация по любой биометрической системе проходит четыре стадии: Запись - физический или поведенческий образец запоминается системой; Выделение - уникальная информация выносится из образца и составляется биометрический образец;

Сравнение - когда сохраненный образец сравнивается с представленным; «Совпадение/несовпадение» - система решает, совпадают ли биометрические образцы, и выносит решение.

Использование биометрии для аутентификации открывает ряд уникальных возможностей. Биометрия позволяет идентифицировать вас с помощью вас самих же. Смарт-карты, карточки с магнитной полосой, идентификационные карточки, ключи и подобные вещи, могут быть утеряны, украдены, скопированы или просто забыты дома. Пароли могут быть забыты, также украдены. Более того, постоянно развивающийся электронный бизнес и работа с информацией, представленной в электронном виде требует от человека запоминать множество паролей и персональных идентификационных номеров (PIN) для компьютерных счетов, банковских счетов, электронной почты, международных переговоров, веб - сайтов и т.п.. Биометрия предлагает быстрый, удобный, точный, надежный и не очень дорогой способ идентификации с огромным количеством самых разнообразных применений.

Нет такой единственной биометрической технологии, которая подошла бы для всех нужд. Все биометрические системы имеют свои преимущества и недостатки. Есть, однако, общие черты, которые делают биометрические технологии полезными. Во-первых, любая система должна быть основана на характеристике, которая является различимой и уникальной. Например, на протяжении века, правоохранительные органы использовали отпечатки пальцев для идентификации людей. Есть большое количество научных данных, подтверждающих идею, что не бывает двух одинаковых отпечатков пальцев. Технология, такая как идентификация, по руке, применялась долгие годы, а такие технологии как идентификации по радужной оболочке глаза или по характеристикам лица теперь получают достаточно большое распространение. Некоторые новые биометрические технологии могут быть очень точными, но могут потребовать дополнительных данных для подтверждения их уникальности. Другой аспект - насколько «дружелюбна» каждая технология. Процесс должен быть быстрым и простым, как, например, встать перед видеокамерой, сказать несколько слов в микрофон или дотронуться до сканера отпечатков пальцев. Основным преимуществом биометрических технологий является быстрая и простая идентификация без причинения каких-либо неудобств человеку.

Применения биометрических технологий разнообразны: доступ к рабочим местам и сетевым ресурсам, защита информации, обеспечение доступа к определенным ресурсам и безопасность. Ведение электронного бизнеса и электронных правительственных дел возможно только после соблюдения определенных процедур по идентификации личности. Биометрические технологии используются в области безопасности банковских обращений, инвестирования и других финансовых перемещений, а также розничной торговле, охране правопорядка, вопросах охраны здоровья, а также в сфере социальных услуг. Биометрические технологии в скором будущем будут играть главную роль в вопросах персональной идентификации во многих сферах. Применяемые отдельно или используемые совместно со смарт-картами, ключами и подписями, биометрия скоро станет применяться во всех сферах экономики и частной жизни.

В процессе биометрической аутентификации эталонный и предъявленный пользователем образцы сравнивают с некоторой погрешностью, которая определяется и устанавливается заранее. Погрешность подбирается для установления оптимального соотношения двух основных характеристик используемого средства биометрической аутентификации.

Обе величины измеряются в процентах и должны быть минимальны. Следует отметить, что величины являются обратнозависимыми, поэтому аутентифицирующий модуль при использовании биометрической аутентификации настраивается индивидуально - в зависимости от используемой биометрической характеристики и требований к качеству защиты ищется некая «золотая середина» между данными коэффициентами. Серьезное средство биометрической аутентификации должно позволять настроить коэффициент FAR до величин порядка 0,01 - 0,001 % при коэффициенте FRR до 3 - 5%.

В зависимости от используемой биометрической характеристики, средства биометрической аутентификации имеют различные достоинства и недостатки. Например, использование отпечатков пальцев наиболее привычно и удобно для пользователей, но, теоретически, возможно создание «искусственного пальца», успешно проходящего аутентификацию.

Общий же недостаток биометрической аутентификации - необходимость в оборудовании для считывания биометрических характеристик, которое может быть достаточно дорогостоящим.

В 21 веке н.э. есть достаточно много способов биометрической аутентификации. Все они делятся качественно на две большие группы, а именно: статические и динамические методы биометрической аутентификации.

Уникальные физиологические, или по другому статические, характеристики каждого человеческого организма, которые он получает от бога и природы и присущие только ему - составляют основу статических методов биометрической аутентификации. Статические характеристики человека не меняются на протяжении всей его жизни и являются неотъемлемыми от него.

К современным методам аутентификации относится проверка подлинности на основе биометрических показателей. При биометрической аутентификации, секретными данными пользователя могут служить, как глазная сетчатка, так и отпечаток пальца. Эти биометрические образы являются уникальными для каждого пользователя, что обеспечивает высокий уровень защиты доступа к информации. Согласно предварительно установленным протоколам, биометрические образцы пользователя регистрируются в базе данных.

Современная биометрическая аутентификация основывается на двух методах:

  • статический метод аутентификации - распознает физические параметры человека, которыми он обладает на протяжении всей жизни: от своего рождения и до самой смерти (отпечатки пальцев, отличительные характеристики радужной оболочки глаза, рисунок глазной сетчатки, термограмма, геометрия лица, геометрия кисти руки и даже фрагмент генетического кода);
  • динамический метод - анализирует характерный черты, особенности поведения пользователя, которые демонстрируются в момент выполнения какого либо обычного повседневного действия (подпись, клавиатурный почерк, голос и другое).

Основным на всемирном рынке биометрической защиты, всегда являлся статический метод. Динамическая аутентификация и комбинированные системы защиты информации занимали, всего лишь, 20 % рынка. Однако, в последние годы, наблюдается активное развитие динамических методов защиты. Особенный интерес сетевых технологий представляют методы клавиатурного почерка и аутентификации по подписи.

В связи с довольно быстрым развитием современных биометрических технологий, появляется критически важная проблема - определение общих стандартов надежности биометрических систем защиты. Большим авторитетом среди специалистов пользуются средства, имеющие сертификаты качества, которые выдает Международная ассоциация по компьютерной безопасности ICSA (International Computer Security Association).

Статический метод биометрической аутентификации и его разновидности

Дактилоскопия - наиболее популярная технология биометрической аутентификации, основанная на сканировании и распознавании отпечатков пальцев.


Данный метод активно поддерживается правоохранительными органами, с целью привлечения в свои архивы электронных образцов. Также, метод сканирования отпечатков пальцев легок в использовании и надежен универсальностью данных. Главным устройством этого метода биометрической аутентификации есть сканер, который сам по себе имеет небольшие размеры и является относительно недорогим в цене. Такая аутентификация осуществляется достаточно быстро за счет того, что система не требует распознавания каждой линии узора и сравнения её с исходными образцами, находящимися в базе. Системе достаточно определить совпадения в масштабных блоках и проанализировать раздвоения, разрывы и прочие искажения линий (минуции).

Уникальность каждого отпечатка позволяет использовать данный метод биометрической аутентификации как в криминалистике, в процессах серьезных бизнес-операций, так и в быту. В последнее время появилось множество ноутбуков со встроенным сканером отпечатков пальцев, клавиатур, компьютерных мышей, а также смартфонов для аутентификации пользователя.


Есть и минусы в этой, казалось бы, неоспоримой и не поддельной, аутентификации. Из-за использования сложных алгоритмов распознавания мельчайших папиллярных линий, система аутентификации может демонстрировать сбои при недостаточном контакте пальца со сканером. Обмануть средство аутентификации и саму систему защиты можно и с помощью муляжа (очень качественно выполненного) или мертвого пальца.

