Собираем солнечный генератор для чрезвычайных ситуаций. Солнечная генерация — самый дешевый источник энергии

Начиная с нефтяного кризиса 1970-х годов, общество начало задумаваться о поиске альтернативы традиционной углеводородной энергетике. Потенциал солнечной энергии, как самый большой и доступный для человечества, всегда приковывал внимание научного сообщества. Использование возобновляемой энергии легло в основу концепции целых социальных и политических движений. В последние десять-пятнадцать лет солнечная энергетика быстро развивалась и получила некоторое распространение в секторе электрогенерации. В целом, можно говорить об экспонециальном тренде роста электрогенерации фотовольтаики в последние двадцать лет :


Казалось бы, сейчас уже достаточно эмпирических данных, а значит можно оценить возможности отрасли отнюдь не теоретически. Но несмотря на это, мнения остаются крайне полярны. Одна сторона отмечает, что себестоимость электроэнергии солнечных электростанций дороже традиционных, отсутствуют рентабельные технологии хранения электроэнергии, необходимые по причине суточных колебаний генерации и многое другое. Другая же сторона рапортует об экспоненциальном росте электрогенерации СЭС, снижении себестоимости ниже уровня традиционной тепловой электроэнергетики. Кто же прав? Как мы часто отмечаем, истина посередине. На наш взгляд, причина разногласий в оценках достаточно проста и разрешает спор противоречащих сторон: актуальность солнечной энергетики очень сильно варьируется по множеству параметров и в зависимости от ситуации оказывается прав то лагерь сторонников, то наоборот. Здесь и далее под солнечной энергетикой подразумевается фотоэвольтаика, применение гелиотермальных технологий пока дороже и такие электростанции менее распространены.

Концептуальный уровень - нишевый подход

По каким причинам возник сыр-бор разногласий?
Инсоляция. Если сравнивать Калифорнию и северные области России, то можно говорить о четырёхкратной разнице с пропорциональным влиянием на себестоимость.
Последние 35 лет цены на фотоэлементы сокращались и даже появилась эмпирическая закономерность: каждые 5 лет цена падает в два раза. Таким образом, оценки себестоимости солнечной генерации постоянно устаревают и этот фактор должен учитываться в обсуждении.
Сложность электрораспределительных сетей, необходимость в технологиях хранения генерируемой электроэнергии, маневровых мощностях, росте пропускной способности магистральных электросетей увеличивается с ростом доли солнечной энергетики в электробалансе.
Себестоимость традиционной электроэнергетики сильно варьируется в зависимости от выбора исследуемого государства и временного периода.
Можно ещё долго продолжать, но очевидно, что если рассмотреть вариант с высокой инсоляцией, с предпологаемыми низкими ценами ближайшего будущего, небольшой долей в электробалансе и дорогой местной традиционной электроэнергетикой, то солнечная энергетика значительно превзойдёт традиционную по рентабельности и не потребует особых инвестиций в инфраструктуру. Для обратной же ситуации солнечная энергетика будет выглядеть неприемлемо.

Таким образом, нельзя “рубить с плеча” и бросаться тезисами о солнечной энергетике без оглядки на территориальные, климатические и другие условия конкретного случая. На наш взгляд, следует применять “нишевый” подход, чтобы понять приемлемость солнечной электрогенерации.

Количественные оценки - себестоимость электроэнергии

Оценки себестоимости электрогенерации фотовольтаики зависят от выбранной методологии, стоимости капитала и других параметров, поэтому для получения общей картины стоит опираться на множество независимых оценок:

Верхние границы традиционной энергетики, не говоря уже о генерации из нефтепродуктов, пересекаются с нижними границами оценок себестоимости электроэнергии фотовольтаики. Совместно с другими нюансами это и создаёт ниши привлекательности солнечной энергетики. По нашим оценкам, на сегодня их размер составляет примерно 3-5% мировой электрогенерации. Вне этих узких ниш солнечная энергетика, в целом и на сегодня, экономически не целесообразна.

Размер ниш незначителен относительно всей мировой электрогенерации, но он всё ещё превышает установленые мощности в три раза, что предоставляет солнечной энергетике возможности для дальнейшего многолетнего роста. Учитывая факторы роста потребления электроэнергии в развивающихся странах, снижения стоимости солнечной электрогенерации и увеличения стоимости традиционой генерации, логично предположить, что “ниши” будут со временем увеличиваться. Рассмотрим примеры.

Архипелаг солнечной энергетики

Если смотреть на общем уровне, то на сегодня и в целом применение солнечной энергетики достаточно малообосновано. Но среди океана традиционной энергетики есть место и отдельным островам фотовольтаики. Перечислим причины, по которым появились ниши для солнечной энергетики:

Замещение нефтепродуктов . Во-первых, уже упомянутая себестоимость. Например, Япония, которая занимает третье место в мировой электрогенерации, 10% электроэнергии производит из нефтепродуктов и это не следствие фукусимской трагедии - так было и ранее. По данным Всемирного Банка, в 43 странах доля нефтеподуктов (мазут, дизельное топливо) в электрогенерации выше 10% . Обычно, такая электрогенерация применяется временно, для прохождения дневных пиков потребления электроэнергии, так как ночью электропотребление существенно ниже. Эту дорогую во всех смыслах пиковую дневную генерацию, $100/МВт*ч и выше в случае нефтепродуктов, удобно и дешево заменить солнечной ($100 и ниже), чем Япония и начала заниматься. Аналогичная ситуация может наблюдаться и в случае дорогого импорта природного газа.

