Беспроводное электричество поразило своих создателей. Беспроводная передача энергии

Регулярно просматривая зарубежные достижения в области радиотехники, наткнулся на неплохое устройство беспроводной передачи электроэнергии, выполненное не на каких-то дефицитных микросхемах, а вполне доступное для самостоятельной сборки. Полную документацию на английском можно будет скачать по ссылке , а здесь приведу краткое содержание на русском, в том числе некоторые схемотехнические решения.

Катушки приёмопередатчика тока


Осциллограмма сигнала

В работе представлены несколько похожих принципиальных схем, отличающихся только напряжением и мощностью. В качестве энергетической "антенны" у них служат небольшие катушки из толстого провода, транзисторы - обычные мощные полевые, так что всё это можно собрать самому.

Сразу предупредим - тут речь идёт не о передачи энергии на много метров, подобные устройства подходят скорее для и других похожих девайсах, где расстояние составит несколько сантиметров. Зато мощность, которая "перелетает" по воздуху, доходит до 100 ватт!

Принцип действия

Резонансный преобразователь обычно работает при постоянной рабочей частоте, которая определяется резонансной частотой LC контура. Как только напряжение постоянного тока подается на цепь, она начинает генерировать с помощью транзисторов. Своеобразный мультивибратор, со смещением фазы на 180°. Транзисторы поочередно подключают концы параллельного резонансного контура к массе, что позволяет этому контуру периодически подзарядиться энергией с последующим её излучением в пространство.

Практические схемы

Базовая схема






Фото готового передатчика-приёмника энергии

Подведя итог заметим, что беспроводная передача энергии всё больше внедряется в области потребительской электроники, промышленного, военного и медицинского оборудования. Как беспроводная локальная сеть и Bluetooth, та и беспроводное питание становится актуальным вариантом. Это позволяет избавится от ненадёжных кнопок, кабелей, силовых разъёмов. Другая область применения связана с трансформаторами, которые должны удовлетворять специальным требованиям - иметь усиленную или двойную изоляцию. И главное: электробезопасность! Многие маломощные сетевые бытовые приборы можно запитывать не через шнуры на 220 В, вилки и розетки, а бесконтактным методом - просто придвигая их к нужной поверхности.

Это простая схема, которая может обеспечить энергией электролампочку без каких-либо проводов, на расстоянии почти 2,5 см! Эта схема действует и как повышающий преобразователь напряжения, и как беспроводной передатчик электроэнергии и приемник. Её очень просто сделать и, если усовершенствовать, то можно использовать различными способами. Итак, приступим!

Шаг 1. Необходимые материалы и инструменты.

  1. NPN транзистор. Я использовал 2N3904, но можно использовать любой NPN транзистор, например, ВС337, BC547 и т.д. (Любой PNP транзистор будет работать, только соблюдайте полярность соединений.)
  2. Обмоточный или изолированный провод. Около 3-4 метров провода должно быть достаточно (провода обмоточные, просто медные провода с очень тонкой эмалевой изоляцией). Подойдут провода от большинства электронных устройств, таких как трансформаторы, колонки, электродвигатели, реле и т.д.
  3. Резистор с сопротивлением 1 кОм. Этот резистор будет использоваться для защиты транзистора от перегорания в случае перегрузки или перегрева. Вы можете использовать более высокие значения сопротивления до 4-5 кОм. Можно не использовать резистор, но при этом существует риск более быстрого разряда батареи.
  4. Светодиод. Я использовал светодиод диаметром 2 мм ультра яркий белый. Вы можете использовать любой светодиод. Фактически назначение светодиода здесь - только показывать работоспособность схемы.
  5. Батарея размера АА напряжением 1,5 Вольт. (Не используйте батареи высокого напряжения, если не хотите повредить транзистор.)

Необходимые инструменты:

1) Ножницы или нож.

2) Паяльник (Необязательно). Если у вас нет паяльника, можно просто сделать скрутку проводов. Я делал это, когда у меня не было паяльника. Если вы хотите попробовать схему без пайки, это только приветствуется.