По принципу работы, используемые для аутентификации сканеры, делятся на три вида:

  • оптические сканеры, функционирующие на технологии отражения, или по принципу просвета. Из всех видов, оптическое сканирование не способно распознать муляж, однако, благодаря своей стоимости и простоте, именно оптические сканеры наиболее популярны;
  • полупроводниковые сканеры - подразделяются на радиочастотные, емкостные, термочувствительные и чувствительные к давлению сканеры. Тепловые (термосканеры) и радиочастнотные сканеры лучше всех способны распознать настоящий отпечаток и не допустить аутентификацию по муляжу пальца. Полупроводниковые сканеры считаются более надежными, нежели оптические;
  • ультразвуковые сканеры. Данный вид устройств является самым сложным и дорогим. С помощью ультразвуковых сканеров можно совершать аутентификацию не только по отпечаткам пальцев, но и по некоторым другим биометрическим параметрам, таким как частота пульса и пр.

Аутентификация по сетчатке глаза. Данный метод стали использовать еще в 50-х годах прошлого столетия. В то время, как раз, была изучена и определена уникальность рисунка кровеносных сосудов глазного дна.

Сканеры сетчатки глаза имеют довольно большие габариты и более высокую цену, нежели сканеры отпечатков пальцев. Однако, надежность такого вида аутентификации гораздо выше дактилоскопии, что и оправдывает вложения. Особенности рисунка кровеносных сосудов глазного дна таковы, что он не повторяется даже у близнецов. Поэтому, такая аутентификация имеет максимальную защиту. Обмануть сканер сетчатки глаза, практически невозможно. Сбои при распознавании глазного рисунка незначительно малы - примерно, один на миллион случаев. Если, у пользователя нет серьезных глазных заболеваний (например, катаракта), он может уверенно использовать систему аутентификации по сетчатке глаза для защиты доступа к всевозможным хранилищам, приватных кабинетов и сверхсекретных объектов.

Сканирование сетчатки глаза предусматривает использование инфракрасного низкоинтенсивного излучения, которое направляется к кровеносным сосудам глазного дна через зрачок. Сигнал отображает несколько сотен характерных точек, которые записываются в шаблон. Самые современные сканеры вместо инфракрасного света направляют лазер мягкого действия.

Для прохождения данной аутентификации, человек должен максимально приблизить к сканеру лицо (глаз должен быть не далее 1,5 см от устройства), зафиксировать его в одном положении и направить взгляд на дисплей сканера, на специальную метку. Около сканера, в таком положении, приходится находиться приблизительно минуту. Именно столько много времени требуется сканеру для осуществления операции сканирования, после чего, системе понадобится еще несколько секунд для сравнения полученного образца с установленным шаблоном. Длительное нахождение в одном положении и фиксация взгляда на вспышку света и являются самыми большими недостатками использования данного вида аутентификации. Плюс, из-за относительно долгого сканирования сетчатки и обработки результатов, данное устройство невозможно устанавливать для аутентификации большого количества людей (например, проходной).

Аутентификация по радужной оболочке глаза. Данный метод аутентификации основан на распознавании уникальных особенностей радужной оболочки глаза.


Схожий на сеть, сложный рисунок подвижной диафрагмы между задней и передней камерами глаза - это и есть уникальная радужная оболочка. Данный рисунок человеку дается еще до его рождения и особо не изменяется в течении всей жизни. Надежности аутентификации методом сканирования радужной оболочки глаза способствует различие левого и правого глаз человека. Такая технология, практически, исключает ошибки и сбои при аутентификации.

Однако, сложно назвать устройства, считывающие рисунок радужной оболочки - сканерами. Это, скорее всего, специализированная камера, которая делает 30 снимков в секунду. Затем оцифровывается одна из записей и преобразовывается в упрощенную форму, из которой отбираются около 200 характерных точек и информация по ним записывается в шаблон. Это куда более надежно, чем сканирование отпечатков пальцев - для формирования таких шаблонов используются всего лишь 60-70 характерных точек.

Данный вид аутентификации предполагает дополнительную защиту от поддельных глаз - в некоторых моделях устройств, для определения «жизни» глаза, изменяется поток света, направленный в него и система отслеживает реакцию и определяет изменяется ли размер зрачка.

Данные сканеры уже широко используются, к примеру, в аэропортах многих стран для аутентификации сотрудников во время пересечения зон ограниченного доступа, а также, неплохо зарекомендовали себя в Англии, Германии, США и Японии во время экспериментального использования с банкоматами. Следует отметить, что при аутентификации по радужной оболочке глаза, в отличие от сканирования сетчатки, считывающая камера может находиться от 10 см до 1 метра от глаза и процесс сканирования и распознавания проходит намного быстрее. Данные сканеры стоят дороже, нежели вышеуказанные средства биометрической аутентификации, но, в последнее время и они становятся все более доступными.

Аутентификация по геометрии руки - данный метод биометрической аутентификации предполагает измерение определенных параметров человеческой кисти, например: длина, толщина и изгибы пальцев, общая структура кисти, расстояние между суставами, ширина и толщина ладони.


Руки человека не являются уникальными, поэтому для надежности данного вида аутентификации необходимо комбинировать распознавание сразу по нескольким параметрам.

Вероятность ошибок при распознавании геометрии кисти составляет около 0,1%, а это значит, что при ушибе, артрите и прочих заболеваниях и повреждениях кисти, скорее всего, пройти аутентификацию не удастся. Так что, данный метод биометрической аутентификации не подходит для обеспечения безопасности объектов высокой степени секретности.

Однако, данный метод нашел широкое распространение, благодаря тому, что он удобен для пользователей по целому ряду причин. Одной из немаловажных таких причин является то, что устройство для распознания параметров руки не принуждает пользователя к дискомфорту и не отнимает много времени (весь процесс аутентификации осуществляется за несколько секунд). Следующей причиной популярности аутентификации по геометрии руки можно назвать тот факт, что ни температура, ни загрязненность, ни влажность кисти не влияют на процедуру аутентификации. Также, удобен данный метод и тем, что для распознавания кисти можно использовать изображение низкого качества - размер шаблона, хранящегося в базе всего 9 байт. Процедура сравнения кисти пользователя с установленным шаблоном очень проста и легко может быть автоматизирована.

Устройства данного вида биометрической аутентификации могут иметь разный внешний вид и функционал - одни сканируют лишь два пальца, другие делают снимок всей руки, а некоторые современные устройства при помощи инфракрасной камеры сканируют вены и по их изображению осуществляют аутентификацию.

Данный метод впервые был использован в начале 70-х годов прошлого века. Сегодня подобные устройства можно встретить в аэропортах и различных предприятиях, где необходимо формировать достоверные сведения о присутствии того, или иного человека, учета рабочего времени и прочих процедур контроля.

Аутентификация по геометрии лица. Этот биометрический метод аутентификации является одним из «трёх больших биометрик» наряду с распознаванием по радужной оболочке и сканированию отпечатков пальцев.


Данный метод аутентификации подразделяется на двухмерное и трехмерное распознавание. Двухмерное (2D) распознавание лица используется уже очень давно, в основном, в криминалистике. Но, с каждым годом данный метод усовершенствуется, повышая, этим самым, уровень своей надежности. Однако, до совершенства двухмерному методу распознавания лица еще далеко - вероятность ложных срабатываний при данной аутентификации варьируется от 0,1 до 1 %. Еще выше частота ошибок непризнания.

Куда больше надежд возлагают на новейший метод - трехмерное (3D) распознавание лиц. Оценки надежности данного метода пока не выведены, так как он является относительно молодым. Разработкой систем трехмерного распознавания лиц занимаются около десяти ведущих мировых ИТ-компаний, в том числе и из России. Большинство таких разработчиков предоставляют на рынок сканеры вместе с программным обеспечением. И только некоторые работают над созданием и выпуском сканеров.