Дефицит собственных энергоресурсов . Другим наглядным примером является Индия. В стране имеется катастрофический дефицит как электроэнергии, так и собственной добычи энергоресурсов, о чём красноречиво говорили предвыборные обещания премьер-министра: “Электричество в каждый дом!”. Столь острая нехватка мотивирует решать вопрос любыми путями, да и помимо базовой генерации, нужна и пиковая. Но в стране недостаточные ресурсы угля и не проложено ни одного газопровода - США много лет грозят Пакистану санкциями за согласие войти в проект транспортировки газа из Ирана в Индию через свою территорию, хотя недавно дело сдвинулось с мёртвой точки.

Итогом хронического энергодефицита, политических игр внешних игроков, импортозависимости и т.п. стало решение нарастить долю солнечной электрогенерации, благо высокая инсоляция и дешевая рабочая сила позволят сделать это относительно дёшево, пусть и дороже угольной энергетики. В условиях бешенной динамики экономики (рост 7,5% за 2014г) и вышеперечисленных причин это лучше чем текущее полное отсутствие доступа к электроэнергии у 250 млн. граждан Индии. Министерство Новой и Возобновляемой Энергетики запустило программу проектов с символичным названием “ультра мега солнечные электростанции”, в рамках которой выделены территории под парки солнечных электростанций, подведена инфраструктура и т.п. Ближайшая цель - 100 ГВт к 2022 году .

Экологические факторы . Себестоимость тепловой генерации в большинстве стран ниже солнечной, особенно в Китае. Но, например, здоровье за деньги не купишь. Загрязнение воздуха ежегодно уносит жизни порядка 0,5-1 млн жителей Китая и негативно влияет на социальную и политическую обстановку. Вдобавок, две трети мировых производственных мощностей фотоэлементов находятся именно в поднебесной . Так появилась очередная ниша для солнечной энергетики и Национальный Центр Возобновляемой Энергетики Китая ставит целью 100 ГВт установленной мощности к 2020г и 400 ГВт к 2030 . Учитывая, что за первый квартал 2015 года установленная мощность фотовольтаики в Китае увеличилась на 5 ГВт и достигла 33 ГВт , цели выглядят вполне адекватно.

Есть и комплексные случаи, например Австралия. Пока генерирующие компании и политические силы спорят кто виноват в высоких розничных ценах на электроэнергию, а именно $250-350/МВт*ч, 14% домохозяйств уже используют фотоэлементы . И так далее.

Таким образом, при использовании нишевого подхода становится очевидно, что в случае конкретных узких ниш правда на стороне приверженцев солнечной энергетики, а в остальных случаях справедливы уже тезисы противников. Но, по-прежнему, упрощения велики и нюансы корректного подхода будут рассмотриваться и ниже.

Перспективы. Себестоимость как функция от времени.

Вопрос развития энергетики не должен ориентироваться на тактические факторы и текущую себестоимость. Срок службы АЭС приближается к столетию, капитальные расходы на разработку отдельных месторождений углеводородов вышли на порядок сотен миллиардов долларов с соответствующим масштабом сроков окупаемости, себестоимость электроэнергии фотоэлементов снижается ежегодно на 15% и так далее. То есть, подход обязан быть стратегичным и с горизонтом планирования в несколько десятилетий, а в случае Франции и России, где особая роль отводится атомной энергетике, горизонт планирования выходит на исторический масштаб - век. А значит контрпродуктивно ориентироваться на текущую себестоимость электрогенерации.

Прогноз, как известно, дело неблагодарное. Тем не менее, это лучше чем ничего. Технологический прогресс позволял экспоненциально удешевлять производство фотоэлементов (в 200 раз за последние 35 лет), инверторов и т.п., а развитие рынка толкает вниз и цены установки и обслуживания. Маловероятно, что прогресс остановится, а рабочие станут менее квалифицированными, поэтому ожидается и дальнейшее снижения цен на фотоэлементы и сопутствующие услуги, в то время как цены на энергоресурсы “при прочих равных” будут расти. Общая суть всех прогнозов одинакова - экспоненциальное снижение себестоимости, которое отмечалось последние 35 лет, продолжится и видимых причин для остановки прогресса пока нет:

В рамках “нишевого подхода” логично опираться на нижнюю границу себестоимости, так как своё развитие солнечная энергетика начинает с наиболее рентабельных ситуаций и будет долго и медленно заполнять их. Заполнение даже 5% мировой электрогенерации займёт около 10 лет.

В соответствии с прогнозами Международного Энергетического Агентства, членом которого является и Россия, и немецкого Института Солнечной Энергетики им. Фраунгофера, солнечная энергия дешевеет, но не становится “дармовой”. Дешёвая традиционная энергетика таких стран как Россия, США, Китай, Норвегия и т.п., предположительно, будет дешевле солнечной в течение многих лет.