3) Зажигалка (Необязательно). Мы будем использовать зажигалку, чтобы сжечь изоляцию на проводе, а затем используем ножницы, или нож, чтобы соскоблить остатки изоляции.

Шаг 2: Посмотрите видео, чтобы узнать, как это сделать

Шаг 3: Краткий повтор всех шагов.

Итак, прежде всего вы должны взять провода, и сделать катушку, намотав 30 витков вокруг круглого цилиндрического объекта. Назовем эту катушку А. С тем же круглым предметом, начинаем делать вторую катушку. После наматывания 15-го витка создать ответвление в виде петли из провода и затем намотайте на катушку еще 15 оборотов. Так что теперь у вас есть катушка с двумя концами и одним ответвлением. Назовем эту катушку В. Свяжите узлы на концах проводов, так чтобы они не раскручивались сами по себе. Обожгите изоляцию на концах проводов и на ответвлении на обоих катушках. Также вы можете использовать ножницы или нож для снятия изоляции. Убедитесь, что диаметры и количество витков обоих катушек равны!

Создайте передатчик: Возьмите транзистор и поместите его так, чтобы плоская его сторона была обращена вверх и обращена к Вам. Контакт слева будет присоединен к излучателю, средний будет базовым, а контакт справа будет присоединен к коллектору. Возьмите резистор и подключите один из его концов к базовому контакту транзистора. Возьмите другой конец резистора и соедините его с одним из концов (не с ответвлением) катушки B. Возьмите другой конец катушки B и подключите его к коллектору транзистора. Если хотите, можете подключить небольшой кусок проволоки к эмиттеру транзистора (Она будет работать в качестве расширения Эмитента.)

Настройте приемник. Чтобы создать приемник, возьмите катушку А и присоедините ее концы к разным контактам вашего светодиода.

Вы собрали схему!

Шаг 4: Принципиальная схема.

Здесь мы видим принципиальную схему нашего соединения. Если вы не знаете каких-то обозначений на схеме, не волнуйтесь. В следующих изображениях все показано.

Шаг 5. Чертеж соединений схемы.

Здесь мы видим объяснительный чертеж соединений нашей цепи.

Шаг 6. Использование схемы.

Просто возьмите ответвление катушки B и присоедините его к положительному концу батареи. Подключите отрицательный полюс батареи к эмиттеру транзистора. Теперь, если вы приближаете катушку с светодиодом к катушке B, светодиод загорается!

Шаг 7. Как это объясняется с научной точки зрения?

(Я просто попытаюсь объяснить науку этого явления простыми словами и аналогиями, и я знаю, что могу ошибиться. Для того, чтобы правильно объяснить сие явление, мне придется углубляться во все подробности, что я не в состоянии сделать, поэтому я просто хочу провести общие аналогии для объяснения схемы).

Схема передатчика, который мы только что создали это схема Осциллятора. Вы, возможно, слышали о так называемой схеме Вор джоулей, так вот она имеет поразительное сходство с цепью, которую мы создали. Схема Вор джоулей принимает электроэнергию от батареи напряжением 1,5 Вольт, выводит электроэнергию с более высоким напряжением, но с тысячами интервалов между ними. Светодиоду достаточно напряжения 3 вольт, чтобы загореться, но в данной схеме он вполне может загореться и с батареей напряжением 1,5 вольт. Так схема Вор джоулей известна как повышающий напряжение конвертер, а также как излучатель. Схема, которую мы создали также является излучателем и конвертером, повышающим напряжение. Но может возникнуть вопрос: "Как зажечь светодиод на расстоянии?" Это происходит из-за индукции. Для этого можно, к примеру, использовать трансформатор. Стандартный трансформатор имеет сердечник с обеих своих сторон. Предположим, что провод на каждой стороне трансформатора равен по величине. Когда электроток проходит через одну катушку, катушки трансформатора становятся электромагнитами. Если через катушку протекает переменный ток, то колебания напряжения происходят по синусоиде. Поэтому, когда переменный ток протекает через катушку, проволока приобретает свойства электромагнита, а затем снова теряет электромагнетизм, когда падает напряжение. Моток проволоки становится электромагнитом, а затем теряет свои электромагнитные характеристики с такой же скоростью, с какой магнит движется из второй катушки. Когда же магнит быстро движется через катушку провода, вырабатывается электроэнергия, таким образом колебательное напряжение одной катушки на трансформаторе, индуцирует электричество в другой катушке провода, и электричество передается от одной катушки к другой без проводов. В нашей цепи, ядром катушки является воздух, и напряжение переменного тока проходит через первую катушку, таким образом вызывает напряжение во второй катушке и зажигает лампочки!!

