Сравнение матриц в видеокамерах и фотоаппаратах (CMOS, CCD)

Матрица является главным структурным элементом фотоаппарата и одним из ключевых параметров, принимаемых во внимание пользователем при выборе фотокамеры. Матрицы современных цифровых фотоаппаратов можно классифицировать по нескольким прознакам, но основным и наиболее распространенным всеже является деление матриц по методу считывания заряда , на: матрицы CCD типа и CMOS матрицы. В данной статье мы рассмотрим принципы работы, а также достоинства и недостатки этих двух типов матриц, так как именно они повсеместно используются в современных фото- и видеотехнике.

CCD матрица

Матрицу CCD называют еще ПЗС-матрицей (Приборы с Зарядовой Связью). ПЗС матрица представляет собой прямоугольную пластину светочувствительных элементов (фотодиодов), расположенных на полупроводниковом кристалле кремния. В основе принципа ее действия лежит построчное перемещение зарядов, которые накопились в прорехах, образованных фотонами в атомах кремния. То есть, при столкновении с фотодиодом, фотон света поглощается и при этом выделяется электрон (происходит внутренний фотоэффект). В результате образуется заряд, который нужно как-то сохранить для дальнейшей обработки. Для этой цели в кремниевой подложке матрицы встроен полупроводник, над которым располагается прозрачный электрод из поликристаллического кремния. И в результате подачи на данный электрод электрического потенциала в обеднённой зоне под полупроводником образуется так называемая потенциальная яма, в которой и хранится полученный от фотонов зарад. При считывании с матрицы электрического заряда осуществляется перенос зарядов (хранящихся в потенциальных ямах) по электродам переноса к краю матрицы (последовательный регистр сдвига) и в сторону усилителя, который усиливает сигнал и передает его в аналогово-цифровой преобразователь (АЦП), откуда преобразованный сигнал направляется в процессор, который обрабатывает сигнал и сохраняет полученное изображение на карту памяти.

Для изготовления ПЗС-матриц используются поликремневые фотодиоды. Такие матрицы отличаются небольшими размерами и позволяют получать достаточно качественные фотографии при съемке с нормальным освещением.

Преимущества ПЗС-матриц :

  1. Кконструкция матрицы обеспечивает высокую плотность размещения фотоэлементов (пикселей) на подложке;
  2. Высокая эффективность (отношение зарегистрированных фотонов к их общему числу, составляет около 95%);
  3. Высокая чувствительность;
  4. Хорошая цветопередача (при достаточном освещении).

Недостатки ПЗС-матриц:

  1. Высокий уровень шума на высоких ISO (на низких ISO, уровень шума умеренный);
  2. Низкая скорость работы в сравнении с CMOS-матрицами;
  3. Высокое энергопотребление;
  4. Более сложная технология считывания сигнала, так как необходимо много управляющих микросхем;
  5. Производство обходится дороже чем CMOS-матриц.

CMOS матрица

Матрица CMOS , или КМОП-матрица (Комплементарные Металл-Оксидные Полупроводники) использует активные точечные сенсоры. В отличие от ПЗС-матриц, КМОП-матрица содержат отдельный транзистор в каждом светочувствительном элементе (пикселе) в результате чего преобразование заряда выполняется непосредственно в пикселе. Полученный заряд может быть считан из каждого пикселя индивидуально, поэтому отпадает необходимость переноса заряда (как это происходит в ПЗС-матрицах). Пиксели КМОП-матрицы интегрируется непосредственно с аналогово-цифровым преобразователем или даже с процессором. В результате применения такой рациональной технологии происходит экономия энергии за счет сокращения цепочек действий по сравнению с матрицами CCD, а также удешевление устройства за счет более простой конструкции.