Сетевой контекст

Проблема интеграции солнечной энергетики большого масштаба в единую энергосеть сегодня не решена и, более того, решения нет даже на горизонте. “Солнце” это удобный вариант справиться с дневными пиками потребления, но в ряде случаев существует проблема вечернего пика не говоря уже о зиме. Даже неожиданный летний утренний туман, скрывший солнце от нескольких гигаватт фотовольтаики Германии, может озадачить инженеров электросетей - примеры имеются . На данный момент, например Европа, решает свои “сетевые” дисбалансы с помощью импорта и экспорта электроэнергии, но на наш взгляд возможности этого инструмента ограничены. На концептуальном уровне есть ряд подходов:

Резервирование . Удобный пример это Германия. Из-за описанных выше проблем приходится держать “в боевой готовности” 10 ГВт генерации на газовом топливе, то есть резервировать солнечную генерацию, хотя применение солнечной генерации позволило летом почти полностью отказаться от этой дорогой генерации на дневных пиках. Основная часть себестоимости электроэнергии газовой ТЭС это топливо, и общество, в какой-то степени выиграло, сэкономив на импорте природного газа, несмотря на простаивание ТЭС в летнее время.

Обратная ситуация наблюдается в случае маневровых угольных ТЭС, где основная доля себестоимости это капитальные расходы. В этом случае всё наоборот: топливо занимает небольшую долю себестоимости и при снижении коэффициента использования установленной мощности (КИУМ) электроэнергия в целом обойдётся для общества дороже, так как придётся платить и за солнечную генерацию и за простаивающие мощности угольных ТЭС, которые намного дороже газовых .

Аккумуляция . К вопросу сетевых проблем возможно подойти и через аккумуляцию электроэнергии. В странах, где летняя инсоляция значительно превышает зимнюю (напр. Германия), проблемы интеграции начинаются когда фотовольтаика формирует 7% среднегодовой электрогенерации. В этом случае летом среднесуточная доля поднимается к 10%, а в дневные часы - до 30% , что представляет серьёзную проблему для энергосистемы. Аккумуляция - напрашивающийся выход для дальнейшего развития ситуации, несмотря на то, что на данный момент в ней пока нет необходимости . Более того, сомнения о масштабном развитии солнечной энергетики редуцируемы к вопросу дешёвой аккумуляции, так как проблема высокой себестоимости электрогенерации фотоэлементов с высокой вероятностью рано или поздно перестанет существовать и останется только проблема интеграции в сеть.

На 2014 год мировая установленная мощность аккумулирующих систем составляет 145 ГВт, 99% представлены гидроаккумулирующими электростанциями (ГАЭС) . Аккумулирующие системы на сжатом воздухе (АССВ) применяются не одно десятилетие, но пока не получили распространения - текущее исполнение обоих систем критично к географическим и геологическим условиям.


Текущий нижний порог составляет $80/МВт*ч и есть основания полагать, что АССВ и другие технологии способны его понизить, но скорее это реальность как минимум следующего десятилетия. Дополнительные $80/МВт*ч аккумулирующих мощностей неподъёмны для солнечной энергетики, но в какой-то степени это вопрос методологии. Аккумуляторные батареи свинцово-кислотного и других типов на данный момент и в среднесрочной перспективе не целесообразны в роли аккумулирующих систем для промышленной фотовольтаики.

EROEI фотовольтаики - энергетическая рентабельность

Вкратце про энергетическую рентабельность, с примерами и рассчётами, рассказывалось в предыдущей статье, поэтому опустим повторение основ. EROEI фотовольтаики не является “тайной за семью печатями” и существует множество исследований на этот счёт. Если суммировать 38 исследований , то можно получить следующий диапазон EROEI для разных технологий:

На наш взгляд, это хорошие результаты. Соответственно, энергетически, солнечные фотоэлементы окупаются за 0,5-4 года.

Территориальные аспекты

Территориальный вопрос для фотовольтаики это ещё один отличный пример “серединной истины” - cтраны сильно различаются по потреблению электроэнергии на единицу своей площади. Ребята из Массачусетсткого Технологического Института оценивают необходимую площадь фотовольтаики для удовлетворения потребности США в электроэнергии как квадрат 170х170 км . Эту же цифру можно получить и эмпирическим путём: например, современная солнечная электростанция Solar Star имеет мощность 579 МВт и площадь 13 кв.км, система слежения за солнцем позволяет поднять коэффициент использования установленной мощности (КИУМ) до 30%, а всё потребление электроэнергии в США составляет 4,1*10^15 Вт*ч - ряд несложных вычислений приведёт любознательного читателя к тому же числу. Для примера, ниже карта США, на которую мы нанесли необходимую площадь солнечных электростанций (с учётом поправки на КИУМ) для удовлетворения всего электропотребления США:


По материалам GoogleMaps

Как видно, несложно отделаться небольшой частью пустынь Аризоны и Невады. Интересно добавить, что суммарная площадь всех крыш в США это квадрат 140х140 км . А вот Япония имеет всего лишь в четыре раза меньшее энергопотребление по сравнению с США и в 25 раз меньшую площадь, поэтому для Японии территориальный нюанс фотовольтаики намного острее и лишних 90х90 км там нет.