Шаг 8. Польза и советы по улучшению.

Таким образом, в нашей схеме мы просто использовали светодиод, чтобы показать эффект схемы. Но мы могли бы сделать больше! Схема приемника получает электричество от переменного тока, так что мы могли бы использовать ее, чтобы осветить люминесцентные лампы! Также с помощью нашей схемы можно делать интересные фокусы, забавные подарки и др. Чтобы максимизировать результаты, вы можете поэкспериментировать с диаметром катушек и числом оборотов на катушках. Также Вы можете попробовать сделать катушки плоскими, и посмотреть, что получится! Возможности безграничны!!

Шаг 9. Причины, по которым схема может не работать.

С какими проблемами вы можете столкнуться и как их возможно исправить:

  1. Транзистор слишком сильно нагревается!

Решение: Вы использовали резистор с нужными параметрами? Я не использовал резистор в первый раз, и транзистор у меня задымился. Если это не помогает, попробуйте использовать термоусадку или используйте транзистор более высокого класса.

  1. Светодиод не горит!

Решение: Может быть очень много причин. Для начала проверьте все соединения. Я случайно поменял базу и коллектор в своем соединении, и это стало большой проблемой для меня. Итак, проверьте все связи в первую очередь. Если у вас есть такой прибор, как мультиметр, можете использовать его, чтобы проверить все соединения. Также убедитесь, что обе катушки у вас одного и того же диаметра. Проверьте, вдруг в вашей сети имеется короткое замыкание.

Я не знаю о каких-либо еще проблемах. Но если вы таки с ними столкнулись, дайте мне знать! Я постараюсь помочь, чем смогу. Кроме того, я ученик 9 класса школы и мои научные познания крайне ограничены, и поэтому, если вы обнаружите у меня ошибки, сообщите мне о них. Предложения по улучшению более чем приветствуется. Удачи вам в вашем проекте!


Беспроводная передача для доставки электричества имеет возможность поставлять основные достижения в области промышленности и приложениях, зависящих от физического контакта разъема. Оно, в свою очередь, может быть ненадежным и привести к неудачам. Передача беспроводной электроэнергии была впервые продемонстрирована Никола Тесла в 1890-х годах. Однако только в последнее десятилетие технология была использована до такой степени, что она предлагает реальные, ощутимые преимущества для приложений реального мира. В частности, развитие резонансной беспроводной системы питания для рынка бытовой электроники показало, что зарядка по индукции обеспечивает новые уровни удобства для миллионов повседневных устройств.

Рассматриваемая мощность широко известна многими терминами. Включая индуктивную передачу, связь, резонансную беспроводную сеть и такую же отдачу напряжения. Каждое из этих условий, по существу, описывает один и тот же фундаментальный процесс. Беспроводную передачу электроэнергии или мощности от источника питания до напряжения нагрузки без разъемов через воздушный зазор. Основой являются две катушки - передатчика и приемника. Первая возбуждается переменным током для генерации магнитного поля, которое, в свою очередь, индуцирует напряжение во второй.

Как работает рассматриваемая система

Основы беспроводной мощности включают раздачу энергии от передатчика к приемнику через колебательное магнитное поле. Для достижения этого постоянный ток, подаваемый источником питания, преобразуется в высокочастотный переменный. С помощью специально разработанной электроники, встроенной в передатчик. Переменный ток активирует катушку медного провода в раздатчике, которая генерирует магнитное поле. Когда вторая (приемная) обмотка размещается в непосредственной близости. Магнитное поле может вызывать переменный ток в принимающей катушке. Электроника в первом устройстве затем преобразует переменный обратно в постоянный, который становится потребляемой мощностью.

