§2.12. ламповый генератор. Изучение работы простейшего лампового генератора электромагнитных колебаний

§ 137. ЛАМПОВЫЙ ГЕНЕРАТОР

Выше было рассмотрено применение трехэлектродной лампы в электронном усилителе. Однако триоды широко применяют и в ламповых генераторах, которые служат для создания переменных токов различной частоты.

Простейшая схема лампового генератора приведена на рис. 186. Основными его элементами являются триод и колебательный кон­тур. Для питания нити накала лампы используется батарея накала Бн. В цепь анода включена анодная батарея Ба и колебательный контур, состоящий из катушки индуктивности Lк и конденсатора Ск. Катушка Lc включена в цепь сетки и связана индуктивно с катушкой Lк колебательного контура. Если зарядить конденсатор, а затем замкнуть его на катушку индуктивности, то конденсатор будет периодически разряжаться и заряжаться, а в цепи колебательного контура возникнут затухающие электрические колебания тока и напряжения. Затухание колебаний вызвано потерями энергии в контуре. Для получения незатухающих колебаний переменного тока необходимо периодически с определенной частотой добавлять энергию в колебательный контур с помощью быстродействующего устройства. Таким устройством является

Если накалить катод лампы и замкнуть анодную цепь, то в цепи анода появится электрический ток, который зарядит кон­денсатор Ск колебательного контура. Конденсатор, разряжаясь на катушку индуктивности LK, вызовет в контуре зату­хающие колебания. Переменный ток, про­ходящий при этом через катушку LK, ин­дуктирует в катушке Lc переменное на­пряжение, воздействующее на сетку лам­пы и управляющее силой тока в цепи анода.

Когда на сетку лампы подается отри­цательное напряжение, анодный ток в ней уменьшается. При положительном напряжении на сетке лампы в анодной цепи увеличивается ток. Если в этот момент на верхней пластине конденсатора Ск колебательного контура будет отрицательный заряд, то анодный ток (поток электронов) зарядит конденсатор и тем самым скомпенсирует потери энергии в контуре.

Процесс уменьшения и увеличения тока в анодной цепи лампы I повторится во время каждого периода электрических колебаний в контуре.

Если при положительном напряжении на сетке лампы верхняя I пластина конденсатора Ск заряжена положительным зарядом, то анодный ток (поток электронов) не увеличивает заряда конденсатора, а, наоборот, уменьшает его. При таком положении колебания в контуре не будут поддерживаться, а будут затухать. Чтобы этого не случилось, необходимо правильно включать концы катушек

Lк и Lc и обеспечить этим своевременный заряд конденсатора. Если I колебания в генераторе не возникают, то необходимо поменять местами концы одной из катушек.

Ламповый генератор является преобразователем энергии постоянного тока анодной батареи в энергию переменного тока, частота которого зависит от индуктивности катушки и емкости конденсатора, образующих колебательный контур. Нетрудно понять, что это преобразование в схеме генератора выполняет триод. э. д. с, индуктируемая в катушке Lc током колебательного контура, периодически воздействует на сетку лампы и управляет анодным током, который, в свою очередь, с определенной частотой подзаряжает конденсатор, возмещая таким образом потери энергии в контуру Такой процесс повторяется многократно в течение всего времени работы генератора.

Рассмотренный процесс возбуждения незатухающих колебания в контуре называют самовозбуждением генератора, так как коле­бания в генераторе сами себя поддерживают.

Приборы и принадлежности: трехэлектродная лампа, источник постоянного напряжения на 300 В, источник переменного напряжения на 4В, два воздушных конденсатора постоянной и переменной емкости, две катушки индуктивности, два конденсатора постоянной емкости, сопротивление, микроамперметр, индикатор высокочастотного электромагнитного поля на неоновой лампе, неизвестные емкость и индуктивность.

Краткая теория

Электрический колебательный контур представляет собой цепь (рис.1), состоящую из последовательно соединенных емкости С, индуктивности L и сопротивления R проводников.