Краткий принцип работы КМОП-матрицы: 1) Перед съемкой на транзистор сброса подается сигнал сброса. 2) Во время экспозиции свет проникает через линзу и фильтр на фотодиод и в результате фотосинтеза в потенциальной яме накапливается заряд. 3) Считывается значение полученного напряжения. 4) Обработка данных и сохранение изображения.

Преимущества КМОП-матриц :

  1. Низкое энергопотребление (особенно в ждущих режимах);
  2. Высокое быстродействие;
  3. Требует меньше затрат при производстве, благодаря схожести технологии с производством микросхем;
  4. Единство технологии с другими цифровыми элементами, что позволяет объединить на одном кристале аналоговую, цифровую и обрабатывающую части (т.е. кроме захвата света в пикселе можно преобразовать, обработать и очистить сигнал от шума).
  5. Возможность произвольного доступа к каждому пикселю или группе пикселей, что позволяет уменьшить размер захваченного изображения и увеличить скорость считывания.

Недостатки КМОП-матриц:

  1. Фотодиод занимает малую площать пикселя, в результате получается низкая светочувствительность матрицы, но в современных КМОП-матрицах этот минус практически устранен;
  2. Наличие теплового шума от нагревающихся транзисторов внутри пикселя в процессе считывания.
  3. Относительно большие размеры, фтооборудование с таким типом матриц отличается большим весом и размерами.

Кроме вышеупомянутых типов, существуют еще трехслойные матрицы, каждый слой которых представляет собой CCD. Отличие состоит в том, что ячейки могут одновременно воспринимать три цвета, которые образуются дихроидными призмами при попадании на них пучка света. Затем каждый пучок направляется на отдельную матрицу. В результате яркость синего, красного и зеленого цветов определяется на фотоэлементе сразу. Трехслойные матрицы применяют в видеокамерах высокого уровня, которые имеют специальное обозначение - 3CCD .

Подводя итоги хотелось бы отметить, что с развитием технологий производства CCD и CMOS матриц, меняются и их характеристики, поэтому все сложнее сказать какая из матриц однозначно лучше, но при этом в последнее время в производстве зеркальных фотокамер все большей популярностью пользуются КМОП-матрицы. На основе характерных особенностей различных видов матриц, можно составить четкое представление, почему профессиональная фототехника, обеспечивающая высокое качество съемок, довольно громоздкая и тяжелая. Эту информацию обязательно следует помнить при выборе фотоаппарата - то есть, учитывать физические размеры матрицы, а не количество пикселей.

CMOS-матрица - это прибор, основной функцией которого является оцифровывание определенных параметров световых лучей, попавших на его поверхность. В современной фото- и видеоаппаратуре применяются два стандарта матриц: CMOS и CCD. Данная статья посвящена сравнению этих двух технологий.

Общая информация

Итак, CCD-матрица. Этот тип изначально считался наиболее качественным, но и более энергозатратным и дорогим. таких приборов основан на сборе всей картины в аналоговой версии, с последующей оцифровкой. CMOS-матрица, в отличие от ее конкурента, оцифровывает каждый пиксель в отдельности.

Сравнение двух технологий

CMOS-устройства изначально были менее энергопотебляющими и дешевыми, особенно это сказывалось при производстве приборов больших размеров, однако они уступали CCD по качеству. По сей день CCD-технологии отличаются более высококачественным изображением, их применяют в различных областях науки и промышленности, там, где к качеству картинки предъявляются наиболее высокие требования. Например, в медицине.

В последние годы у этого типа приборов значительно снизилась энергозатратность и стоимость, но и CMOS-матрица существенно продвинулась в своем развитии. К примеру, был усовершенствован и выведен на новый уровень стандарт качества изображения. Более того, был произведен технологический переворот в производстве сенсоров на базе CMOS-технологии, а именно: каждому пикселю изображения был внедрен для считывания транзисторный усилитель. Это позволило производить преобразование заряда в напряжение непосредственно в точке. Благодаря этому CMOS-матрица стала в один ряд с CCD-технологией. И теперь большинство современных аппаратов имеет в своей основе прибор на базе CMOS.