Уроки истории: эволюция оценок потенциала фотовольтаики

Парадокс Гегеля гласит, что “история учит человека тому, что человек ничему не учится из истории”. Несмотря на молодость солнечной энергетики, к сегодняшнему дню уже имеется опыт, который “сын ошибок трудных”, и стоит обратить внимание на предыдущие ошибки, чтобы не множить собственные. Суммируя прогнозы по солнечной энергетике многолетней давности двух ведущих энергетических агентств:


Вывод очевиден - фотовольтаика систематически недооценивалась, причём очень сильно: в 2006 году МЭА прогнозировало 87 ГВт на 2030, но этот уровень был превзойдён уже через шесть лет. Базовый прогноз 2009 года (208 ГВт) будет превзойдён в 2015-2016. Аналогичны были и прогнозы АЭИ (EIA), подразделения Минэнерго США. Суть прогнозов была одинакова - замедление текущего экспоненциального развития, но развитие фотовольтаики систематически опровергало эти предпосылки.
Таким образом, смотреть на развитие фотовольтаики в пессимистичных красках будет, скорее, ошибкой, чему и учит ретроспектива. Следует упомянуть и эффект низкой базы: несмотря на то, что солнечная генерация увеличивалась на 50% ежегодно, в абсолютных числах это составляет около 30 ТВт*ч для последних лет. В то время как мировое потребление электроэнергии увеличивается, в среднем, на 650 ТВт*ч ежегодно . То есть вклад фотовольтаики пока ничтожно мал - 1% мировой электрогенерации и 0,2% мирового производства первичной энергии (этот параметр включает в себя вообще все источники энергии: углеводороды и т.п.).

Выводы

Истина посередине, между двумя обозначенными в начале материала позициями.
  • Электрогенерация фотовольтаики растёт с высокой скоростью и тенденция продолжится
  • Существенный вклад в мировую электрогенерацию из-за низкой текущей базы произойдёт в лучшем случае в 2030-х
Таким образом, несмотря на существенный прогресс как фотовольтаики, так и возобновляемых источников энергии в целом, придётся ещё достаточно долго использовать ископаемые топлива, а трудности перехода на новый энергоуклад - впереди. Развитие в целом и увеличение энергопотребления в частности это неизменные атрибуты человечества на протяжении сотен лет и общество, несомненно, продолжит совершенствоваться. По данным Всемирного Банка, миллиард человек находится без доступа к электроэнергии и задача обеспечить человечество электроэнергией является вызовом для солнечной энергетики. Учитывая, что мировое потребление электроэнергии растёт со скоростью 3% в год, а к 2040 году вырастет вдвое, размер ниш будет увеличиваться как в относительных, так и в абсолютных цифрах.
Интересно взглянуть на результаты и в цивилизационном аспекте :

В рамках предложенного подхода можно утверждать, что искусственно созданная ниша в Европе, в целом, заполнилась и дальнейшее развитие туманно и будет определяться экономической конъюктурой. Поэтому европейская ассоциация фотовольтаики прогнозирует развитие фотовольтаики в широком диапазоне: 120-240 ГВт к 2020 году . Вектор и производства и применения фотоэлементов за последние два года перенаправлен в Азию, где в течение двух лет установленная мощность фотоэлементов превысит соответствующую для стран Европы.

По мнению Международного энергетического агентства, б ыстро сокращающиеся затраты на производство делают солнечные панели самым дешевым способом генерации электричества. По итогам прошлого года рост солнечной генерации превысил по темпам развития другие сектора электроэнергетики. С 2010 г. стоимость нового солнечного модуля снизилась на 70%, тогда как на оборудование в ветроэнергетике на 25% и расходы на аккумуляторы для электрокаров на 40%.

Согласно прогнозам независимых экспертов Bernreuter Research, к концу 2017 г. прирост мощностей в солнечной энергетике в глобальном масштабе достигнет 100 ГВт. Совокупная мощность установленных в мире СЭС по итогам 2016 г. составляла 74 ГВт. Самый большой прирост в этом сегменте приходится на Китай. Суммарная мощность новых солнечных станций достигла в КНР – 52 ГВт, на втором и третьем местах расположились США (12,5 ГВт) и Индия (9 ГВт). За год прирост составил более 30%: сейчас общие мощности солнечной электроэнергетики, по данным экспертов, составляют 300 ГВт.

По оценкам МЭА, в перспективе развитие солнечной энергетики получит особенно широкое распространение в Китае и Индии. Так, в последней недавно запустили специальную программу по электрификации, которая охватит 40 млн домохозяйств только до конца 2018 г. Решать проблемы снабжения электричеством будут в основном за счет дешевой солнечной энергии.

Однако, в отличие от АТР, в европейских странах доминирует ветроэнергетика. Согласно прогнозу МЭА, после 2030 г. именно она станет главным источником для выработки электроэнергии в европейских странах. «Солнечная энергетика быстро завоевывает рынки, включая Китай и Индию, поскольку именно она становится самым дешевым источником производства электроэнергии. Элекротранспорт, благодаря государственной поддержке и снижению затрат на выпускаемые аккумуляторы, быстро развивается», - утверждает исполнительный директор МЭА Фатих Бироль.