В контуре происходят периодические изменения силы тока и связанных с ней величин. Перезарядку пластин конденсатора можно понять, вспомнив, в чем состоит явление самоиндукции.

Явление самоиндукции состоит в следующем: при всяком изменении тока в контуре в нем возникает э.д.с. самоиндукции  c , которая прямо пропорциональна скорости изменения тока в контуре (di/dt) и обратно этой скорости направлена:

Если ток нарастает, э.д.с. препятствует этому увеличению тока и создает индукционный ток противоположного направления. Если ток уменьшается, э.д.с. препятствует уменьшению тока и создает индукционный ток того же направления.

Рассмотрим работу контура. Зарядим конденсатор от внешнего источника электроэнергии до некоторой разности потенциалов U, сообщив его обкладкам заряды ±q , и затем с помощью ключа К замкнуть контур, то конденсатор начнет разряжаться и в цепи потечет некоторый ток. При малом значении R он будет очень быстро нарастать. Направление для тока i, показанное на рис.1, примем за положительное (верхняя пластина заряжена положительно, нижняя - отрицательно) и рассмотрим процессы, протекающие в контуре.

Допустим сначала, что омическое сопротивление проводника, из которых состоит контур, исчезающе мало, т.е. R»0, и пусть в начальный момент времени заряд конденсатора максимален (q=q o ). При этом разность потенциалов между его обкладками также максимальна (U=U o), а ток в цепи равен нулю (рис.2,а). Когда конденсатор начнет разряжаться, то в контуре потечет ток.

В результате энергия электрического поля будет уменьшаться, но зато возникнет все возрастающая энергия магнитного поля, обусловленного током, текущим через индуктивность. Так как в цепи действует э.д.с. самоиндукции, ток будет увеличиваться постепенно, и через время t=1/4 T (четверть периода) он достигнет максимального значения (i=i o ), конденсатор разрядится полностью, и электрическое поле исчезнет, т.е. q =0 и U=0. Теперь вся энергия контура сосредоточена в магнитном поле катушки (рис.2,б). В последующий момент времени магнитное поле катушки начнет ослабевать, в связи с чем в ней индуцируется ток, идущий (согласно правилу Ленца) в том же направлении, в котором шел ток разрядки конденсатора. Благодаря этому конденсатор перезаряжается. Через время t=1/2 T магнитное поле исчезнет, а электрическое поле достигнет максимума. При этом q=q o , U=U o и i=0. Таким образом, энергия магнитного поля катушки индуктивности превратится в энергию электрического поля конденсатора (рис.2,в). Через время t=3/4 T конденсатор полностью разрядится, ток опять достигнет максимальной величины (i=i o ), а энергия контура сосредоточится в магнитном поле катушки (рис.2,г). В последующий момент времени магнитное поле катушки начнет ослабевать и индукционный ток, препятствующий этому ослаблению, перезарядит конденсатор. В результате к моменту времени t=T система (контур) возвращается в исходное состояние (рис.2,а) и начинается повторение рассмотренного процесса.

В ходе процесса периодически изменяются (колеблются) заряд и напряжение на конденсаторе, сила и направление тока, текущего через индуктивность. Эти колебания сопровождаются взаимными превращениями энергий электрического и магнитного полей.

Таким образом, если сопротивление контура равно нулю, то указанный процесс будет продолжаться неограниченно долго и мы получим незатухающие электрические колебания, период которых будет зависеть от величин L и С.

Колебания, происходящие в таком идеальном контуре (R=0), называются свободными , или собственными , колебаниями контура с периодом

. (10)

В реальном колебательном контуре омическое сопротивление R нельзя свести к нулю. Поэтому в нем электрические колебания всегда будут затухающими, так как часть энергии будет затрачиваться на нагревание проводников (Джоулево тепло).

Для осуществления незатухающих электрических колебаний необходимо обеспечить автоматическую подачу энергии с частотой, равной частоте собственных колебаний контура, т.е. необходимо создать автоколебательную систему. Такой системой незатухающих колебаний является ламповый генератор.