Преимущества CMOS-технологии

Подведя итог вышесказанному, можно суммировать достоинства таких приборов. Это невысокое энергопотребление в статическом режиме, дешевизна изготовления (особенно если учитывать большой Ну а самым главным преимуществом является способность выдавать готовый не требующий дополнительных преобразований.

Использование CMOS-технологий в компьютерной технике

Каждый пользователь современного компьютерного оборудования ежедневно сталкивается с таким устройством, как web-камера. Но мало кто знает, что в ее основе заложен принцип CMOS-технологий.

Web-камеры используют как отдельные функциональные устройства, так и встроенные, например, в ноутбуках. Такие приборы предназначены для работы с сетевыми мультимедийными приложениями. В состав упомянутых изделий входят: объектив, матрица, плата видеозахвата, оптический фильтр, блок сжатия изображения, процессор, флеш-память, web-сервер и сетевой интерфейс. Матрица является основой любой видеокамеры или фотоаппатара. Ведь от разрешения этого устройства будет зависеть качество передаваемого изображения. Обычно этот параметр в веб-камерах лежит в интервале от 0,1 до 2 Мпикс. Однако в большинстве изделий он составляет 0,3 Мпикс. Еще одним показателем, определяющим веб-камеру, выступает формат кадра. Самой популярной является матрица CMOS 1/4. Существуют и другие форматы, но они встречаются реже (например, 1/3, 1/2 или 2/3 дюйма).

В современных видеокамерах активно используют 2 типа матриц: CMOS и CCD. Матрица CMOS (КМОП) построена на базе CMOS-технологии, которая и дала название этому продукту (complementary metal-oxide-semiconductor, комплементарная структура металл-оксид-полупроводник). Если в камерах среднего ценового сегмента оба варианта применяются примерно в равной пропорции, то в бюджетных видеосистемах чаще встречается именно КМОП.

Принцип работы технологии следующий:

  • Подается сигнал сброса;
  • Диоды накапливают заряд во время экспозиции;
  • Происходит считывание параметров.
Несмотря на многолетнюю историю применения, матрицы данного типа не относятся к устаревшим. Они до сих пор позволяют выполнить задачу организации видеонаблюдения на объекте. Ежегодно выпускаются новые модели камер, оснащенных CMOS.

Основные преимущества

Ключевые причины, по которым стоит сделать выбор в пользу CMOS (КМОП) матрицы :
  • Невысокая стоимость по сравнению с ПЗС-аналогами. При увеличении размеров разница в стоимости продолжает расти;
  • Низкое энергопотребление. Важный фактор при работе камеры от аккумулятора, устаревшей электросети объекта, значительном количестве подключенных устройств;
  • Возможность кадрированного считывания – анализа произвольных пикселей, увеличивающая скорость записи. Не нужно считывать сразу всю информацию, как с ПЗС-камерой. Улучшается качество ручной фокусировки;
  • Используются в миниатюрных видеокамерах.

Недостатки

Делая выбор в пользу данного типа элементов, стоит учитывать ограничения CMOS-технологии:
  • Повышенный нагрев устройства, рост шумов;
  • Низкая светочувствительность матрицы на старых моделях камер. Сейчас ситуация частично исправлена за счет новой линейки оборудования с технологией Exmor с увеличением светочувствительности пикселей;
  • Искривленное изображение быстро перемещающихся объектов. Эффект «rolling shutter».
Со временем технология совершенствуется, отставание в указанных областях от CCD-матриц уменьшается.

Область применения CMOS матриц

КМОП-элементы благодаря надежности, низкой стоимости и гибкой настройки получили широкое применение в нескольких сферах нашей жизни. Прежде всего, в фотографии – камеры телефонов и фотоаппаратов оснащены именно этими матрицами, удовлетворяя потребности пользователя. Второе место – видеонаблюдение :
  • При охране квартир;
  • Наблюдении за аэропортом;
  • Контроле строительной площадки;
  • В офисе;
  • В торговом центре;
  • На складе;
  • Для других объектов с разными условиями эксплуатации.