В период после 2030 г. в Европейском союзе на ВИЭ придется порядка 80% вводимых новых мощностей, а энергия ветра станет ведущим источником производства электроэнергии. Быстрое развитие солнечной энергетики, в особенности в Китае и Индии, позволит ей стать крупнейшим источником генерации к 2040 г. К этому времени доля всех возобновляемых источников энергии в общем объеме производства электроэнергии достигнет 40%.

МЭА отмечает быстрое развертывание мощностей и снижение затрат на экологически чистые энергетические технологии. Эксперты особо подчеркивают высокие темпы электрификации. По итогам прошлого года, расходы потребителей на электричество в глобальном масштабе достигли паритета с их расходами на нефтепродукты.

Вплоть до 2040 г. развитие возобновляемой энергетики будет по-прежнему поддерживаться со стороны государства. Однако трансформация энергетического сектора будет происходить главным образом благодаря миллионам домашних хозяйств, поселений и предприятий, инвестирующих в создание собственных распределенных мощностей возобновляемой энергетики.

Без учета крымских СЭС сегодня в России действует 10 станций общей мощностью около 100 МВт. В Крыму есть пять солнечных электростанций общей мощностью 300 МВт. В ноябре в России введена в строй первая Бичурская солнечная электростанция в Бурятии. Пока стоимость сооружения одной такой СЭС в стране составляет порядка 1 млрд рублей, при 70% локализации использованного оборудования. В сентябре компания «Хевел» запустила Майминскую СЭС на Алтае, мощностью в 20 МВт, стоимостью в 2 млрд рублей с использованием новых гетероструктурных моделей с повышенной эффективностью. Это уже четвертая СЭС на Алтае у «Хевел». Всего российским компаниям предстоит построить к 2024 г. 57 СЭС общей мощностью в 1,5 ГВт.

Нина Маркова

Альтернативные источники энергии, позволяющие обеспечить жилое помещение теплом и электричеством в необходимом объеме – недешевое «удовольствие», требующее значительных финансовых затрат на приобретение, монтаж и установку.

Сделать же солнечный генератор своими руками значительно дешевле и вполне по силам многим домашним мастерам. Рассмотрим инструкцию, доступно описывающую все нюансы процесса изготовления.

Солнечный генератор представляет собой комплекс фотоэлектрических полупроводниковых элементов, напрямую преобразующих энергию солнца в электрическую.

Кванты вырабатываемого лучами света при попадании на фотопластину выбивают электрон с заключительной атомной орбиты рабочего элемента. Этот эффект создает множество свободных электронов, которые и образуют непрерывный поток электрического тока.

Совсем не обязательно, монтируя своими руками солнечный генератор, сразу собирать большой, масштабный комплекс. Можно начать с маленького агрегата, а при необходимости в будущем нарастить объемы

В качестве действующего материала используют кремний. Он отличается высокой эффективностью и обеспечивает коэффициент фотоэлектрического преобразования в обычном режиме на уровне 20%, а при благоприятных условиях — до 25%.

Благодаря выраженной эффективности кремниевых фотоэлементов генераторы, сделанные на их основе, гарантируют высокую отдачу при сравнительно небольшом объеме. Мощность агрегата размером в 1 метр под час выдает 125 Вт, что считается весьма внушительным результатом

На одну сторону пластины кремния наносят тонкое покрытие из пассивных химических элементов – бора или фосфора. Именно на этой поверхности в результате интенсивного воздействия солнечных лучей происходит активное высвобождение электронов. Фосфорная пленка надежно удерживает их в одном месте и не позволяет разлетаться.

На самой рабочей пластине располагаются металлические «дорожки». На них строятся свободные электроны, создавая таким образом, упорядоченное движение, то есть, электрический ток.

К минусам пластин относят только сложность и затратность процесса очистки самого кремния, и, чтобы избежать этих проблем, активно осваивают использование альтернатив в виде галлия, кадмия, индия и различных соединений меди. Однако пока что реальных конкурентов у кремниевых элементов еще нет.

Что нужно для работы?

Для изготовления генератора в домашних условиях требуются такие инструменты и материалы, как:

  • модули для преобразования солнечных лучей в энергию;
  • алюминиевые уголки;
  • деревянные рейки;
  • листы ДСП;
  • прозрачный элемент (стекло, плексиглас, оргстекло, поликарбонат) для создания защиты для пластин кремния;
  • саморезы и шурупы разных размеров;
  • плотный поролон толщиной 1,5-2,5 мм;
  • качественный герметик;
  • диоды, клеммы и провода;
  • шуруповерт либо набор отверток;
  • паяльник;
  • ножовка по дереву и металлу (либо болгарка).

В каком объеме понадобятся материалы, будет напрямую зависеть от запланированного размера генератора. Масштабная работа повлечет за собой дополнительные расходы, но в любом случае обойдется дешевле, чем покупной модуль.