Ламповый генератор

Простейшая схема лампового генератора незатухающих электромагнитных колебаний приведена на рис.3

Он состоит из колебательного контура LC, включенного в анодную цепь трехэлектродной лампы последовательно с источником Б А постоянного анодного напряжения. Анодная батарея Б А является как бы "резервуаром", из которого подается энергия в колебательный контур. С катушкой L контура индуктивно связана катушка L 1 , концы которой подключены к сетке и катоду лампы. Она связывает работу лампы с колебательным процессом в контуре и называется катушкой обратной связи.

Трехэлектродная лампа вместе с катушкой обратной связи служит для того, чтобы энергия подавалась в контур в такт колебаниям. Незатухающие колебания получаются благодаря периодической подзарядке конденсатора анодным током лампы, проходящим через контур. Для того чтобы осуществлять периодическую подзарядку конденсатора контура в необходимые моменты времени, анодный ток должен иметь пульсирующий характер. Это обеспечивается путем соответствующего изменения потенциала на сетке лампы, который меняется при изменении направления тока разрядки в контуре LC за счет явления взаимной индукции между катушками L и L 1 .

При отрицательном заряде на сетке лампа оказывается "запертой", анодный ток через лампу не пойдет. Колебательный контур будет работать в обычном режиме. При положительном заряде на сетке лампа ’’откроется’’ и произведет подразядку конденсатора. Затем начнется повторение процесса.

Таким образом, лампа периодически подает в контур энергию от анодной батареи. Благодаря этому в контуре совершаются незатухающие электрические колебания.

В 1913 г. А. Мейснер изобрел замечательный способ генерирования незатухающих электрических колебаний посредством электронной лампы (§ 53). Схема электронно-лампового генератора колебаний показана на рис. 405. Колебательный контур подключен к аноду и катоду трехэлектродной лампы. Рядом с катушкой колебательного контура на том же каркасе намотана вторая катушка, один конец которой также присоединен к катоду лампы, а другой конец присоединен к сетке лампы. При правильном выборе режима лампы эта установка после начального «толчка», сообщенного замыканием цепи, дает незатухающие электрические колебания с частотой, определяемой емкостью и самоиндукцией контура.

Рис. 405. Схема использования триода для самовозбуждения незатухающих электрических колебаний.

Самовозбуждение колебания производится электронной лампой следующим образом. В начальный момент вслед за замыканием цепи анода электронный поток устремляется внутри лампы от катода к аноду и во внешней цепи от анода через катушку контура 1 к катоду. Быстро нарастая, ток создает, проходя через катушку контура, магнитное поле, которое в момент своего образования индуцирует в катушке сетки 2 электродвижущую силу такого направления, что сетка лампы приобретает по отношению к катоду положительный потенциал. Появление положительного потенциала на сетке мгновенно увеличивает ток, проходящий через лампу и через катушку

контура. Это влечет за собой новое резкое (еще более быстрое, чем в первый момент по замыкании цепи) возрастание магнитного поля. В катушке сетки вновь индуцируется электродвижущая сила такого же, как и раньше, направления, но еще большая по величине, пропорционально большей скорости возрастания магнитного поля; положительный потенциал сетки увеличивается. Увеличение положительного потенциала сетки мгновенно сказывается в увеличении анодного тока и т. д. Таким образом, в рассмотренной первой стадии процесса увеличение тока заряжает положительно сетку, что в свою очередь усиливает ток.

Но эта первая стадия процесса вскоре приводит к «кризису» и обрывается. Она обрывается тогда, когда на какой-то ступени возрастания тока скорость возрастания тока окажется меньшей, чем бывшая на предыдущей ступени. Магнитное поле контурной катушки, возрастая с меньшей скоростью, чем раньше, дает в сеточной катушке электродвижущую силу такого же, как раньше, направления, но уже меньшей величины. Потенциал сетки, оставаясь положительным, уменьшится, что вызовет уменьшение тока и остановку роста магнитного поля контурной катушки. Электродвижущая сила в сеточной катушке теперь не индуцируется, а потенциал сетки мгновенно падает до нуля. Вследствие этого ток резко уменьшается, магнитное поле контурной катушки быстро убывает и индуцирует в сеточной катушке электродвижущую силу, направленную противоположно прежнему. Сетка приобретает большой отрицательный потенциал и сразу «запирает» лампу - приостанавливает ток через нее, превращает ее в непроводник. Таким образом, во второй стадии (более короткой, чем первая) происходит кризисное падение потенциала сетки, завершающееся тем, что сетка получает большой отрицательный потенциал и запирает лампу.