Матрицы удастся встретить в дорожной (контроль поведения участников дорожного движения), научной сфере, медицине, промышленности.

Сенсор изображения является важнейшим элементом любой видеокамеры. Сегодня практически во всех камерах используются датчики изображения CCD или CMOS. Оба типа датчика выполняют задачу преобразования изображения, построенного на сенсоре объективом, в электрический сигнал. Однако вопрос, какой датчик лучше, до сих пор остается открытым

Н.И. Чура
Технический консультант
ООО "Микровидео Группа"

CCD является аналоговым датчиком, несмотря на дискретность светочувствительной структуры. Когда свет попадает на матрицу, в каждом пикселе накапливается заряд или пакет электронов, преобразуемый при считывании на нагрузке в напряжение видеосигнала, пропорциональное освещенности пикселей. Минимальное количество промежуточных переходов этого заряда и отсутствие активных устройств обеспечивают высокую идентичность чувствительных элементов CCD.

CMOS-матрица является цифровым устройством с активными чувствительными элементами (Active Pixel Sensor). С каждым пикселем работает свой усилитель, преобразующий заряд чувствительного элемента в напряжение. Это дает возможность практически индивидуально управлять каждым пикселем.

Эволюция CCD

С момента изобретения CCD лабораторией Белла (Bell Laboratories, или Bell Labs) в 1969 г. размеры сенсора изображения непрерывно уменьшались. Одновременно увеличивалось число чувствительных элементов. Это естественно вело к уменьшению размеров единичного чувствительного элемента (пикселя), а соответственно и его чувствительности. Например, с 1987 г. эти размеры сократились в 100 раз. Но благодаря новым технологиям чувствительность одного элемента (а следовательно, и всей матрицы) даже увеличилась.

Что позволило доминировать
С самого начала CCD стали доминирующими сенсорами, поскольку обеспечивали лучшее качество изображения, меньший шум, более высокую чувствительность и большую равномерность параметров пикселей. Основные усилия по совершенствованию технологии были направлены на улучшение характеристик CCD.

Как растет чувствительность
По сравнению с популярной матрицей Sony HAD стандартного разрешения (500х582) конца 1990-х гг. (ICX055) чувствительность моделей более совершенной технологии Super HAD выросла почти в 3 раза (ICX405) и Ex-view HAD – в 4 раза (ICX255). Причем для черно-белого и цветного варианта.

Для матриц высокого разрешения (752х582) успехи несколько менее впечатляющие, но если сопоставлять модели цветного изображения Super HAD с самыми современными технологиями Ex-view HAD II и Super HAD II, то рост чувствительности составит в 2,5 и 2,4 раза соответственно. И это несмотря на уменьшение размеров пикселя почти на 30%, поскольку речь идет о матрицах самого современного формата 960H с увеличенным количеством пикселей до 976х582 для стандарта PAL. Для обработки такого сигнала Sony предлагает ряд сигнальных процессоров Effio.

Добавилась ИК-составляющая
Одним из эффективных методов роста интегральной чувствительности является расширение спектральных характеристик чувствительности в область инфракрасного диапазона. Это особенно характерно для матрицы Ex-view. Добавление ИК-составляющей несколько искажает передачу относительной яркости цветов, но для черно-белого варианта это не критично. Единственная проблема возникает с цветопередачей в камерах "день/ночь" с постоянной ИК-чувствительностью, то есть без механического ИК-фильтра.