Схема беспроводной передачи электроэнергии

Напряжение «сети» преобразуется в сигнал переменного тока, который затем посылается на катушку передатчика через электронную цепь. Протекающий через обмотку раздатчика, индуцирует магнитное поле. Оно, в свою очередь, может распространяться на катушку приемника, которая находится в относительной близости. Затем магнитное поле генерирует ток, протекающий через обмотку приемного устройства. Процесс, посредством которого энергия распространяется между передающей и приемной катушками, также упоминается как магнитная или резонансная связь. И достигается с помощью обеих обмоток, функционирующих на той же частоте. Ток, текущий в катушке приемника, преобразуется в постоянный с помощью схемы приемника. Затем может использоваться для питания устройства.

Что значит резонанс

Расстояние, на которое может передаваться энергия (или мощность), увеличивается, если катушки передатчика и приемника резонируют на одной и той же частоте. Подобно тому, как настраиваемая вилка колеблется на определенной высоте и может достигать максимальной амплитуды. Это относится к частоте, с которой объект естественным образом вибрирует.

Преимущества беспроводной передачи

В чем заключаются преимущества? Плюсы:

  • сокращаются расходы, связанные с поддержанием прямых соединителей (например, в традиционном промышленном скользком кольце);
  • большее удобство для зарядки обычных электронных устройств;
  • безопасная передача в приложения, которые должны оставаться герметически закрытыми;
  • электроника может быть полностью скрыта, что снижает риск коррозии из-за таких элементов как кислород и вода;
  • надежная и последовательная подача питания на вращающееся, высокомобильное промышленное оборудование;
  • обеспечивает надежную передачу мощности в критически важные системы во влажной, грязной и движущейся среде.

Независимо от приложения, ликвидация физического соединения обеспечивает ряд преимуществ по сравнению с традиционными разъемами питания кабеля.

Эффективность рассматриваемой передачи энергии

Общая эффективность беспроводной системы питания является самым важным фактором в определении ее производительности. Результативность системы измеряет количество мощности, передаваемой между источником питания (то есть, настенной розеткой) и принимающим устройством. Это, в свою очередь, определяет такие аспекты как скорость зарядки и дальность распространения.

Системы беспроводной связи различаются в зависимости от их уровня эффективности, основанного на таких факторах, как конфигурация и дизайн катушки, расстояние передачи. Менее результативное устройство будет генерировать больше выбросов и приведет к меньшей мощности, проходящей через приемное устройство. Как правило, беспроводные технологии передачи электроэнергии для таких устройств как смартфоны, могут достигать 70% производительности.

Как измеряется эффективность

В смысле, как количество мощности (в процентах), которое передается от источника питания к приемному устройству. То есть, беспроводная передача электроэнергии для смартфона с КПД 80% означает, что 20% входной мощности потеряно между настенной розеткой и батареей для заряжаемого гаджета. Формула для измерения эффективности работы: производительность = постоянный ток исходящий, деленный на входящий, полученный результат умножить на 100%.

Беспроводные способы передачи электроэнергии

Мощность может распространяться по рассматриваемой сети почти по всем неметаллическим материалам, включая, но не ограничиваясь ими. Это такие твердые вещества, как древесина, пластмасса, текстиль, стекло и кирпич, а также газы и жидкости. Когда металлический или электропроводящий материал (то есть, помещается в непосредственной близости от электромагнитного поля, объект поглощает мощность из него и в результате нагревается. Это, в свою очередь, влияет на эффективность системы. Вот как работают индукционные приготовления, к примеру, неэффективная передача мощности из варочной панели создает тепло для приготовления пищи.

Чтобы создать систему беспроводной передачи электроэнергии, необходимо вернуться к истокам рассматриваемой темы. А,точнее, к успешному ученому и изобретателю Никола Тесла, который создал и запатентовал генератор, способный брать питание без различных материалистических проводников. Итак, для реализации беспроводной системы необходимо собрать все важные элементы и части, в результате будет реализована небольшая Это устройство, которое создает электрическое поле высокого напряжения в воздухе, вокруг него. При этом имеется небольшая входная мощность, она обеспечивает беспроводную передачу энергии на расстоянии.