При трехмерном распознавании лиц используется множество сложных алгоритмов, эффективность которых зависит от условий их применения. Процедура сканирования составляет около 20-30 секунд. В этот момент лицо может быть повернуто относительно камеры, что принуждает систему компенсировать движения и формировать проекции лица с четким выделением черт лица, таких как контуры бровей, глаз, носа, губ и др. Затем система определяет расстояние между ними. В основном, шаблон составляется из таких неизменных характеристик, как глубина глазных впадин, форма черепа, надбровных дуг, высота и ширина скул и прочих ярко выраженных особенностей, благодаря которым впоследствии система сможет распознать лицо даже при наличии бороды, очков, шрамов, головного убора и прочего. Всего для построения шаблона используется от 12 до 40 особенностей лица и головы пользователя.

Международный подкомитет по стандартизации в области биометрии (IS0/IEC JTC1/SC37 Biometrics) в последнее время занимается разработкой единого формата сведений для распознавания человеческих лиц на основе двух- и трехмерных изображений. Скорее всего, два данных метода объединят вы один биометрический метод аутентификации.

Термография лица. Данный биометрический метод аутентификации выражается в установлении человека по его кровеносным сосудам.


Лицо пользователя сканируется при помощи инфракрасного света и формируется термограмма - температурная карта лица, являющаяся достаточно уникальной. Данный метод по своей надежности сравним с методом аутентификации по отпечаткам пальцев. Сканирование лица при данной аутентификации можно производить с десятиметрового расстояния. Этот метод способен распознать близнецов (в отличии от распознавания по геометрии лица), людей, перенесших пластические операции, использующих маски, а также он эффективен не смотря на температуру тела и старение организма.

Однако, данный метод не распространен широко, возможно, из-за невысокого качества получаемых термограмм лиц.

Динамические методы биометрической аутентификации

Данный метод позволяет произвести идентификацию и аутентификацию личности при помощи лишь одного микрофона, который подключен к записывающему устройству. Использование данного метода бывает полезным в судебных случаях, когда единственной уликой против подозреваемого служит запись телефонного разговора. Метод распознавания голоса является очень удобным - пользователю достаточно лишь произнести слово, без совершения каких-либо дополнительных действий. И, наконец, огромным преимуществом данного метода является право осуществления скрытой аутентификации. Пользователь не всегда может быть осведомлен о включении дополнительной проверки, а значит, злоумышленникам будет еще сложнее получить доступ.

Формирование персонального шаблона производится по многим характеристикам голоса. Это может быть тональность голоса, интонация, модуляция, отличительные особенности произношения некоторых звуков речи и другое. Если система аутентификации должным образом проанализировала все голосовые характеристики, то вероятность аутентификации постороннего лица никчемно мала. Однако, в 1-3 % случаев, система может дать отказ и настоящему обладателю ранее определенного голоса. Дело в том, что голос человека может меняться во время болезни (например, простуды), в зависимости от психического состояния, возраста и т.п. Поэтому, биометрический метод голосовой аутентификации нежелательно использовать на объектах повышенной безопасности. Он может быть использован для доступа в компьютерные классы, бизнес-центры, лаборатории и подобного уровня безопасности объекты. Также, технология распознавание голоса может применяться не только в качестве аутентификации и идентификации, но и как незаменимый помощник при голосовом вводе данных.

Метод распознавания клавиатурного почерка - является одним из перспективных методов биометрической аутентификации сегодняшнего дня. Клавиатурный почерк представляет собой биометрическую характеристику поведения каждого пользователя, а именно - скорость ввода, время удержания клавиш, интервалы между нажатиями на них, частота образования ошибок при вводе, число перекрытий между клавишами, использование функциональных клавиш и комбинаций, уровень аритмичности при наборе и др.


Данная технология является универсальной, однако, лучше всего, распознавание клавиатурного почерка подходит для аутентификации удаленных пользователей. Разработкой алгоритмов распознавания клавиатурного почерка активно занимаются как зарубежные, так и российские ИТ-компании.

Аутентификация по клавиатурному почерку пользователя имеет два способа:

  • ввод известной фразы (пароля);
  • ввод неизвестной фразы (генерируется случайным образом).

Оба способа аутентификации предполагают два режима: режим обучения и режим самой аутентификации. Режим обучения заключается в многократном вводе пользователем кодового слова (фразы, пароля). В процессе повторного набора, система определяет характерные особенности ввода текста и формирует шаблон показателей пользователя. Надежность такого вида аутентификации зависит от длины вводимой пользователем фразы.

Среди преимуществ данного метода аутентификации следует отметить удобство пользования, возможность осуществления процедуры аутентификации без специального оборудования, а также возможность скрытой аутентификации. Минусом данного метода, как и в случае с распознаванием голоса, можно назвать зависимость отказа системы от возрастных факторов и состояния здоровья пользователя. Ведь, моторика, куда сильнее, нежели голос, зависит от состояния человека. Даже простая человеческая усталость может повлиять на прохождение аутентификации. Смена клавиатуры, также может быть причиной отказа системы - пользователь способен не сразу адаптироваться к новому устройству ввода и поэтому, при вводе проверочной фразы, клавиатурный почерк может не соответствовать шаблону. В частности, это влияет на темп ввода. Хотя, исследователи предлагают повысить эффективность данного метода за счет использования ритма. Искусственное добавление ритма (например, ввод пользователем слова под какую-то знакомую мелодию) обеспечивает устойчивость клавиатурного почерка и более надежную защиту от злоумышленников.

Верификация подписи . В связи с популярностью и массовому использованию различных устройств с сенсорным экраном, биометрический метод аутентификации по подписи становится очень востребованным.

Максимально точную верификацию подписи обеспечивает использование специальных световых перьев. Во многих странах электронные документы, подписанные биометрической подписью, имеют такую же юридическую силу, что и бумажные носители. Это позволяет осуществлять документооборот значительно быстрее и беспрепятственно. В России, к сожалению, доверие оказывает лишь бумажный подписанный документ, или электронный документ, на который наложена официально зарегистрированная электронная цифровая подпись (ЭЦП). Но, ЭЦП легко передать другому лицу, что не сделаешь с биометрической подписью. Поэтому, верификация по биометрической подписи является более надежной.

Биометрический метод аутентификации по подписи имеет два способа:

  • на основе анализа визуальных характеристик подписи. Данным способом предполагается сравнение двух изображений подписи на соответствие идентичности - это может осуществляться как системой, так и человеком;
  • способ компьютерного анализа динамических характеристик написания подписи. Аутентификация таким способом происходит после тщательного исследования сведений о самой подписи, а также о статистических и периодических характеристиках ее написания.

Формирование шаблона подписи осуществляется в зависимости от требуемого уровня защиты. Всего, одна подпись анализируется пол 100-200 характерным точкам. Если же, подпись ставится с использованием светового пера, то помимо координат пера, учитывается и угол его наклона, нажатие пера. Угол наклона пера исчисляется относительно планшета и по часовой стрелке.

Данный метод биометрической аутентификации, как и распознавание клавиатурного почерка, имеют общую проблему - зависимость от психофизического состояния человека.

Комбинированные решения биометрической аутентификации

Мультимодальная, или комбинированная система биометрической аутентификации - это устройство, в котором объединены сразу несколько биометрических технологий. Комбинированные решения по праву считаются наиболее надежными в плане защиты информации с помощью биометрических показателей пользователя, ведь подделать сразу несколько показателей гораздо сложнее, нежели один признак, что является, практически, не под силу злоумышленникам. Максимально надежными считаются комбинации «радужная оболочка + палец» или «палец + рука».

Хотя, в последнее время, популярность набирают системы типа «лицо + голос». Это связано с широким распространением коммуникационных средств, которые сочетают в себе модальности аудио и видео, например, мобильные телефоны со встроенными камерами, ноутбуки, видеодомофоны и прочее.