Развитие этой технологии в моделях Ex-view HAD II (ICX658AKA) в сравнении с предыдущим вариантом (ICX258AK) обеспечивает рост интегральной чувствительности всего на 0,8 дБ (с 1100 до 1200 мВ) с одновременным увеличением чувствительности на длине волны 950 нм на 4,5 дБ. На рис. 1 приведены характеристики спектральной чувствительности этих матриц, а на рис. 2 – отношение их интегральной чувствительности.


Оптические инновации
Другим методом роста чувствительности CCD являются увеличение эффективности пиксельных микролинз, светочувствительной области и оптимизация цветовых фильтров. На рис. 3 представлено устройство матриц Super HAD и Super HAD II, показывающее увеличение площади линзы и светочувствительной области последней модификации.

Дополнительно в матрицах Super HAD II значительно увеличено пропускание светофильтров и их устойчивость к выцветанию. Кроме того, расширено пропускание в коротковолновой области спектра (голубой), что улучшило цветопередачу и баланс белого.

На рис. 4 представлены спектральные характеристики чувствительности матриц Sony 1/3" Super HAD (ICX229AK) и Super HAD II (ICX649AKA).

CCD: уникальная чувствительность

В совокупности перечисленных мер удалось добиться значительных результатов по улучшению характеристик CCD.

Сравнить характеристики современных моделей с более ранними вариантами не представляется возможным, поскольку тогда не производились цветные матрицы широкого применения даже типового высокого разрешения. В свою очередь, сейчас не производятся черно-белые матрицы стандартного разрешения по новейшим технологиям Ex-view HAD II и Super HAD II.

В любом случае по чувствительности CCD до сих пор являются пока недостижимым ориентиром для CMOS, поэтому они все еще широко используются за исключением мегапиксельных вариантов, которые очень дорого стоят и применяются в основном для специальных задач.

CMOS: достоинства и недостатки

Сенсоры CMOS были изобретены в конце 1970-х гг., но их производство удалось начать только в 1990-е по причине технологических проблем. И сразу наметились их основные достоинства и недостатки, которые и сейчас остаются актуальными.

К достоинствам можно отнести большую интеграцию и экономичность сенсора, более широкий динамический диапазон, простоту производства и меньшую стоимость, особенно мегапиксельных вариантов.

С другой стороны, CMOS-сенсоры обладают меньшей чувствительностью, обусловленной, при прочих равных условиях, большими потерями в фильтрах структуры RGB, меньшей полезной площадью светочувствительного элемента. В результате множества переходных элементов, включая усилители в тракте каждого пикселя, обеспечить равномерность параметров всех чувствительных элементов значительно сложнее в сравнении с CCD. Но совершенствование технологий позволило приблизить чувствительность CMOS к лучшим образцам CCD, особенно в мегапиксельных вариантах.

Ранние сторонники CMOS утверждали, что эти структуры будут гораздо дешевле, потому что могут быть произведены на том же оборудовании и по тем же технологиям, что и микросхемы памяти и логики. Во многом данное предположение подтвердилось, но не полностью, поскольку совершенствование технологии привело к практически идентичному по сложности производственному процессу, как и для CCD.

С расширением круга потребителей за рамки стандартного телевидения разрешение матриц стало непрерывно расти. Это бытовые видеокамеры, электронные фотоаппараты и камеры, встроенные в средства коммуникации. Кстати, для мобильных устройств вопрос экономичности довольно важный, и здесь у CMOS-сенсора нет конкурентов. Например, с середины 1990-х гг. разрешение матриц ежегодно вырастало на 1–2 млн элементов и теперь достигает 10–12 Мпкс. Причем спрос на CMOS-сенсоры стал доминирующим и сегодня превышает 100 млн единиц.

CMOS: улучшение чувствительности

Первые образцы камер наблюдения конца 1990-х – начала 2000-х с CMOS-матрицами имели разрешение 352х288 пкс и чувствительность даже для черно-белого варианта около 1 лк. Цветные варианты уже стандартного разрешения отличались чувствительностью около 7–10 лк.