Теперь выступает на сцену конденсатор контура. Лампа заперта, а контурная катушка запасла магнитную энергию Магнитное поле катушки, исчезая, создает экстраток, который заряжает конденсатор; поток электронов, которому прегражден путь через лампу, сосредоточивается на пластинах конденсатора, приключенных к катоду.

Пластины, приключенные к аноду, приобретают высокий поло жительный потенциал. Этим завершается третья стадия.

В последующий момент времени происходит разряд конденсатора. Через контурную катушку электронный поток устремляется обратно к аноду; хотя магнитное поле катушки опять нарастает, но его полярность противоположна прежней, и поэтому электродвижущая сила, индуцируемая в сеточной катушке, имеет такое направление, что потенциал сетки остается отрицательным; лампа продолжает быть запертой. К моменту, когда потенциалы на клеммах конденсатора сравняются, магнитное поле катушки достигнет максимума (конец четвертой стадии).

С этого момента, в связи с переходом от роста магнитного поля к его убыванию, изменяется направление электродвижущей силы, индуцируемой в сеточной катушке. Сетка, как и в первой стадии, приобретает положительный потенциал и открывает лампу, но лампа еще некоторое время бездействует, так как электродвижущая сила самоиндукции контурной катушки компенсирует электродвижущую силу батареи; напряжение на аноде мало и соответственно мал анодный ток. Магнитное поле контурной катушки, исчезая, гонит электроны к пластинам конденсатора, подключенным к аноду; туда же вскоре устремляется поток электронов, идущий из начинающей действовать лампы. Мгновенно здесь возникает высокий от рицательный потенциал (конец пятой стадии).

В последующую, шестую, стадию процесса повторяются с возросшей интенсивностью явления, происходившие в первой стадии: в контурной катушке одновременно протекают ток разряда конденсатора и ток, идущий через лампу.

Рис. 406. Трехточечная схема лампового Генератора колебаний

Чем сильнее «самораскачиваются» электрические колебания в ламповом генераторе, тем крепче в нужный момент оказывается заперта лампа высоким отрицательным потенциалом сетки. Рассеяние энергии при колебаниях автоматически восполняется за счет энергии анодной батареи. Амплитуда колебаний лимитируется мощностью лампы; для увеличения мощности подключают параллельно несколько ламп.

Генераторные электронные лампы, рассчитанные на мощность имеют ток насыщения, превышающий 5-10 а при анодном напряжении

В рассмотренной нами классической схеме Мейснера напряжения, подаваемые на сетку лампы, берутся (в данном случае посредством индуктивной связи катушек 1 и 2) из цепи анода. Такой принцип возбуждения напряжений в цепи сетки заимствованием их из цепи анода называют принципом обратной связи. Возможны различные видоизменения схемы. Вместо индуктивной обратной связи может быть применена емкостная обратная связь. Часто применяют так называемую трехтэчечную схему, в которой сеточной катушкой служит часть контурной катушки (рис. 406).

Математический анализ самовозбуждения колебаний показывает, что взаимная индуктивность катушек, обеспечивающих обратную связь, должна быть не меньше величины, определяемой неравенством

где активное сопротивление, емкость и индуктивность колебательного контура анодной цепи, коэффициент усиления и крутизна сеточной характеристики лампы.

Таким образом, самовозбуждение колебаний наступает при тем меньшей величине взаимной индуктивности обратной связи, чем больше коэффициент усиления и крутизна лампы и чем меньше все параметры колебательного контура: его активное сопротивление, емкость и индуктивность.