Защитную основу для кремниевых пластин можно делать из стекла, оргстекла, поликарбоната или плексигласа. Первые три материала создают минимальную потерю преобразуемой энергии, а вот четвертый пропускает лучи значительно хуже и заметно снижает эффективность всего комплекса

Для конечного тестирования собранного агрегата используют амперметр. Он позволяет зафиксировать реальное КПД установки и помогает определить фактическую отдачу.

Как правильно выбрать тип фотопреобразователя?

Мероприятия по созданию своими руками солнечного генератора начинают с выбора типа фотоэлектрического кремниевого преобразователя. Эти составляющие бывают трех видов:

  • аморфные;
  • монокристаллические;
  • поликристаллические.

Каждый вариант имеет свои достоинства и недостатки, а выбор в пользу любого из них делают, исходя из объема средств, выделенных на покупку всех компонентов системы.

Аморфные преобразователи

Аморфные модули состоят не из кристаллического кремния, а из его производных (силан или кремниеводород). Путем напыления в вакууме, их тончайшим слоем наносят на высококачественную металлическую фольгу, стекло или пластик.

Готовые изделия имеют блеклый, размыто-серый оттенок. Видимые кристаллы кремния на поверхности не наблюдаются. Основным достоинством элементов считается доступная цена, однако, КПД их очень невелико и колеблется в диапазоне 6-10%.

Аморфные фотоэлементы, изготовленные на основе кремния, обладают повышенной гибкостью, демонстрируют высокий уровень оптического поглощения (в 20 раз больший, чем у моно- или поликристаллических аналогов) и значительно более эффективно работают в пасмурную погоду

Поликристаллические преобразователи

Поликристаллические фотоэлементы производят при постепенном очень медленном охлаждении кремниевого расплава. Получившиеся изделия отличаются насыщенным синим цветом, имеют поверхность с четко выраженным рисунком, напоминающим морозный узор, и проявляют эффективность в районе 14-18%.

Дать более высокую КПД-производительность мешают наличествующие внутри материала области, отделенные от общей структуры зернистыми границами.

Поликристаллические фотоэлементы работают в течение всего 10 лет, но за это время их эффективность не снижается. Однако для монтажа изделий в единый комплекс обязательно используется прочная, твердая основа, так как листы довольно жесткие и требуют крепкой, надежной поддержки

Монокристаллические преобразователи

Монокристаллические модули характеризуются плотным темным цветом и состоят из цельных кристаллов кремния. Их эффективность превышает показатели прочих элементов и составляет 18-22% (при благоприятных условиях – до 25%).

Еще одним достоинством считается впечатляющий срок службы – по заявлению производителей свыше 25 лет. Однако, при продолжительном использовании КПД монокристаллов падает и спустя 10-12 лет фотоотдача уже составляет не более 13-17%.

Модули из монокристаллов стоят значительно дороже, чем другие виды оборудования. Производят их посредством распиливания искусственно выращенных кристаллов кремния

Для создания солнечного генератора дома своими руками преимущественно берут поли- и монокристаллические пластины различных габаритов. Их приобретают в популярных интернет-магазинах, в том числе на eBay или Алиэкспресс.

Из-за того, что фотоэлементы ценятся довольно высоко, многие поставщики предлагают покупателям продукцию группы B, то есть пригодные к полноценной эксплуатации фрагменты с небольшим дефектом. Их стоимость отличается от стандартной цены на 40-60%, благодаря чему сбор генератора обходится в разумную цену, не слишком бьющую по карману.

Как сделать каркас для пластин?

Для изготовления каркаса будущего генератора используют прочные деревянные рейки или алюминиевые уголки. Деревянный вариант считается менее практичным, так как материал требует дополнительной обработки во избежание последующего гниения и расслаивания.

Чтобы деревянный каркас выдержал эксплуатационную нагрузку и не сгнил уже после первого дождя, его необходимо пропитать специальным составом, предохраняющим дерево от воздействия влаги

Алюминий имеет гораздо более привлекательные физические характеристики и благодаря своей легкости не оказывает лишней нагрузки на крышу или другую опорную конструкцию, куда планируется установить агрегат.

Кроме того, за счет антикоррозийного покрытия металл не ржавеет, не гниет, не впитывает влагу и легко переносит воздействие любых агрессивных атмосферных проявлений.

Для создания каркасной конструкции из алюминиевых уголков сначала определяют размер будущей панели. При стандартном варианте на один блок используют 36 фотоэлементов размером 81 мм х 150 мм.

Для корректности последующей эксплуатации между фрагментами оставляют небольшой зазор (около 3-5 мм). Это пространство позволяет учесть изменение базовых параметров основы, подвергшейся воздействию атмосферных проявлений. В результате общий размер заготовки составляет 83 мм х 690 мм при ширине уголка каркаса в 35 мм.

Кремниевые пластины, уложенные в рамку из алюминиевого профиля, выглядят почти как изделия фабричного производства. Прочный и крепкий каркас обеспечивает системе безупречную герметичность и наделяет всю конструкцию высоким уровнем жесткости

После определения размеров из уголков выкраивают необходимые фрагменты и с помощью крепежных элементов собирают их в каркасные рамки. На внутреннюю поверхность конструкции наносят слой силиконового герметика, очень внимательно следя, чтобы не было пропусков и пустот. От этого зависит целостность, прочность и долговечность монтируемой конструкции.