Одним из наиболее важных способов передачи энергии является индуктивная связь. Он в основном используется для ближнего поля. Охарактеризован на том факте, что при прохождении тока по одному проводу на концах другого индуцируется напряжение. Передача мощности осуществляется путем взаимности между двумя материалами. Общий пример - это трансформатор. Микроволновая передача энергии, как идея, была разработана Уильямом Брауном. Вся концепция включает в себя преобразование питания переменного тока в радиочастотное и передачу его в пространстве и повторное в переменную мощность на приемнике. В этой системе напряжение генерируется с использованием микроволновых источников энергии. Таких как клистрон. И эта мощность передается через волновод, который защищает от отраженной мощности. А также тюнер, который соответствует импедансу микроволнового источника с другими элементами. Приемная секция состоит из антенны. Она принимает мощность микроволн и схему согласования импеданса и фильтра. Эта приемная антенна вместе с выпрямляющим устройством может быть диполем. Соответствует выходному сигналу с подобным звуковым оповещением выпрямительного блока. Блок приемника также состоит из подобной секции, состоящей из диодов, которые используются для преобразования сигнала в оповещение постоянного тока. Эта система передачи использует частоты в диапазоне от 2 ГГц до 6 ГГц.

Беспроводная передача электроэнергии с помощью который реализовал генератор с применением подобных магнитных колебаний. Суть заключается в том, что это устройство работало благодаря трем транзисторам.

Использование пучка лазера для передачи мощности в виде световой энергии, которая преобразуется в электрическую на приемном конце. Непосредственно сам материал получает питание с использованием источников, таких как Солнце или любой генератор электроэнергии. И, соответственно, реализует фокусированный свет высокой интенсивности. Размер и форма пучка определяются набором оптики. И этот передаваемый лазерный свет принимается фотогальваническими ячейками, которые преобразуют его в электрические сигналы. Он обычно использует оптоволоконные кабели для передачи. Как и в базовой солнечной энергетической системе, приемник, используемый в распространении на основе лазера, представляет собой массив фотоэлектрических элементов или солнечной панели. Они, в свою очередь, могут преобразовывать бессвязный в электричество.

Сущностные особенности работы устройства

Мощность катушки Тесла заключается в процессе, называемом электромагнитной индукцией. То есть, изменяющееся поле создает потенциал. Он заставляет протекать ток. Когда электричество течет через катушку провода, он генерирует магнитное поле, которое заполняет область вокруг обмотки определенным образом. В отличие от некоторых других экспериментов с высоким напряжением, катушка Тесла выдержала множество проверок и проб. Процесс был достаточно трудоемким и длительным, но результат был успешным, потому и удачно запатентован ученым. Создать подобную катушку можно при наличии определенных составляющих. Для реализации потребуются следующие материалы:

  1. длина 30 см ПВХ (чем больше, тем лучше);
  2. медная эмалированная проволока (вторичный провод);
  3. березовая доска для основания;
  4. 2222A транзистор;
  5. подсоединение (первичный) провод;
  6. резистор 22 кОм;
  7. переключатели и соединительные провода;
  8. аккумулятор 9 вольт.

Этапы реализации устройства Тесла

Для начала необходимо поместить небольшой слот в верхнюю часть трубы, чтобы обернуть один конец провода вокруг. Медленно и осторожно обматывать катушку, следя за тем, чтобы не перекрывать провода и, при этом, не создавать пробелов. Этот шаг - самая сложная и утомительная часть, но потраченное время даст очень качественную и хорошую катушку. Каждые 20, или около того, поворотов помещаются кольца маскирующей ленты вокруг обмотки. Они выступают в качестве барьера. В случае, если катушка начнет распутываться. По завершении нужно обернуть плотную ленту вокруг верхней и нижней части обмотки и распылить ее 2 или 3 слоями эмали.

Затем необходимо подключить первичный и вторичный аккумулятор к батарее. После - включить транзистор и резистор. Меньшая обмотка является основной, а более длительная обмотка - вторичной. Можно дополнительно установить алюминиевую сферу сверху трубы. Кроме того, соединить открытый конец вторичной с добавленной, которая будет действовать как антенна. Необходимо создавать все с тщательной осторожностью, чтобы не дотрагиваться до вторичного устройства при включении питания.