Комбинированные системы биометрической аутентификации значительно эжффективнее мономодальных решений. Это подтверждает множество исследований, в том числе опыт одного банка, который установил сперва систему аутентификации пользователей по лицу (частота ошибок за счет низкого качества камер 7 %), затем по голосу (частота ошибок 5% из-за фоновых шумов), а после, комбинировав эти два метода, достигли почти 100 % эффективности.

Биометрические системы могут быть объединены различными способами: параллельно, последовательно или согласно иерархии. Главным критерием при выборе способа объединения систем должна служить минимализация соотношения количества возможных ошибок ко времени одной аутентификации.

Помимо комбинированных систем аутентификации, можно использовать и многофакторные системы. В системах с многофакторной аутентификацией, биометрические данные пользователя используются вместе с паролем или электронным ключом.

Защита биометрических данных

Биометрическая система аутентификации, как и многие другие системы защиты, в любой момент может быть подвергнута нападению злоумышленников. Соответственно, начиная с 2011 года, международная стандартизация в области информационных технологий предусматривает мероприятия по защите биометрических данных - стандарт IS0/IEC 24745:2011. В российском законодательстве защиту биометрических данных регламентирует Федеральный закон «О персональных данных», с последними изменениями в 2011 году.

Наиболее распространенным направлением в области современных биометрических методов аутентификации является разработка стратегии защиты, хранящихся в базах данных биометрических шаблонов. Среди самых популярных киберпреступлений дня сегодняшнего во всем мире считается «кража личности». Утечка шаблонов из базы данных делает преступления более опасными, так как восстанавливать биометрические данные злоумышленнику проще за счет обратного инжиниринга шаблона. Поскольку биометрические характеристики неотъемлемы от своего носителя, похищенный шаблон нельзя заменить нескомпроментированным новым, в отличии от пароля. Опасность кражи шаблона еще заключается в том, что помимо доступа к защищенным данным, злоумышленник может заполучить секретную информацию о человеке, или организовать за ним тайную слежку.

Защита биометрических шаблонов базируется на трех основных требованиях:

  • необратимость - данное требование ориентировано на сохранение шаблона таким образом, чтобы злоумышленнику было невозможно восстановить вычислительным путем биометрические характеристики из образца, или создать физические подделки биометрических черт;
  • различимость - точность системы биометрической аутентификации не должна быть нарушена схемой защиты шаблона;
  • отменяемость - возможность формирования нескольких защищенных шаблонов из одних биометрических данных. Данное свойство предоставляет биометрической системе возможность отзывать биометрические шаблоны и выдавать новые при компрометации данных, а также предотвращает сопоставление сведений между базами данных, сохраняя этим самым приватность данных пользователя.

Оптимизируя надежную защиту шаблона, главной задачей является нахождение приемлемого взаимопонимания между этими требованиями. Защита биометрических шаблонов строится на двух принципах: биометрические криптосистемы и трансформация биометрических черт. Последние изменения в законодательстве запрещают оператору биометрической системы самостоятельно, без присутствия человека, менять его персональные данные. Соответственно, приемлемыми становятся системы, хранящие биометрические данные в зашифрованном виде. Шифровать эти сведения можно двумя методами: с помощью обычного ключа и шифрование при помощи ключа биометрического - доступ к данным предоставляется исключительно в присутствии владельца биометрических показателей. В обычной криптографии ключ расшифровки и зашифрованный шаблон представляют собой две абсолютно разные единицы. Шаблон может считаться защищенным в том случае, если защищен ключ. В биометрическом ключе происходит одновременная инкапсуляция шаблона криптографического ключа. В процессе шифрования подобным способом, в биометрической системе хранится лишь частичная информация из шаблона. Ее называют защищенным эскизом - secure sketch. На основании защищенного эскиза и другого биометрического образца, схожего на представленный при регистрации, восстанавливается оригинальный шаблон.

ИТ-специалисты, занимающиеся исследованиями схем защиты биометрических шаблонов, обозначили два главных метода создания защищенного эскиза:

  • нечеткое обязательство (fuzzy commitment);
  • нечеткий сейф (fuzzy vault).

Первый метод годится для защиты биометрических шаблонов, имеющих вид двоичных строк определенной длины. А второй может быть полезным для защиты шаблонов, которые представляют собой наборы точек.

Внедрение криптографических и биометрических технологий положительное влияет на разработку инновационных решений для обеспечения информационной безопасности. Особенно перспективной является многофакторная биометрическая криптография, объединившая в себе технологии пороговой криптографии с разделением секрета, многофакторной биометрии и методы преобразования нечетких биометрических признаков в основные последовательности.

Невозможно сформировать однозначный вывод, какой из современных биометрических методов аутентификации, или комбинированных методов является наиболее эффективным для тех, или иных коммерческих из расчета соотношения цены и надежности. Определенно видно, что для множества коммерческих задач использовать сложные комбинированные системы не представляется логичным. Но, вовсе не рассматривать такие системы, тоже не верно. Комбинированную систему аутентификации можно задействовать с учетом требуемого в данный момент уровня безопасности с возможностью активации дополнительных методов в дальнейшем.

Процедуры идентификации и аутентификации пользователя могут базироваться не только на секретной информации, которой обладает пользователь (пароль, персональный идентификатор, секретный ключ и т. п.). В последнее время все большее распространение получает биометрическая аутентификация пользователя, позволяющая уверенно аутентифицировать потенциального пользователя путем измерения физиологических параметров и характеристик человека, особенностей его поведения.

Основные достоинства биометрических методов:

  • высокая степень достоверности аутентификации по биометрическим признакам (из-за их уникальности);
  • неотделимость биометрических признаков от дееспособной личности;
  • трудность фальсификации биометрических признаков.

Активно используются следующие биометрические признаки:

  • отпечатки пальцев;
  • геометрическая форма кисти руки;
  • форма и размеры лица;
  • особенности голоса;
  • узор радужной оболочки и сетчатки глаз.

Рассмотрим типичную схему функционирования биометрической подсистемы аутентификации. При регистрации в системе пользователь должен продемонстрировать один или несколько раз свои характерные биометрические признаки. Эти признаки (известные как подлинные) регистрируются системой как контрольный «образ» (биометрическая подпись) законного пользователя. Этот образ пользователя хранится системой в электронной форме и используется для проверки идентичности каждого, кто выдает себя за соответствующего законного пользователя. В зависимости от совпадения или несовпадения совокупности предъявленных признаков с зарегистрированными в контрольном образе предъявивший их признается законным пользователем (при совпадении) или незаконным (при несовпадении).

С точки зрения потребителя, эффективность биометрической аутентификационной системы характеризуется двумя параметрами:

  • коэффициентом ошибочных отказов FRR (false-reject rate);
  • коэффициентом ошибочных подтверждений FAR (false-alarm rate).

Ошибочный отказ возникает, когда система не подтверждает личность законного пользователя (типичные значения FRR - порядка одной ошибки на 100). Ошибочное подтверждение происходит в случае подтверждения личности незаконного пользователя (типичные значения FAR - порядка одной ошибки на 10 000). Эти коэффициенты связаны друг с другом: каждому коэффициенту ошибочных отказов соответствует определенный коэффициент ошибочных подтверждений.

В совершенной биометрической системе оба параметра ошибки должны быть равны нулю. К сожалению, биометрические системы тоже не идеальны. Обычно системные параметры настраивают так, чтобы добиться требуемого коэффициента ошибочных подтверждений, что определяет соответствующий коэффициент ошибочных отказов.

К настоящему времени разработаны и продолжают совершенствоваться технологии аутентификации по отпечаткам пальцев, радужной оболочке глаза, по форме кисти руки и ладони, по форме и размеру лица, по голосу и «клавиатурному почерку».

Чаще всего биометрические системы используют в качестве параметра идентификации отпечатки пальцев (дактилоскопические системы аутентификации). Такие системы просты и удобны, обладают высокой надежностью аутентификации.