Что предлагают поставщики
В настоящее время чувствительность CMOS-матриц, безусловно, выросла, но не превышает для типовых вариантов цветного изображения величины порядка нескольких люксов при разумных величинах F числа объектива (1,2– 1,4). Это подтверждают данные технических характеристик брендов IP-видеонаблюдения, в которых применяются CMOS-матрицы с прогрессивной разверткой. Те производители, которые заявляют чувствительность около десятых долей люкса, обычно уточняют, что это данные для меньшей частоты кадров, режима накопления или по крайней мере включенной и достаточно глубокой АРУ (AGC). Причем у некоторых производителей IP-камер максимальная АРУ достигает умопомрачительной величины –120 дБ (1 млн раз). Можно надеяться, что чувствительность для этого случая в представлении производителей предполагает пристойное отношение "сигнал/шум", позволяющее наблюдать не один только "снег" на экране.

Инновации улучшают качество видео
В стремлении улучшить характеристики CMOS-матриц компания Sony предложила ряд новых технологий, обеспечивающих практическое сравнение CMOS-матриц с CCD по чувствительности, отношению "сигнал/шум" в мегапиксельных вариантах.

Новая технология производства матриц Exmor основана на изменении направления падения светового потока на матрицу. В типовой архитектуре свет падает на фронтальную поверхность кремниевой пластины через и мимо проводников схемы матрицы. Свет рассеивается и перекрывается этими элементами. В новой модификации свет поступает на тыльную сторону кремниевой пластины. Это привело к существенному росту чувствительности и снижению шума CMOS-матрицы. На рис. 5 поясняется различие структур типовой матрицы и матрицы Exmor, показанных в разрезе.


На фото 1 приведены изображения тестового объекта, полученные при освещенности 100 лк (F4.0 и 1/30 с) камерой с CCD (фронтальное освещение) и CMOS Exmor, имеющих одинаковый формат и разрешение 10 Мпкс. Очевидно, что изображение камеры с CMOS по крайней мере не хуже изображения с CCD.


Другим способом улучшения чувствительности CMOS-сенсоров является отказ от прямоугольного расположения пикселей с построчным сдвигом красного и синего элементов. При этом в построении одного элемента разрешения используются по два зеленых пикселя – синий и красный из разных строк. Взамен предлагается диагональное расположение элементов с использованием шести соседних зеленых элементов для построения одного элемента разрешения. Такая технология получила название ClearVid CMOS. Для обработки предполагается более мощный сигнальный процессор изображений. Различие структур расположения цветных элементов иллюстрируются рис. 6.


Считывание информации осуществляется быстродействующим параллельным аналого-цифровым преобразователем. При этом частота кадров прогрессивной развертки может достигать 180 и даже 240 кадр/с. При параллельном съеме информации устраняется диагональный сдвиг кадра, привычный для CMOS-камер с последовательным экспонированием и считыванием сигнала, так называемый эффект Rolling Shutter – когда полностью отсутствует характерный смаз быстро движущихся объектов.


На фото 2 приведены изображения вращающегося вентилятора, полученные CMOS-камерой с частотой кадров 45 и 180 кадр/с.

Полноценная конкуренция

В качестве примеров мы приводили технологии Sony. Естественно, CMOS-матрицы, как и CCD, производят и другие компании, хотя не в таких масштабах и не столь известные. В любом случае все так или иначе идут примерно одним путем и используют похожие технические решения.

В частности, известная технология матриц Panasonic Live-MOS также существенно улучшает характеристики CMOS-матриц и, естественно, похожими методами. В матрицах Panasonic уменьшено расстояние от фотодиода до микролинзы. Упрощена передача сигналов с поверхности фотодиода. Уменьшено количество управляющих сигналов с 3 (стандартные CMOS) до 2 (как в CCD), что увеличило фоточувствительную область пикселя. Применен малошумящий усилитель фотодиода. Используется более тонкая структура слоя датчиков. Сниженное напряжение питания уменьшает шум и нагрев матрицы.