При самостоятельной реализации существует опасность возгорания. Нужно перевернуть выключатель, установить лампу накаливания рядом с беспроводным устройством передачи энергии и наслаждаться световым шоу.

Беспроводная передача через систему солнечной энергии

Традиционные проводные конфигурации реализации энергии обычно требуют наличия проводов между распределенными устройствами и потребительскими единицами. Это создает множество ограничений как стоимость системных затрат на кабели. Потери, понесенные в передаче. А также растраты в распределении. Только сопротивление линии передачи приводит к потере около 20-30% генерируемой энергии.

Одна из самых современных беспроводных систем передачи энергии основана на передаче солнечной энергии с использованием микроволновой печи или луча лазера. Спутник размещен на геостационарной орбите и состоит из фотоэлектрических элементов. Они преобразуют солнечный свет в электрический ток, который используется для питания микроволнового генератора. И, соответственно, реализует мощность микроволн. Это напряжение передается с использованием радиосвязи и принимается на базовой станции. Она представляет собой комбинацию антенны и выпрямителя. И преобразуется обратно в электричество. Требует питания переменного или постоянного тока. Спутник может передавать до 10 МВт мощности радиочастоты.

Если говорить о системе распространения постоянного тока, то даже это невозможно. Так как для этого требуется разъем между источником питания и устройством. Существует такая картина: система полностью лишена проводов, где можно получить мощность переменного тока в домах без каких-либо дополнительных устройств. Там, где есть возможность зарядить свой мобильный телефон без необходимости физически подключаться к гнезду. Конечно, такая система возможна. И множество современных исследователей пытаются создать нечто модернизированное, при этом, изучив роль разработки новых способов беспроводной передачи электроэнергии на расстоянии. Хотя, с точки зрения экономической составляющей, для государств это будет не совсем выгодно, если внедрять такие устройства повсеместно, и заменять стандартное электричество на природное.

Истоки и примеры беспроводных систем

Эта концепция, на самом деле, не является новой. Вся эта идея была разработана Николасом Тесла в 1893 году. Когда он разработал систему освещающих вакуумных ламп с использованием техники беспроводной передачи. Невозможно себе представить, чтобы мир существовал без различных источников зарядки, которые выражены в материальном виде. Чтобы стали возможными мобильные телефоны, домашние роботы, MP3-плееры, компьютер, ноутбуки и другие транспортируемые гаджеты, которые заряжались бы самостоятельно, без каких-либо дополнительных подключений, освобождая пользователей от постоянных проводов. Некоторые из этих устройств могут даже не требовать большого количества элементов. История беспроводной передачи энергии достаточно насыщена, причем, в основном, благодаря разработкам Тесла, Вольта и др. Но, сегодня это остается лишь данными в физической науке.

Основной принцип заключается в преобразовании питания переменного тока в постоянное напряжение с помощью выпрямителей и фильтров. А затем - в возращение в исходное значение на высокой частоте с использованием инверторов. Эта низковольтная с высшими колебаниями мощность переменного тока затем переходит от первичного трансформатора к вторичному. Преобразуется в постоянное напряжение с использованием выпрямителя, фильтра и регулятора. Сигнал переменного тока становится прямым благодаря звуку тока. А также использованию секции выпрямителя моста. Полученный сигнал постоянного тока проходит через обмотку обратной связи, которая действует как схема генератора. При этом заставляет транзистор его проводить в первичный преобразователь в направлении слева направо. Когда ток проходит через обмотку обратной связи, соответствующий ток протекает к первичной части трансформатора в направлении справа налево.

Таким образом работает ультразвуковой способ передачи энергии. Сигнал формируется через первичный преобразователь для обоих полупериодов оповещения переменного тока. Частота звука зависит от количественных показателей колебаний цепей генератора. Этот сигнал переменного тока появляется на вторичной обмотке трансформатора. А когда он подключен к первичному преобразователю другого объекта, напряжение переменного тока составляет 25 кГц. Появляется показание через него в понижающем трансформаторе.