Дактилоскопические системы аутентификации. Одна из основных причин широкого распространения таких систем - наличие больших банков данных отпечатков пальцев. Пользователями подобных систем главным образом являются полиция, различные государственные и некоторые банковские организации.

В общем случае биометрическая технология распознавания отпечатков пальцев заменяет защиту доступа с использованием пароля. Большинство систем используют отпечаток одного пальца.

Основными элементами дактилоскопической системы аутентификации являются:

  • сканер;
  • ПО идентификации, формирующее идентификатор пользователя;
  • ПО аутентификации, производящее сравнение отсканированного отпечатка пальца с имеющимися в БД «паспортами» пользователей.

Дактилоскопическая система аутентификации работает следующим образом. Сначала проходит регистрация пользователя. Как правило, производится несколько вариантов сканирования в разных положениях пальца на сканере. Понятно, что образцы будут немного отличаться, и поэтому требуется сформировать некоторый обобщенный образец - «паспорт». Результаты запоминаются в БД аутентификации. При аутентификации производится сравнение отсканированного отпечатка пальца с «паспортами», хранящимися в БД.

Задача формирования «паспорта» и задача распознавания предъявляемого образца - это задачи распознавания образов. Для их решения используются различные алгоритмы, являющиеся ноу-хау фирм-производителей подобных устройств.

Сканеры отпечатков пальцев. Многие производители все чаще переходят от дактилоскопического оборудования на базе оптики к продуктам, основанным на интегральных схемах. Последние имеют значительно меньшие размеры, чем оптические считыватели, и поэтому их проще реализовать в широком спектре периферийных устройств.

Некоторые производители комбинируют биометрические системы со смарт-картами и картами-ключами. Например, в биометрической идентификационной смарт-карте Authentic реализован следующий подход. Образец отпечатка пальца пользователя запоминается в памяти карты в процессе внесения в списки идентификаторов пользователей, устанавливая соответствие между образцом и личным ключом шифрования. Затем, когда пользователь вводит смарт-карту в считыватель и прикладывает палец к сенсору, ключ удостоверяет его личность. Комбинация биометрических устройств и смарт-карт является удачным решением, повышающим надежность процессов аутентификации и авторизации.

Небольшой размер и невысокая цена датчиков отпечатков пальцев на базе интегральных схем превращает их в идеальный интерфейс для систем защиты. Их можно встроить в брелок для ключей, и пользователи получат универсальный ключ, который обеспечит защищенный доступ ко всему, начиная от компьютеров до входных дверей, дверей автомобилей и банкоматов.

Системы аутентификации по форме ладони используют сканеры формы ладони, обычно устанавливаемые на стенах. Следует отметить, что подавляющее большинство пользователей предпочитают системы этого типа.

Устройства считывания формы ладони создают объемное изображение ладони, измеряя длину пальцев, толщину и площадь поверхности ладони. Например, продукты компании Recognition Systems выполняют более 90 измерений, которые преобразуются в 9-разрядный образец для дальнейших сравнений. Этот образец может быть сохранен локально, на индивидуальном сканере ладони либо в централизованной БД.

По уровню доходов устройства сканирования формы ладони, занимают 2-е место среди биометрических устройств, но редко применяются в сетевой среде из-за высокой стоимости и размера. Однако сканеры формы ладони хорошо подходят для вычислительных сред со строгим режимом безопасности и напряженным трафиком, включая серверные комнаты. Они достаточно точны и обладают довольно низким коэффициентом ошибочного отказа FRR.

Системы аутентификации по лицу и голосу наиболее доступны из-за их дешевизны, поскольку большинство современных компьютеров имеют видео- и аудиосредства. Системы данного класса применяются при удаленной идентификации субъекта доступа в телекоммуникационных сетях.

Технология сканирования черт лица подходит для тех приложений, где прочие биометрические технологии непригодны. В этом случае для идентификации и верификации личности используются особенности глаз, носа и губ. Производители устройств распознавания черт лица применяют собственные математические алгоритмы для идентификации пользователей

Исследования, проводимые компанией International Biometric Group, говорят о том, что сотрудники многих организаций не доверяют устройствам распознавания по чертам лица. Кроме того, по данным этой компании, сканирование черт лица - единственный метод биометрической аутентификации, который не требует согласия на выполнение проверки (и может осуществляться скрытой камерой), а потому имеет негативный для пользователей подтекст.

Следует отметить, что технологии распознавания черт лица требуют дальнейшего совершенствования. Большая часть алгоритмов распознавания черт лица чувствительна к колебаниям в освещении, вызванным изменением интенсивности солнечного света в течение дня. Изменение положения лица также может повлиять на узнаваемость. Различие в положении в 15 % между запрашиваемым изображением и изображением, которое находится в БД, напрямую сказывается на эффективности: при различии в 45° распознавание становится неэффективным.

Системы аутентификации по голосу экономически выгодны по тем же причинам, что и системы распознавания по чертам лица. В частности, их можно устанавливать с оборудованием (например, микрофонами), поставляемым в стандартной комплектации со многими ПК.

Системы аутентификации по голосу при записи образца и в процессе последующей идентификации опираются на такие особенности голоса, как высота, модуляция и частота звука. Эти показатели определяются физическими характеристиками голосового тракта и уникальны для каждого человека. Распознавание голоса применяется вместо набора номера в определенных системах 8рппй Технология распознавания голоса отличается от распознавания речи: последняя интерпретирует то, что говорит абонент, а технология распознавания голоса абонента подтверждает личность говорящего.

Поскольку голос можно просто записать на пленку или другие носители, некоторые производители встраивают в свои продукты операцию запроса отклика. Эта функция предлагает пользователю при входе ответить на предварительно подготовленный и регулярно меняющийся запрос, например такой: «Повторите числа 0, 1, 3».

Технологии распознавания говорящего имеют некоторые ограничения. Различные люди могут говорить похожими голосами, а голос любого человека может меняться со временем в зависимости от самочувствия, эмоционального состояния и возраста. Более того, разница в модификации телефонных аппаратов и качество телефонных соединений могут серьезно усложнить распознавание.

Системы аутентификации по узору радужной оболочки и сетчатки глаз могут быть разделены на два класса:

  • использующие рисунок радужной оболочки глаза;
  • использующие рисунок кровеносных сосудов сетчатки глаза.

Сетчатка человеческого глаза представляет собой уникальный объект для аутентификации. Рисунок кровеносных сосудов глазного дна отличается даже у близнецов. Поскольку вероятность повторения параметров радужной оболочки и сетчатки глаза имеет порядок 10~ 78 , такие системы являются наиболее надежными среди всех биометрических систем и применяются там, где требуется высокий уровень безопасности (например, в режимных зонах военных и оборонных объектов).

Биометрический подход позволяет упростить процесс выяснения «кто есть кто». При использовании дактилоскопических сканеров и устройств распознавания голоса для входа в сети сотрудники избавляются от необходимости запоминать сложные пароли. Ряд компаний интегрируют биометрические возможности в системы однократной аутентификации SSO (Single Sign-On) масштаба предприятия. Подобная консолидация позволяет сетевым администраторам заменить службы однократной аутентификации паролей биометрическими технологиями.

Биометрическая аутентификация пользователя может быть использована при шифровании в виде модулей блокировки доступа к секретному ключу, который позволяет воспользоваться этой информацией только истинному владельцу частного ключа. Владелец может затем применять свой секретный ключ для шифрования информации, передаваемой по частным сетям или по Internet. Ахиллесовой пятой многих систем шифрования является проблема безопасного хранения самого криптографического секретного ключа. Зачастую доступ к ключу длиной 128 разрядов (или даже больше) защищен лишь паролем из 6 символов, т. е. 48 разрядов. Отпечатки пальцев обеспечивают намного более высокий уровень защиты и, в отличие от пароля, их невозможно забыть.