Можно констатировать, что мегапиксельные матрицы CMOS уже могут успешно конкурировать с CCD не только по цене, но и по таким проблемным для этой технологии характеристикам, как чувствительность и уровень шума. Однако в традиционном CCTV телевизионных форматов CCD-матрицы остаются пока вне конкуренции.

о выборе видеокамеры для семьи мы писали о матрицах. Там мы коснулись этого вопроса легко, однако сегодня постараемся более детально описать обе технологии.

Что же такое матрица в видеокамере? Это микросхема, которая преобразовывает световой сигнал в электрический. На сегодняшний день существует 2 технологии, то есть 2 типа матриц – CCD (ПЗС) и CMOS (КМОП) . Они отличаются друг от друга, каждая имеет свои плюсы и минусы. Нельзя точно сказать, какая из них лучше, а какая – хуже. Они развиваются параллельно. Вдаваться с технические детали мы не будем, т.к. они будут банально непонятны, но общими словами определим их главные плюсы и минусы.

Технология CMOS (КМОП)

CMOS-матрицы в первую очередь хвастаются низким энергопотреблением, что плюс. Видеокамера с этой технологией будет работать чуть дольше (зависит от емкости аккумулятора). Но это мелочи.

Главное отличие и достоинство – это произвольное считывание ячеек (в CCD считывание осуществляется одновременно), благодаря чему исключается размазывание картинки. Возможно, вы когда-нибудь видели «вертикальные столбы света» от точечных ярких объектов? Так вот CMOS-матрицы исключают возможность их появления. И еще камеры на их основе дешевле.

Недостатки также есть. Первый из них – небольшой размер светочувствительного элемента (в соотношении к размеру пикселя). Здесь большая часть площади пикселя занята под электронику, поэтому и площадь светочувствительного элемента уменьшена. Следовательно, чувствительность матрицы уменьшается.

Т.к. электронная обработка осуществляется на пикселе, то и количество помех на картинке возрастает. Это также является недостатком, как и низкое время сканирования. Из-за этого возникает эффект «бегущего затвора»: при движении оператора возможно искажение объекта в кадре.

Технология CCD (ПЗС)

Видеокамеры с CCD-матрицами позволяют получить высококачественное изображение. Визуально легко заметить меньшее количество шумов на видео, отснятом с помощью видеокамеры на основе CCD-матрицы по сравнению с видео, отснятым на камеру CMOS. Это самое первое и важное преимущество. И еще: эффективность CCD-матриц просто потрясающая: коэффициент заполнения приближается к 100%, соотношение зарегистрированных фотонов равен 95%. Возьмите обычный человеческий глаз – здесь соотношение равно приблизительно 1%.


Высокая цена и большое энергопотребление – это недостатки данных матриц. Дело в том, что здесь процесс записи невероятно труден. Фиксация изображения осуществляется благодаря многим дополнительным механизмам, которых нет в CMOS-матрицах, поэтому технология CCD существенно дороже.

CCD-матрицы используются в устройствах, от которых требуется получение цветного и качественного изображения, и которыми, возможно, будут снимать динамические сцены. Это профессиональны видеокамеры в своем большинстве, хотя и бытовые тоже. Это также системы наблюдения, цифровые фотоаппараты и т.д.

CMOS-матрицам применяются там, где нет особо высоких требований к качестве картинки: датчики движения, недорогих смартфонах…Впрочем, так было ранее. Современные матрицы CMOS имеют разные модификации, что делает их весьма качественными и достойными с точки зрения составления конкуренции матрицам CCD.

Сейчас сложно судить о том, какая технология лучше, ведь обе демонстрируют прекрасные результаты. Поэтому ставить тип матрицы как единственный критерий выбора, как минимум, глупо. Важно учитывать многие характеристики.


Пожалуйста, оцените статью:



Top