Питание ламповых генераторов осуществляют часто от динамо-машин, дающих ток для накала ламп и высокое напряжение для питания анодных цепей. Часто пользуются обычным переменным током: накал нитей подогревных ламп может производиться непосредственно переменным током, получение же высокого напряжения для питания анодных цепей производится применением трансформатора и лампового выпрямителя (кенотрона).

Так как на частоту генерируемых в контуре колебаний некоторое влияние оказывает режим работы лампы, то во избежание случайных изменений частоты, связанных с изменением режима работы лампы, применяют так называемые пьезокварцевые стабилизаторы частоты.

Небольшую пластинку, вырезанную надлежащим образом из кристалла кварца (§ 23), помещают в конденсатор К, подключенный к сетке лампы (рис. 407). Электрические колебания вызывают вынужденные механические колебания пьезокварцевой пластинки. Когда частота колебаний потенциала, подведенных к пластинке, близка к собственной частоте механических колебаний пластинки, происходит резонансное раскачивание колебаний пластинки. Колебательные изменения толщины пьезокварцевой пластинки сопровождаются в свою очередь появлением на ее гранях зарядов, изменение величины и знака которых поддерживает колебания потенциала на пластинах сеточного конденсатора К. Таким образом, случайные изменения частоты электрических колебаний, подведенных к конденсатору К, почти не сказываются на колебаниях потенциала сетки, которые происходят синхронно с собственными колебаниями пьезокварцевой пластинки. Затухание колебаний пьезокварцевой пластинки очень мало, декремент затухания меньше одной десятитысячной.

В схеме, показанной на рис. 407, обратная связь осуществляется через конденсатор небольшой емкости С. При генерировании высокочастотных колебаний межэлектродная емкость (анод-сетка в генераторной лампе) часто оказывается достаточной для реализации обратной связи и заменяет конденсатор С. Сопротивление препятствует появлению на сетке больших (превышающих расчетное значение) отрицательных потенциалов, заряды стекают по этому сопротивлению.

Применение пьезокварцевых стабилизаторов позволяет поддерживать частоту ламповых генераторов колебаний постоянной с точностью до миллионных долей. Это используется в пьезокварцевых часах, которые представляют собой ламповый генератор колебаний с частотой колебаний, стабилизированной пьезокварцем, и с устройством для автоматического счета числа совершившихся колебаний. Пьезокварцевые часы несравненно точнее лучших хронометров. Они измеряют время с точностью до С помощью пьезокварцевых часов были обнаружены и изучены незначительные неравномерности скорости суточного вращения Земли.

Рис. 407. Ламповый генератор колебаний с пьезокварцевым стабилизатором частоты

Наряду с ламповыми генераторами, - создающими гармонические колебания напряжения, часто применяются ламповые генераторы импульсов напряжения, резко отличающихся по форме от синусоидальных. Такие так называемые релаксационные колебания служат, в частности, для управления электронным лучом в осциллографах и телевизионных трубках. Пилообразные по форме импульсы напряжения подводятся (в телевизионных трубках) к катушкам, создающим магнитное поле, отклоняющее луч, или (в осциллографах) к конденсатору, между пластинами которого проходит электронный луч, что позволяет получать равномерные во времени отклонения луча, прочерчивающего на экране

прямую линию-развертку луча. На рис. 408 показана схема лампового генератора, создающего пилообразные импульсы напряжения. Здесь два триода, объединенных в одном баллоне, причем сетки их соединены. Существенно, что анодная цепь первого триода (блокинг-генератора) весьма сильно связана с сеточной цепью через трансформатор, имеющий для увеличения взаимоиндукции железный сердечник. Колебания в сеточной цепи определяются появлением заряда на конденсаторе и стекэнием этого заряда через сопротивление на землю; чем меньше постоянная времени этой цепи тем быстрее разряжается конденсатор сетки

Рис. 408. Блокинг-генератор и генератор пилообразных импульсов напряжения.