ТЕХНОЛОГИИ ЗАЩИТЫ МЕЖСЕТЕВОГО ОБМЕНА ДАННЫМИ

Развитие глобальных компьютерных сетей, появление новых перспективных информационных технологий (ИТ) привлекают все большее внимание. Глобальные сети применяются для передачи коммерческой информации различного уровня конфиденциальности, например для связи головной штаб-квартиры организации с удаленными офисами или создания Web-сай-тов организации с размещенной на них рекламой и деловыми предложениями. Многие организации принимают решение о подключении своих локальных и корпоративных сетей к открытой глобальной сети.

Однако подключение к открытой глобальной сети может иметь и негативные последствия, поскольку появляются угрозы неправомерного вторжения из внешней сети во внутреннюю сеть. Такое вторжение может выполняться как с целью несанкционированного использования ресурсов внутренней сети, например хищения информации, так и с целью нарушения ее работоспособности. Количество уязвимостей сетевых ОС, прикладных программ и возможных атак на КИС постоянно растет. Без соответствующих средств защиты вероятность успешной реализации таких угроз является достаточно высокой.

Ежегодные потери, обусловленные недостаточным уровнем защищенности компьютерных сетей организаций, оцениваются миллиардами долларов. Поэтому при подключении к Internet локальной или корпоративной сети необходимо позаботиться об обеспечении информационной безопасности этой сети.

Проблема защиты от несанкционированных действий при взаимодействии с внешними сетями может быть успешно решена только на основе комплексной защиты корпоративных компьютерных сетей. К базовым средствам многоуровневой защиты межсетевого обмена данными относятся защищенные ОС, МЭ, виртуальные защищенные сети VPN, протоколы защиты на канальном, транспортном и сетевом (протокол IPSec) уровнях.

Кражи идентификационных данных вызывают все большую обеспокоенность в обществе - по данным Федеральной комиссии по торговле США, жертвами хищения идентифицирующих сведений ежегодно становятся миллионы, а «кража личности» стала самой распространенной жалобой потребителей. В цифровую эпоху традиционных методов аутентификации - паролей и удостоверений личности - уже недостаточно для борьбы с хищением идентификационных сведений и обеспечения безопасности. «Суррогатные репрезентации» личности легко забыть где-либо, потерять, угадать, украсть или передать.

Биометрические системы распознают людей на основе их анатомических особенностей (отпечатков пальцев, образа лица, рисунка линий ладони, радужной оболочки, голоса) или поведенческих черт (подписи, походки). Поскольку эти черты физически связаны с пользователем, биометрическое распознавание надежно в роли механизма, следящего, чтобы только те, у кого есть необходимые полномочия, могли попасть в здание, получить доступ к компьютерной системе или пересечь границу государства. Биометрические системы также обладают уникальными преимуществами - они не позволяют отречься от совершенной транзакции и дают возможность определить, когда индивидуум пользуется несколькими удостоверениями (например, паспортами) на разные имена. Таким образом, при грамотной реализации в соответствующих приложениях биометрические системы обеспечивают высокий уровень защищенности.

Правоохранительные органы уже больше века в своих расследованиях пользуются биометрической аутентификацией по отпечаткам пальцев, а в последние десятилетия происходит быстрый рост внедрения систем биометрического распознавания в правительственных и коммерческих организациях во всем мире. На рис. 1 показаны некоторые примеры. Хотя многие из этих внедрений весьма успешны, существуют опасения по поводу незащищенности биометрических систем и потенциальных нарушений приватности из-за несанкционированной публикации хранимых биометрических данных пользователей. Как и любой другой аутентификационный механизм, биометрическую систему может обойти опытный мошенник, располагающий достаточным временем и ресурсами. Важно развеивать эти опасения, чтобы завоевать доверие общества к биометрическим технологиям.

Принцип действия биометрической системы

Биометрическая система на этапе регистрации записывает образец биометрической черты пользователя с помощью датчика - например, снимает лицо на камеру. Затем из биометрического образца извлекаются индивидуальные черты - например, минуции (мелкие подробности линий пальца) - с помощью программного алгоритма экстракции черт (feature extractor). Система сохраняет извлеченные черты в качестве шаблона в базе данных наряду с другими идентификаторами, такими как имя или идентификационный номер. Для аутентификации пользователь предъявляет датчику еще один биометрический образец. Черты, извлеченные из него, представляют собой запрос, который система сравнивает с шаблоном заявленной личности с помощью алгоритма сопоставления. Он возвращает рейтинг соответствия, отражающий степень схожести между шаблоном и запросом. Система принимает заявление, только если рейтинг соответствия превышает заранее заданный порог.

Уязвимости биометрических систем

Биометрическая система уязвима для двух видов ошибок (рис. 2). Когда система не распознает легитимного пользователя, происходит отказ в обслуживании, а когда самозванец неверно идентифицируется в качестве авторизованного пользователя, говорят о вторжении. Для таких сбоев существует масса возможных причин, их можно поделить на естественные ограничения и атаки злоумышленников.

Естественные ограничения

В отличие от систем аутентификации по паролю, которые требуют точного соответствия двух алфавитно-цифровых строк, биометрическая аутентификационная система полагается на степень схожести двух биометрических образцов, а поскольку индивидуальные биометрические образцы, полученные в ходе регистрации и аутентификации, редко идентичны, то, как показано на рис. 3, биометрическая система может делать ошибки аутентификации двух видов. Ложное несоответствие происходит, когда два образца от одного и того же индивидуума имеют низкую схожесть и система не может их сопоставить. Ложное соответствие происходит, когда два образца от разных индивидуумов имеют высокое подобие и система некорректно объявляет их совпадающими. Ложное несоответствие ведет к отказу в обслуживании легитимного пользователя, тогда как ложное соответствие может привести к вторжению самозванца. Поскольку ему не надо применять какие-то специальные меры для обмана системы, такое вторжение называют атакой нулевого усилия. Большая часть исследований в области биометрии за последние пятьдесят лет была сосредоточена на повышении точности аутентификации - на минимизации ложных несоответствий и соответствий.

Атаки злоумышленников

Биометрическая система также может дать сбой в результате злоумышленных манипуляций, которые могут проводиться через инсайдеров, например сисадминов, либо путем прямой атаки на системную инфраструктуру. Злоумышленник может обойти биометрическую систему, если вступит в сговор с инсайдерами (или принудит их), либо воспользуется их халатностью (например, невыходом из системы после завершения транзакции), либо выполнит мошеннические манипуляции с процедурами регистрации и обработки исключений, которые изначально были разработаны для помощи авторизованным пользователям. Внешние злоумышленники также могут вызвать сбой в биометрической системе посредством прямых атак на пользовательский интерфейс (датчик), модули экстракции черт или сопоставления либо на соединения между модулями или базу шаблонов.

Примеры атак, направленных на системные модули и их межсоединения: трояны, «человек посередине» и атаки воспроизведения. Поскольку большинство видов таких атак также применимы к системам аутентификации по паролю, существует ряд контрмер наподобие криптографии, отметок времени и взаимной аутентификации, которые позволяют предотвратить или минимизировать эффект таких вторжений.

Две серьезные уязвимости, которые заслуживают отдельного внимания в контексте биометрической аутентификации: атаки подделки на пользовательский интерфейс и утечка из базы шаблонов. Эти две атаки имеют серьезное негативное влияние на защищенность биометрической системы.

Атака подделки состоит в предоставлении поддельной биометрической черты, не полученной от живого человека: пластилиновый палец, снимок или маска лица, реальный отрезанный палец легитимного пользователя.

Фундаментальный принцип биометрической аутентификации состоит в том, что, хотя сами биометрические признаки не являются секретом (можно тайно получить фото лица человека или отпечаток его пальца с предмета или поверхности), система тем не менее защищена, так как признак физически привязан к живому пользователю. Успешные атаки подделки нарушают это базовое предположение, тем самым серьезно подрывая защищенность системы.