Это напряжение переменного тока выравнивается с помощью мостового выпрямителя. И затем фильтруется и регулируется, чтобы получить выход 5 В для управления светодиодом. Выходное напряжение 12 В от конденсатора используется для питания двигателя вентилятора постоянного тока для его работы. Итак, с точки зрения физики, передача электроэнергии - достаточно развитая область. Однако, как показывает практика, беспроводные системы не до конца развиты и усовершенствованы.

Сам принцип действия наглядно показан на простой поделке , в которой светодиод может загораться без проводов на расстоянии 2 см от источника энергии. Схема, которая действует как повышающий преобразователь напряжения, а также беспроводные передатчик и приемник электроэнергии, может быть улучшена и реализована во многих мозгопроектах .

Шаг 1: Нам понадобится

NPN транзистор — я взял 2N3904, но вы можете использовать любой NPN транзистор (337, BC547 и т.д.), PNP транзистор тоже будет работать только соблюдайте полярность соединений.
обмоточный или изолированный провод — около 3-4 метров (провода можно «добыть» из многих приборов, трансформаторов, динамиков, моторчиков, реле и т.д.)
резистор 1 кОм – будет использоваться для защиты транзистора от сгорания в случае перегрузки, также можно использовать резисторы до 5 кОм, можно даже без резистора, но тогда аккумулятор будет разряжаться быстрее.
светодиод – сгодится любой, главное следовать схеме.
батарейка 1.5В – не применяйте батарейки большего вольтажа, чтобы не повредить транзистор.
ножницы или нож.
паяльник (опционально).
зажигалка(опционально) для удаления изоляции с проводов.

Шаг 2: Смотрим видео процесса

Шаг 3: Резюмируя видео

Итак, на цилиндрический предмет наматываем катушку из 30 витков, это будет катушка А. Далее наматываем вторую катушку того же диаметра, но при этом сначала накручиваем 15 витков и делаем отвод, а затем еще 15 витков, это катушка В. Катушки закрепляем от разматывания любым подходящим способом, например просто делаем узлы из выводов катушек. Важный момент: для правильного функционирования этой поделки диаметры обеих катушек и количество витков должны быть одинаковыми.

Выводы обеих катушек зачищаем и приступаем к пайке цепи. Определяемся с эмиттером, базой и коллектором своего транзистора и к базе припаиваем резистор. Другой вывод резистора припаиваем к свободному выводу катушки В, не к выводу-отводу. Второй свободный вывод катушки В, снова не отвод, припаиваем к коллектору.

Для удобства можно к эмиттеру припаять небольшой кусочек провода, так буде проще подсоединять батарейку.

Цепь приемника собирается легко: к выводам катушки А припаиваем светодиод. И мозгоподелка готова!

Шаг 4: Принципиальная схема

Шаг 5: Наглядный рисунок

Шаг 6: Тестирование


Для приведения самоделки в работоспособное состояние подключаем отвод катушки В к «плюсу» батарейки, а «минус» к эмиттеру транзистора. Затем подносим катушки параллельно друг к другу и диод светится!

Шаг 7: Пояснение

Немного поясню, как все это функционирует.

Передатчик в нашей поделке это цепь осциллятора. Вы может слышали о «цепи ворующей Джоули», которая поразительна схожа с нашей цепью передатчика. В «цепи ворующей Джоули» электроэнергия от батарейки 1.5В преобразуется в более высокое напряжение, но импульсное. Светодиоду требуется 3В, но благодаря «цепи ворующей Джоули» он прекрасно светится и от 1.5В.

«Цепь, ворующая Джоули» известна как конвертер и генератор, цепь, которую мы создали, также является генератором и конвертером. А энергия на светодиод подается посредством индукции, возникающей в катушках, которую можно пояснить на мозгопримере обычного трансформатора.

Предположим, что трансформатор имеет две одинаковые катушки. Тогда во время прохождения электричества по одной катушке она становится магнитом, вторая катушка попадает в магнитное поле первой и, вследствие этого, по ней тоже начинает течь ток. Если напряжение в первой катушке переменное, следовательно, она импульсно теряет свои магнитные свойства, значит и вторая катушка импульсно попадает в магнитное поле первой, то есть и во второй катушке образуется переменное напряжение.