Если в начальный момент потенциал сетки был отрицателен и лампа блокинг-генератора (левый триод) была заперта, то, когда конденсатор разрядится, через лампу проходит быстро возрастающий ток; это быстрое возрастание тока обеспечивается тем, что при увеличении тока через трансформатор на сетку подается положительное напряжение (при включении обмоток трансформатора следует подобрать правильную полярность). Далее, существенно, что лампа блокинг-генератора работает в таком режиме, когда большому анодному току соответствует весьма большая утечка электронов через сетку; благодаря этому току сетки вслед за положительным выбросом (кривая 1 на рис. 408) напряжение на сетке быстро снова становится отрицательным и лампа блокинг-генератора вновь оказывается запертой. Напряжение на аноде второго триода (кривая 2 на том же рисунке) резко и глубоко падает каждый раз, когда начинает проходить ток через лампу, так как в цепь анода включено большое сопротивление (порядка Когда же лампа оказывается запертой, напряжение восстанавливается, возрастая приблизительно линейно, и с тем большей скоростью, чем меньше постоянная времени анодной цепи

Юным радиолюбителям посвящается…

Предисловие

Радиосигнал, однажды сгенерированный, уносится в глубь Вселенной со скоростью света… Эта фраза, прочитанная в журнале «Юный техник» в далеком детстве произвела на меня очень сильное впечатление и уже тогда я твердо решил, что обязательно пошлю свой сигнал нашим «братьям по разуму», чего бы мне это не стоило. Но путь, от желания до воплощения мечты долог и непредсказуем…

Когда я только начинал заниматься радиоделом, мне очень хотелось построить портативную радиостанцию. В то время я думал, что она состоит из динамика, антенны и батарейки. Стоит только соединить их в правильном порядке и можно будет разговаривать с друзьями где-бы они не находились… Я изрисовал не одну тетрадку возможными схемами, добавлял всевозможные лампочки, катушки и проводки. Сегодня эти воспоминания вызывают у меня лишь улыбку, но тогда мне казалось, что еще чуть-чуть и чудо-устройство будет у меня в руках…

Я помню свой первый радиопередатчик. В 7 классе я ходил в кружок спортивной радиопеленгации (т.н. охоты на лис). В один из прекрасных весенних дней наша последняя «лиса» — приказала долго жить. Руководитель кружка, недолго думая, вручил мне её со словами — «… ну, ты там её почини…». Я наверное был страшно горд и счастлив, что мне доверили столь почетную миссию, но мои знания электроники на тот момент не дотягивали до «кандидатского минимума». Я умел отличать транзистор от диода и приблизительно представлял как они работают по отдельности, но как они работают вместе — для меня это было загадкой. Придя домой, я с благоговейным трепетом вскрыл небольшую металлическую коробочку. Внутри неё оказалась плата, состоящая из мультивибратора и генератора РЧ на транзисторе П416. Для меня это была вершина схемотехники. Самой загадочной деталью в данном устройстве была катушка задающего генератора (3,5МГц.), намотанная на броневом сердечнике. Детское любопытство пересилило здравый смысл и острая металлическая отвертка впилась в броневой кожух катушки. «Хрясь» — раздался хруст и кусок броневого корпуса катушки, со стуком упал на пол. Пока он падал, мое воображение уже нарисовало картину моего расстрела руководителем нашего кружка…

У этой истории был счастливый конец, правда случился он через месяц. «Лису» я все-таки починил, хотя точнее сказать — сделал её заново. Плата радиомаяка, сделанная из фольгированного гетинакса, не выдержала пыток моим 100 ваттным паяльником, дорожки отслоились от постоянной перепайки деталей… Пришлось плату делать заново. Спасибо моему папе, что принес (достал где-то с большим трудом) фольгированный гетинакс, а маме — за дорогой французский красный лак для ногтей, который я использовал для рисования платы. Новый броневой сердечник мне достать не удалось, но зато удалось аккуратно склеить старый клеем БФ… Отремонтированный радиомаяк радостно послал в эфир свое слабое «ПИ-ПИ-ПИ», но для меня это было сравни запуску первого искусственного спутника Земли, возвестившего человечеству о начале космической эры таким-же прерывистым сигналом на частоте 20 и 40 МГц. Вот такая история…