Исследователи предложили немало методов определения живого состояния. Например, путем верификации физиологических характеристик пальцев или наблюдения за непроизвольными факторами, такими как моргание, можно удостовериться в том, что биометрическая особенность, зарегистрированная датчиком, действительно принадлежит живому человеку.

Утечка из базы шаблонов - это ситуация, когда информация о шаблоне легитимного пользователя становится доступной злоумышленнику. При этом повышается опасность подделки, так как злоумышленнику становится проще восстановить биометрический рисунок путем простого обратного инжиниринга шаблона (рис. 4). В отличие от паролей и физических удостоверений личности, краденый шаблон нельзя просто заменить новым, так как биометрические признаки существуют в единственном экземпляре. Краденые биометрические шаблоны также можно использовать для посторонних целей - например, для тайной слежки за человеком в различных системах или для получения приватной информации о его здоровье.

Защищенность биометрического шаблона

Важнейший фактор минимизации рисков безопасности и нарушения приватности, связанных с биометрическими системами, - защита биометрических шаблонов, хранящихся в базе данных системы. Хотя эти риски можно до некоторой степени уменьшить за счет децентрализованного хранения шаблонов, например на смарткарте, которую носит с собой пользователь, подобные решения нецелесообразны в системах типа US-VISIT и Aadhaar, которым нужны средства дедупликации.

Сегодня существует немало методов защиты паролей (в их числе шифрование, хэширование и генерация ключей), однако базируются они на предположении, что пароли, которые пользователь вводит на этапе регистрации и аутентификации, идентичны.

Требования к защищенности шаблона

Основная трудность при разработке схем защиты биометрического шаблона состоит в том, чтобы достигнуть приемлемого компромисса между тремя требованиями.

Необратимость. Злоумышленнику должно быть затруднительно вычислительным путем восстановить биометрические черты из сохраненного шаблона либо создать физические подделки биометрического признака.

Различимость. Схема защиты шаблона не должна ухудшать точность аутентификации биометрической системой.

Отменяемость. Должна быть возможность из одних и тех же биометрических данных создать несколько защищенных шаблонов, которые нельзя будет связать с этими данными. Это свойство не только позволяет биометрической системе отзывать и выдавать новые биометрические шаблоны в случае компрометации базы данных, но и предотвращает перекрестное сопоставление между базами данных, за счет чего сохраняется приватность данных о пользователе.

Методы защиты шаблонов

Имеется два общих принципа защиты биометрических шаблонов: трансформация биометрических черт и биометрические криптосистемы.

В случае трансформации биометрических черт (рис. 5, а ) защищенный шаблон получен за счет применения необратимой функции трансформации к оригиналу шаблона. Такая трансформация обычно основана на индивидуальных характеристиках пользователя. В процессе аутентификации система применяет ту же функцию трансформации к запросу, и сопоставление происходит уже для трансформированного образца.

Биометрические криптосистемы (рис. 5, б ) хранят только часть информации, полученной из биометрического шаблона, - эта часть называется защищенным эскизом (secure sketch). Хотя его самого недостаточно для восстановления оригинального шаблона, он все же содержит необходимое количество данных для восстановления шаблона при наличии другого биометрического образца, похожего на полученный при регистрации.

Защищенный эскиз обычно получают путем связывания биометрического шаблона с криптографическим ключом, однако защищенный эскиз - это не то же самое, что биометрический шаблон, зашифрованный с помощью стандартных методов. При обычной криптографии зашифрованный шаблон и ключ расшифровки - это две разные единицы, и шаблон защищен, только если защищен и ключ. В защищенном шаблоне же инкапсулируются одновременно и биометрический шаблон, и криптографический ключ. Ни ключ, ни шаблон нельзя восстановить, имея только защищенный эскиз. Когда системе предоставляют биометрический запрос, достаточно похожий на шаблон, она может восстановить и оригинальный шаблон, и криптоключ с помощью стандартных методов распознавания ошибок.

Исследователи предложили два основных метода генерации защищенного эскиза: нечеткое обязательство (fuzzy commitment) и нечеткий сейф (fuzzy vault). Первый можно использовать для защиты биометрических шаблонов, представленных в виде двоичных строк фиксированной длины. Второй полезен для защиты шаблонов, представленных в виде наборов точек.

За и против

Трансформация биометрических черт и биометрические криптосистемы имеют свои «за» и «против».

Сопоставление в схеме с трансформацией черт часто происходит напрямую, и возможна даже разработка функций трансформации, не меняющих характеристик исходного пространства признаков. Однако бывает сложно создать удачную функцию трансформации, необратимую и терпимую к неизбежному изменению биометрических черт пользователя со временем.

Хотя для биометрических систем существуют методы генерации защищенного эскиза, основанные на принципах теории информации, трудность состоит в том, чтобы представить эти биометрические черты в стандартизованных форматах данных наподобие двоичных строк и наборов точек. Поэтому одна из актуальных тем исследований - разработка алгоритмов, преобразующих оригинальный биометрический шаблон в такие форматы без потерь значащей информации.

Методы fuzzy commitment и fuzzy vault имеют и другие ограничения, в том числе неспособность генерировать много несвязанных шаблонов из одного и того же набора биометрических данных. Один из возможных способов преодоления этой проблемы - применение функции трансформации черт к биометрическому шаблону до того, как она будет защищена с помощью биометрической криптосистемы. Биометрические криптосистемы, которые объединяют трансформацию с генерацией защищенного эскиза, называют гибридными.

Головоломка приватности

Нерасторжимая связь между пользователями и их биометрическими чертами порождает обоснованные опасения по поводу возможности раскрытия персональных данных. В частности, знание информации о хранимых в базе биометрических шаблонах можно использовать для компрометации приватных сведений о пользователе. Схемы защиты шаблонов до некоторой степени могут снизить эту угрозу, однако многие сложные вопросы приватности лежат за рамками биометрических технологий. Кто владеет данными - индивидуум или провайдеры сервиса? Сообразно ли применение биометрии потребностям в безопасности в каждом конкретном случае? Например, следует ли требовать отпечаток пальца при покупке гамбургера в фастфуде или при доступе к коммерческому Web-сайту? Каков оптимальный компромисс между безопасностью приложения и приватностью? Например, следует ли разрешать правительствам, предприятиям и другим лицам пользоваться камерами наблюдения в публичных местах, чтобы тайно следить за законной деятельностью пользователей?

На сегодня удачных практических решений для подобных вопросов нет.

Биометрическое распознавание обеспечивает более надежную аутентификацию пользователей, чем пароли и удостоверяющие личность документы, и является единственным способом обнаружения самозванцев. Хотя биометрические системы не являются абсолютно надежными, исследователи сделали значительные шаги вперед по пути идентификации уязвимостей и разработки мер противодействия им. Новые алгоритмы для защиты биометрических шаблонов частично устраняют опасения по поводу защищенности систем и приватности данных пользователя, но понадобятся дополнительные усовершенствования, прежде чем подобные методы будут готовы к применению в реальных условиях.

Анил Джейн ([email protected]) - профессор факультета компьютерных наук и инженерного проектирования Мичиганского университета, Картик Нандакумар ([email protected]) - научный сотрудник сингапурского Института инфокоммуникационных исследований.

Anil K. Jain, Kathik Nandakumar, Biometric Authentication: System Security and User Privacy. IEEE Computer, November 2012, IEEE Computer Society. All rights reserved. Reprinted with permission.

Биометрическими системами аутентификации называются системы, предназначенные для удостоверения личности пользователя на основе его биометрических данных. Такие системы максимально эффективно справляются с предоставлением доступа в особо охраняемые зоны, где нет возможности выставить персональную охрану по тем или иным соображениям. Их можно комбинировать с система автоматического оповещения, сигнализации и охранными системами.