В нашей самоделке катушка передатчика создает магнитное поле, в которое попадает катушка приемника, соединенная со светодиодом, который преобразует полученную энергию в свет!

Представленная мозгоподелка преобразует полученную энергию в свет, но можно использовать ее более разнообразно. Также можно применять принципы этой самоделки для создания фокусов, забавных подарков или научных проектов. Если варьировать диаметры и число витков на катушках, то можно добиться максимальных значений, или можно изменить форму катушек и т.д., возможности не ограничены!

Шаг 9: Устранение неисправностей

При создании этой самоделки возможны следующие проблемы:
Транзистор слишком греется – проверьте номинал резистора, возможно его нужно повысить. Я сначала не использовал резистор, и транзистор при этом сгорел. Или как вариант используйте радиатор для транзистора, а может и другой транзистор, с более высоким значением усиления.
Светодиод не светится – причин может быть много. Проверьте качество соединения, правильно ли распаяли базу и коллектор, убедитесь, что катушки равного диаметра, нет ли короткого замыкания в цепи.

Сегодняшний эксперимент с индукцией закончен, благодарю за внимание и успехов в творчестве!

Экология потребления.Технологии:Учёные в американской Исследовательской лаборатории Диснея (Disney Research) разработали метод беспроводной зарядки, сделавший ненужными провода и зарядные устройства.

Сегодняшние смартфоны, планшеты, ноутбуки и другие портативные устройства имеют огромную мощность и производительность. Но, помимо всех преимуществ мобильной электроники, у нее есть и обратная сторона – постоянная необходимость подзарядки через провода. Несмотря на все новые технологии батарей, эта необходимость уменьшает удобство устройств и ограничивает их перемещение.

Учёные в американской Исследовательской лаборатории Диснея (Disney Research) нашли решение этой проблемы. Они разработали метод беспроводной зарядки, сделавший ненужными провода и зарядные устройства. Причём их метод позволяет одновременно заряжать не только гаджеты, но и, к примеру, бытовую технику и освещение.

«Наш инновационный метод делает электрический ток таким же вездесущим, как и Wi-Fi, - говорит один из директоров лаборатории и её ведущий научный специалист Алансон Сэмпл. - Он открывает дорогу для дальнейших разработок в сфере робототехники, ранее ограниченных ёмкостью батарей. Пока мы продемонстрировали работу установки в небольшой комнате, но нет никаких препятствий к тому, чтобы увеличить её мощность до размеров склада».

Систему беспроводной передачи электроэнергии разработал ещё в 1890-х годах известный учёный Никола Тесла, однако массового распространения изобретение не получило. Сегодняшние системы передачи тока без проводов работают в основном на крайне ограниченных пространствах.

Метод, названный квазистатическим полостным резонансом (quasistatic cavity resonance, QSCR), заключается в подаче тока в стены, пол и потолок помещения. Они, в свою очередь, генерируют магнитные поля, которые воздействуют на подсоединённый к заряжаемому устройству приёмник, содержащий катушку. Выработанная таким образом электроэнергия передаётся батарее, предварительно пройдя через исключающие воздействие других полей конденсаторы.

Испытания показали, что таким образом через обычную электрическую сеть можно передавать до 1,9 киловатт мощности. Этой энергии хватает для того, чтобы одновременно заряжать до 320 смартфонов. Причем, по словам ученых, такая технология не дорогостоящая и может быть легко налажен ее коммерческий выпуск.

Испытания проходили в специально созданной из алюминиевых конструкций комнате размером 5 на 5 метров. Сэмпл подчеркнул, что в будущем наличие металлических стен может быть не обязательным. Можно будет использовать токопроводящие панели или специальную краску.

Разработчики уверяют, что их способ передачи энергии по воздуху не представляет никакой угрозы для здоровья человека и любых других живых существ. Их безопасность обеспечивается за счет дискретных конденсаторов, которые выполняют роль изолятора для потенциально опасных электрических полей. опубликовано




Top