Схема устройства

В мире существует огромное количество схем генераторов, способных генерировать колебания различной частоты и мощности. Обычно, это достаточно сложные устройства на диодах, лампах, транзисторах или других активных элементах. Их сборка и настройка требует некоторого опыта и наличия дорогих приборов. И чем выше частота и мощность генератора, тем сложнее и дороже нужны приборы, тем опытнее должен быть радиолюбитель в данной теме.

Но сегодня, мне бы хотелось рассказать о достаточно мощном генераторе ВЧ, построенном всего на одном транзисторе. Причем работать этот генератор может на частотах до 2ГГц и выше и генерировать достаточно большую мощность — от единиц до десятков ватт, в зависимости от типа применяемого транзистора. Отличительной особенностью данного генератора, является использование симметричного дипольного резонатора, своеобразного открытого колебательного контура с индуктивной и емкостной связью. Не стоит пугаться такого названия — резонатор представляет собой две параллельные металлические полоски, расположенные на небольшом расстоянии друг от друга.

Свои первые опыты с генераторами подобного вида я проводил ещё в начале 2000-х годов, когда для меня стали доступны мощные ВЧ-транзисторы. С тех пор я периодически возвращался к этой теме, пока в середине лета на сайте VRTP.ru не возникла тема по использованию мощного однотранзисторного генератора в качестве источника ВЧ-излучения для глушения бытовой техники (музыкальных центров, магнитол, телевизоров) за счет наведения модулированных ВЧ-токов в электронных схемах этих устройств. Накопленный материал и лег в основу данной статьи.

Схема мощного генератора ВЧ, достаточно проста и состоит из двух основных блоков:

  1. Непосредственно сам автогенератор ВЧ на транзисторе;
  2. Модулятор — устройство для периодической манипуляции (запуска) генератора ВЧ сигналом звуковой (любой другой) частоты.

Детали и конструкция

«Сердцем» нашего генератора является высокочастотный MOSFET-транзистор . Это достаточно дорогостоящий и мало распространенный элемент. Его можно купить за приемлемую цену в китайских интернет-магазинах или найти в высокочастотном радиооборудовании — усилителях/генераторах высокой частоты, а именно, в платах базовых станций сотовой связи различных стандартов. В своем большинстве эти транзисторы разрабатывались именно под данные устройства.
Такие транзисторы, визуально и конструктивно отличаются от привычных с детства многим радиолюбителям КТ315 или МП38 и представляют собой «кирпичики» с плоскими выводами на мощной металлической подложке. Они бывают маленькие и большие в зависимости от выходной мощности. Иногда, в одном корпусе располагаются два транзистора на одной подложке (истоке). Вот как они выглядят:


Линейка внизу, поможет вам оценить их размеры. Для создания генератора могут быть использованы любые MOSFET-транзисторы. Я пробовал в генераторе следующие транзисторы: MRF284, MRF19125, MRF6522-70, MRF9085, BLF1820E, PTFA211801E — все они работают. Вот как данные транзисторы выглядят внутри:


Вторым, необходимым материалом для изготовления данного устройства является медь . Необходимы две полоски данного металла шириной 1-1,5см. и длинной 15-20см (для частоты 400-500 МГц). Можно сделать резонаторы любой длинны, в зависимости от желаемой частоты генератора. Ориентировочно, она равна 1/4 длинны волны.
Я использовал медь, толщиной 0,4 и 1 мм. Менее тонкие полоски — будут плохо держать форму, но в принципе и они работоспособны. Вместо меди, можно использовать и латунь . Резонаторы из альпака (вид латуни) тоже успешно работают. В самом простом варианте, резонаторы можно сделать из двух кусочков проволоки, диаметром 0,8-1,5 мм.