Методы биометрической идентификации (аутентификации)

На сегодняшний день существует и используется множество методов биометрической аутентификации (идентификации). Они делятся на два вида.

  1. Статистические методы. Основаны на уникальных (физиологических) характеристиках, которые не меняются на протяжении человеческой жизни и никак не могут быть утеряны. Также исключено копирование мошенниками.
  2. Динамические методы. Основываются на характеристиках обыденного поведения определенного человека. Менее распространены, чем статические и практически не используются.

Статистические

  • По отпечатку пальца – метод распознавания уникальности папиллярных линий (узоров) на пальце человека. Система при помощи сканера получает отпечаток, затем оцифровывает его и после этого сравнивает с ранее введенными шаблонами (наборами рисунков).
  • По сетчатке глаза – метод сканирования и распознавания уникального рисунка кровеносных сосудов глазного дна человека. Для такой процедуры используется излучение низкой интенсивности. Излучение через зрачок направляется к кровеносным сосудам, которые находятся на задней стенке глаза. Из получаемого сигнала выделяются особые точки, информация о которых хранится в шаблоне системы.
  • По радужной оболочке глаза – метод определения человеческой уникальности особенностей оболочки. Данная технология разработана для минимизации сканирования сетчатки глаза, так как при нем используются инфракрасные лучи и ярки свет, которые негативно влияют на здоровье глаза.
  • Геометрия руки – форма кисти. При помощи этого метода используется несколько характеристик, поскольку отдельные параметры не являются уникальными. Сканируются: тыльная сторона руки, пальцев (толщина, длина, изгибы) а также структура костей и суставов.
  • Геометрия лица – метод сканирования, при котором выделяются контуры бровей и глаз, губ и носа, а также иных элементов лица. После этого вычисляется расстояние между этими элементами и строится трехмерная модель лица. Требуется от двенадцати до сорока определенных элементов, характерных для определенного человека, чтоб создать и воссоздать уникальный шаблон.
  • По термограмме лица – уникальное распределение температурных полей на лице. Используется с помощью инфракрасных камер. Из-за откровенно невысокого качества подобные системы широко не распространены.

Динамические

  • По голосу – простой в применении метод с использованием лишь аудиокарты и микрофона. На сегодняшний день для такой системы существует множество способов построения шаблонов. Широко используется в бизнес-центрах.
  • По почерку – основан на специфическом движении руки во время росписи (подписания документов и так далее). Для создания шаблонов и сохранения используются специальные, восприимчивые к давлению ручки.

Комбинированные (мультимодальные)

Подобные методы применяются в сложных, строгих и комплексных системах безопасности. В таких случаях используются несколько типов биометрических характеристик человека (пользователя), которые соединяются в одной системе.

Биометрические системы безопасности

Суть биометрических систем безопасности в доказательстве, что Вы – это Вы. Эти системы исключают возможность того, что сама система может принять Вас за кого-то другого. В силу уникальности человеческих характеристик, биометрические системы используются для предотвращения различных видов мошенничества, взлома и нежелательного доступа.

Биометрические системы безопасности могут работать в двух режимах, в зависимости о того, что пользователь собирается предоставить системе.

  1. Верификация — сравнение пользователя с готовым биометрическим шаблоном.
  2. Идентификация — сравнение пользователя с множеством других. После получения биометрических данных система ищет в базе информацию для определения личности пользователя.

Биометрические системы контроля доступа используются:

  • на крупных предприятиях;
  • на определенных объектах, требующих повышенной безопасности;
  • для учета рабочего времени;
  • для регистрации посещаемости;
  • для ограничения доступа к особым помещениям.

Биометрические системы контроля доступа

Терминалы, считывающие отпечаток пальца

Применяются для организации ограничений на доступ в помещения. Зачастую такие устройства используются для учета рабочего времени. В зависимости от типа и модели могут иметь различный внешний вид корпуса, разные степени защиты, множество вариантов сканеров (считывателей отпечатков) и дополнительных функций.

Возможности:

  • хранение в базе данных от 100 до 3 000 шаблонов отпечатков пальцев;
  • сохранение тысячи записей посещаемости.

Основные принципы работы:

  • программирование пользователей происходит с помощью специальной карты или при подключении к компьютеру;
  • для переноса файлов посещаемости на компьютер используется USB;
  • возможно построение сетевых систем распределения доступа по интерфейсу Ethernet.

Терминалы распознавания изображения (геометрия лица)

Подобный биометрический контроль доступа позволяет бесконтактно идентифицировать пользователя. Успешно применяются на предприятиях, где качество отпечатков пальцев неудовлетворительно для распознавания, в связи с рабочим процессом. В зависимости от типа и модели могут иметь различный внешний вид корпуса, разные степени защиты, особенности дизайна и набор дополнительных функций.

Возможности:

  • инфракрасные оптические системы позволяют распознавать пользователя при темном или плохом освещении;
  • встроенные беспроводные коммуникации (GPRS, Wi-Fi) для оперативного контроля;
  • электронные замки, датчики тревоги, датчики дверей, резервные батареи для расширения функционала;
  • до 100 000 шаблонов лица.

Терминалы со встроенной системой распознавания по радужной оболочке глаза

Позволяют обеспечить идентификацию (аутентификацию) пользователя в реальном времени. Сканируют как в статике, так и в движении. Пропускная способность — до двадцати человек в минуту. Эти терминалы используются для учета рабочего времени, контроля доступа и часто в финансово-платежных системах для того, чтобы подтвердить транзакции.

Базовые характеристики (меняются в зависимости от модели устройства):

  • питание POE+ (через Ethernet);
  • регистрация и проверка проходит в самом терминале;
  • сканирование происходит встроенными камерами;
  • память событий до 70 000 записей;
  • доступны различные дополнительные интерфейсы (например, Wiegand).

Считыватели с распознаванием по венам на пальце

Поскольку вены находятся внутри тела человека, их изображение подделать невозможно. Распознавание возможно даже при наличии царапин и порезов. Поэтому такие биометрические системы безопасности и контроля доступа являются практически самым надежным способом идентификации пользователя. Использование систем данного класса рекомендуется на особо ответственных объектах.

Возможности:

  • терминал может использоваться в качестве прямого контроллера электронного замка;
  • может выступать в качестве считывателя с подключением к сторонним контроллерам;
  • различные режимы контроля доступа, помимо распознавания рисунка вен на пальце: бесконтактная карта, код или комбинация того и другого;

Системы распознавания рисунка вен на ладони

Подобные устройства обеспечивают высокую точность распознавания и исключают возможность подделать идентификатор.

Принцип работы:

  • ладонь освещается светом, который близок к инфракрасному;
  • этот свет поглощается обескислороженным гемоглобином внутри вен, проявляя рисунок;
  • для авторизации пользователя, уникальные образцы узоров вен сверяются с существующими (ранее зарегистрированными) шаблонами (образцами) в базе данных;

Биометрические терминалы по геометрии руки

Для идентификации пользователей используются уникальные трехмерные характеристики геометрии их ладоней. Процесс идентификации состоит из одного действия – нужно приложить руку на специальную плоскость терминала.

Возможности (варьируются в зависимости от модели):

  • скорость идентификации менее одной секунды;
  • простота регистрации шаблонов;
  • вывод информации на принтер (через различные встроенные интерфейсы);
  • автономная память на более чем 5 000 событий;
  • возможность входа по принуждению.

Преимущества использования биометрических систем безопасности

  • высокая достоверность;
  • простые процедуры сканирования;
  • большой выбор моделей, доступных к продаже;
  • доступные цены на популярные устройства.

Биометрические СКУД позволяет не только контролировать доступы в локальные зоны, но и позволяют также контролировать и вести табель учета рабочего времени, предоставлять обратную связь персоналу об опозданиях и задержках, что стимулирует их на повышение ответственности к рабочему процессу.




Top