Сверху укладывают защитный прозрачный материал (стекло с антибликовым покрытием, оргстекло либо поликарбонат со специальными параметрами) и надежно крепят его с помощью метизов (по 1 с короткой и по 2 с длинной части рамы и 4 по углам корпуса). Для работы используют шуруповерт и шурупы подходящего диаметра. В конце прозрачную поверхность аккуратно очищают от пыли и мелкого мусора.

Выбор прозрачного элемента

Основные критерии выбора прозрачного элемента для создания генератора:

  • способность к поглощению ИК-излучения;
  • уровень преломления солнечного света.

Чем ниже показатель преломления, тем выше КПД продемонстрируют кремниевые пластины.

Наиболее низким коэффициентом светоотражения обладают плексиглас и оргстекло. Поликарбонат тоже имеет далеко не лучшие показатели. Для создания каркасных конструкций под домашние гелиосистемы рекомендуется по возможности использовать антибликовое прозрачное стекло или специальный вид поликарбоната с антиконденсатным покрытием, обеспечивающим необходимый уровень термической защиты.

Самыми лучшими характеристиками в плане поглощения ИК-излучения обладают прочное термопоглащающее оргстекло и стекло с опцией ИК-поглощения. У простого стекла эти показатели значительно ниже. От эффективности ИК-поглощения зависит, будут ли греться в процессе эксплуатации кремниевые пластины или нет.

Если нагрев окажется минимальным, фотоэлементы прослужат долго и обеспечат стабильную отдачу. Перегрев пластин приведет к перебоям в работе и быстрому выходу из строя отдельных фрагментов системы или всего комплекса.

Установка кремниевых фотоэлементов

Непосредственно перед установкой защитные стекла, уложенные в алюминиевые рамы, хорошо очищают от пыли и обезжиривают спиртосодержащим составом.

Купленные фотоэлементы ровно располагают на разметочной подложке на расстоянии 3-5 миллиметров друг от друга и делают маркировку углов общей конструкции. Затем приступают к пропайке элементов — самому важному и трудоемкому отрезку работы по сборке генератора.

Пропайку действующих элементов генератора осуществляют по схеме, в которой «+» являются дорожки на внешней стороне, а «-» — каналы, расположенные на изнаночной части пластины. Для корректного соединения контактов сначала наносят флюс (кислота для паяния) и припой, а потом осуществляют обработку в строгой последовательности сверху вниз. В конце все ряды соединяют между собой.

Следующим шагом делают проклейку фотоэлементов. Для этого в центр каждой пластины из кремния выдавливают немного герметика, образовавшиеся цепочки элементов переворачивают внешней стороной вверх и размещают в строгом соответствии с разметкой, нанесенной ранее. Аккуратно руками прижимают пластины, фиксируя их на нужном месте. Действуют очень осторожно, стараясь не повредить и не согнуть материал.

Контакты фотоэлементов, расположенных по краям, выводят на отдельную шину (широкий серебряный проводник), как «+» и «-». Дополнительно комплекс оснащают блокирующим диодом. Соединяясь с контактами, он не дает аккумуляторам разрядиться через каркасную конструкцию в ночное время суток.

В донной части каркаса проделывают дрелью отверстия, через которые провода выводят наружу. Чтобы они не провисали, используют в работе силиконовый герметик.

Как протестировать смонтированный агрегат?

Перед тем, как окончательно загерметизировать собранный генератор, его обязательно тестируют, чтобы выявить потенциально возможные в процессе пайки неисправности. Самый разумный вариант — проверять каждый пропаянный ряд отдельно. Так сразу станет понятно, где контакты соединены плохо и требуется повторная обработка.

Для проведения теста используют бытовой амперметр. Замер осуществляют в безоблачный солнечный день в обеденное время (период с 13 до 15 часов). Конструкцию располагают во дворе и устанавливают под соответствующим углом наклона.

Бытовой амперметр помогает измерить фактическую силу тока. На основании его показаний можно определить уровень работоспособности смонтированной гелиосистемы и выявить нарушения в последовательности соединения кремниевых фотоэлементов

К выведенным контактам солнечной батареи подключают амперметр и осуществляют замер тока короткого замыкания. Если прибор показывает результаты выше 4,5 А, система полностью корректна и все соединения пропаяны четко и правильно. Более низкие данные, появившиеся на дисплее тестера, говорят о нарушениях, которые необходимо отследить и заново перепаять.

Традиционно солнечные генераторы, сконструированные своими руками из фотоэлементов с небольшим дефектом (группа B) на тесте демонстрируют цифры от 5 до 10 Ампер. Агрегаты фабричного производства показывают данные на 10-20% выше. Это объясняется тем, что в производстве используются кремниевые пластины группы А, не имеющие никакого брака в структуре.

Завершающий этап работы

Если тест показал, что батарея полностью работоспособна, ее герметизируют специальным силиконовым герметиком или более дорогим и прочным эпоксидным компаундом. Работа предусматривает два способа проведения.

  1. Полная заливка – когда всю поверхность покрывают герметическим составом.
  2. Частичная обработка – когда герметик наносят только на крайние элементы и пустое пространство между элементами.