Помимо ВЧ-транзистора и меди, для изготовления генератора понадобится микросхема 4093 — это 4 элемента 2И-НЕ с триггерами Шмитта на входе. Её можно заменить на микросхему 4011 (4 элемента 2И-НЕ) или её российский аналог — К561ЛА7 . Также можно использовать другой генератор для модуляции, например, собранный на таймере 555 . А можно вообще исключить из схемы модулирующую часть и получить просто ВЧ-генератор.

В качестве ключевого элемента применен составной p-n-p транзистор TIP126 (можно использовать TIP125 или TIP127, они отличаются только максимально допустимым напряжением). По паспорту он выдерживает 5А, но очень сильно греется. Поэтому необходим радиатор для его охлаждения. В дальнейшем, я использовал P-канальные полевые транзисторы типа IRF4095 или P80PF55 .

Сборка устройства

Устройство может быть собрано как на печатной плате, так и навесным монтажом с соблюдением правил для ВЧ-монтажа. Топология и вид моей платы приведены ниже:

Эта плата рассчитана на транзистор типа MRF19125 или PTFA211801E . Для него прорезается отверстие в плате, соответствующее размеру истока (теплоотводящей пластины).
Одним из важных моментов сборки устройства является обеспечение теплоотвода от истока транзистора. Я применил различные радиаторы, подходящие по размеру. Для кратковременных экспериментов — таких радиаторов достаточно. Для долговременной работы — необходим радиатор достаточно большой площади или применение схемы обдува вентилятором.
Включение устройства без радиатора, чревато быстрым перегревом транзистора и выходом из строя этого дорогостоящего радиоэлемента.

Для экспериментов, мною были изготовлены несколько генераторов по разные транзисторы. Также я сделал фланцевые крепления полосковых резонаторов, чтобы можно было их менять без постоянного нагрева транзистора. Представленные ниже фотографии помогут вам разобраться в деталях монтажа.


















































Запуск устройства

Перед запуском генератора, необходимо еще раз проверить правильность его соединений, чтобы у вас не образовалась весьма не дешёвая кучка транзисторов с надписью «Сгорел».


Первый запуск, желательно производить с контролем потребляемого тока. Этот ток, можно ограничить до безопасного уровня использовав резистор на 2-10 Ом в цепи питания генератора (коллектор или сток модулирующего транзистора).
Работу генератора можно проверить различными приборами: поисковым приемником, сканером, частотомером или просто энергосберегающей лампой. ВЧ-излучение, мощностью более 3-5 Вт, заставляет её светиться.

ВЧ-токи легко нагревают некоторые материалы вступающие с ними в контакт в т. ч. и биологические ткани. Так, что будьте осторожны, можно получить термический ожог прикоснувшись к оголенным резонаторам (особенно при работе генераторов на мощных транзисторах). Даже небольшой генератор на транзисторе MRF284, при мощности всего около 2-х ватт — легко сжигает кожу рук, в чем вы можете убедиться на этом видео:

При некотором опыте и достаточной мощности генератора, на конце резонатора, можно зажечь т.н. «факел» — небольшой плазменный шарик, который будет подпитываться ВЧ-энергией генератора. Для этого достаточно просто поднести зажженную спичку к острию резонатора.

Т.н. «факел» на конце резонатора.

Помимо этого, можно зажечь ВЧ-разряд между резонаторами. В некоторых случаях, разряд напоминает крошечную шаровую молнию хаотично перемещающуюся по всей длине резонатора. Как это выглядит вы можете увидеть ниже. Несколько увеличивается потребляемый ток и во всем доме «гаснут» многие каналы эфирного телевидения))).

Применение устройства

Помимо этого, наш генератор может быть применен для изучения воздействия ВЧ-излучения на различные устройства, бытовую аудио и радиоаппаратуру с целью изучения их помехоустойчивости. Ну и конечно, с помощью данного генератора можно послать сигнал в космос, но это уже другая история…

P.S. Не следует путать этот ВЧ-автогенератор с различными EMP-jammers. Там генерируются импульсы высокого напряжения, а наше устройство генерирует излучение высокой частоты.




Top