Первый вариант считается более надежным и обеспечивает системе полноценную защиту от воздействия внешних факторов. Фотоэлементы четко фиксируются на своих местах и корректно работают с максимальной отдачей.

Для проклейки фотоэлементов внутри корпуса желательно использовать морозостойкий герметик, способный выдерживать резкие температурные перепады и низкие минусовые показатели

Когда заливка осуществлена, герметику дают «схватиться». Затем прикрывают прозрачным элементом и плотно прижимают к пластинам.

С целью обеспечения дополнительной защиты и амортизации некоторые мастера рекомендуют между поверхностью кремниевой плиты и задней частью каркаса размещать плотный поролон. Это сделает конструкцию более цельной и предохранит от лишней нагрузки хрупкие фотоэлементы

Потом на поверхности размещают груз, который воздействует на слои и выдавливает из них пузырьки воздуха. Готовый генератор тестируют еще раз и окончательно монтируют на заранее подготовленное место.

Где и как разместить генератор?

Место установки солнечного генератора выбирают очень внимательно и без спешки. Пластины, принимающие свет, обязательно размещают под наклоном, чтобы лучи не «падали» на поверхность перпендикулярно, а как бы аккуратно «стекали» по ней. В идеале конструкцию располагают так, чтобы оставалась возможность в случае надобности корректировать угол наклона, таким способом, «улавливая» максимальное количество солнца.

Вполне допустимо поставить гелиосистему на земле, но чаще всего для размещения выбирают крышу дома или подсобного помещения, а именно ту ее часть, что выходит на самую освященную, преимущественно южную сторону участка. Очень важно, чтобы рядом не было высоких зданий и мощных, раскидистых деревьев. Находясь в непосредственной близости, они создают тень и мешают полноценной работе агрегата.

Чтобы солнечные установки качественно работали, их необходимо поддерживать в чистоте и порядке. Слой грязи, образовавшийся на поверхности улавливающей панели, снижает эффективность на 10%, а налипший снег и вовсе отключает агрегат. Поэтому регулярное обслуживание является обязательной процедурой и способствует поддержанию модулей в идеальном эксплуатационном состоянии

Средне-оптимальным для установки солнечного генератора считают уровень угла наклона крыши в 45⁰. При таком расположении фотоэлементы поглощают солнечный поток очень эффективно и выдают необходимый для корректного обеспечения жизнедеятельности дома объем энергии.

Чтобы получить от панелей реальную отдачу и обеспечить среднестатистическую семью нужным количеством энергии, придется занять под солнечный генератор 15-20 кв.м поверхности кровли

Для европейской части государств СНГ действуют несколько другие показатели. Профессионалы рекомендуют брать за основу угол стационарного наклона в 50-60⁰, а в подвижных конструкциях во время зимнего сезона располагать батареи под углом 70⁰ к горизонту.

Летом же менять положение и наклонять фотоэлементы под углом 30⁰.

Установив панели генератора на трек-систему, оборудованную опцией автоматического слежения за солнцем, можно повысить эффективность отдачи на 50%. Модуль самостоятельно выявит интенсивность лучей и будет подстраиваться под максимальную освещенность от рассвета и до заката

Непосредственно перед монтажом крышу дополнительно укрепляют и оснащают специальными прочными опорниками, так как далеко не всякая конструкция обладает способностью выдержать полный вес оборудования для преобразования солнечной энергии.

Чтобы надежно и прочно установить солнечный генератор на крыше, стоит приобрести специальные крепления. Они выпускаются отдельно под каждый тип кровельного покрытия и всегда имеются в продаже. При монтаже между панелями и крышей нужно обязательно оставить зазор для полноценного доступа воздуха и корректной вентиляции солнцепоглощающих элементов

В некоторых случаях под кровлей ставят усиленные стропила, предохраняющие крышу от обрушения, потенциально возможного из-за повышенной нагрузки, существенно возрастающей в зимний сезон, когда на кровельной поверхности скапливается снег.

Выводы и полезное видео по теме

Особенности и нюансы пропайки фотоэлементов для изготовления своими руками в домашних условиях эффективного солнечного генератора. Подсказки и советы для мастеров, любопытные идеи и личные наработки.

Как правильно протестировать фотоэлемент и замерить его основные параметры. Эта информация пригодится при последующих расчетах точного количества пластин, необходимых для полноценной работы системы.

Полное пошаговое описание процесса сбора солнечной батареи для генератора в домашних условиях. Правила работы, начиная от приобретения нужных элементов и заканчивая общим тестом изготовленного прибора.

Зная об устройстве солнечных генераторов, собрать их дома не составит большого труда. Конечно, работа потребует внимания, аккуратности и скрупулезности, но результат оправдает все финансовые и трудовые затраты. Готовый агрегат в полном объеме обеспечит здание теплом и электроэнергией, создав для проживающих необходимый уровень комфорта.

Сразу замахиваться на крупный проект не стоит. Для начала имеет смысл попробовать свои силы на сборке небольшого агрегата, а затем, полностью овладев всеми нюансами процесса, приступить к сооружению более мощной и масштабной установки.




Top