Проектирование БД. Основные этапы разработки баз данных

Этапы проектирования баз данных

Невозможно создать БД без подробного ее описания, также как и не возможно сделать какое-либо сложное изделие без чертежа и подробного описания технологий его изготовления. Другими словами, нужен проект. Проектом принято считать эскиз некоторого устройства, который в дальнейшем будет воплощен в реальность.

Процесс проектирования БД представляет собой процесс переходов от неформального словесного описания информационной структуры предметной области к формализованному описанию объектов предметной области в терминах некоторой модели. Конечной целью проектирования является построение конкретной БД. Очевидно, что процесс проектирования сложен и поэтому имеет смысл разделить его на логически завершенные части – этапы.

Можно выделить пять основных этапов проектирования БД:

1. Сбор сведений и системный анализ предметной области.

2. Инфологическое проектирование.

3. Выбор СУБД.

4. Даталогическое проектирование.

5. Физическое проектирование.

Сбор сведений и системный анализ предметной области - это первый и важнейший этап при проектировании БД. В нем необходимо провести подробное словесное описание объектов предметной области и реальных связей, присутствующих между реальными объектами. Желательно чтобы в описании определялись взаимосвязи между объектами предметной области.

В общем случае выделяют два подхода к выбору состава и структуры предметной области:

· Функциональный подход – применяется тогда, когда заранее известны функции некоторой группы лиц и комплексы задач, для обслуживания которых создается эта БД, т.е. четко выделяется минимальный необходимый набор объектов предметной области под описание.

· Предметный подход – когда информационные потребности заказчиков БД четко не фиксируются и могут быть многоаспектными и динамичными. В данном случае минимальный набор объектов предметной области выделить сложно. В описание предметной области включаются такие объекты и взаимосвязи, которые наиболее характерны и существенны для нее. При этом БД становится предметной, и подходит для решения множества задач (что кажется наиболее заманчивым). Однако трудность всеобщего охвата предметной области и невозможность конкретизации потребностей пользователей приводит к избыточно сложной схеме БД, которая для некоторых задач будет неэффективной.

Системный анализ должен заканчиваться подробным описанием информации об объектах предметной области, которая должна храниться в БД, формулировкой конкретных задач, которые будут решаться с использованием данной БД с кратким описанием алгоритмов их решения, описанием выходных и входных документов при работе с БД.

Инфологическое проектирование – частично формализованное описание объектов предметной области в терминах некоторой семантической модели.

Зачем нужна инфологическая модель, и какую пользу она дает проектировщикам? Дело в том, что процесс проектирования длительный, требует обсуждений с заказчиком и специалистами в предметной области. Кроме того, при разработке серьезных корпоративных информационных систем проект базы данных является фундаментом, на котором строится вся система в целом, и вопрос о возможности кредитования часто решается экспертами банка на основании именно грамотно сделанного инфологического проекта БД. Следовательно, инфологическая модель должна включать такое формализованное описание предметной области, которое легко будет восприниматься не только специалистами в области БД. Описание должно быть настолько емким, чтобы можно было оценить глубину и корректность проработки проекта БД.

На сегодняшний день наиболее широкое распространение получила модель Чена «Сущность-связь» (Entity Relationship), она стала фактическим стандартом в инфологическом моделировании, и получило название ER – модель.

Выбор СУБД осуществляется на основе различных требований к БД и, соответственно, возможностей СУБД, а также в зависимости от имеющегося опыта разработчиков.

Даталогическое проектирование есть описание БД в терминах принятой даталогической модели данных. В реляционных БД даталогическое или логическое проектирование приводит к разработке схемы БД, т.е. совокупности схем отношений, которые адекватно моделируют объекты предметной области и семантические связи между объектами. Основой анализа корректности схемы являются функциональные зависимости между атрибутами БД. В некоторых случаях между атрибутами отношений могут появиться нежелательные зависимости, которые вызывают побочные эффекты и аномалии при модификации БД. Под модификацией понимают внесение новых данных в БД, удаление данных из БД, а также обновление значений некоторых атрибутов. Для ликвидации возможных аномалий предполагается проведение нормализации отношений БД.

Этап логического проектирования не заключается только в проектировании схемы отношений. В результате выполнения этого этапа, как правило, должны быть получены следующие результирующие документы:

· Описание концептуальной схемы БД в терминах выбранной СУБД.

· Описание внешних моделей в терминах выбранной СУБД.

· Описание декларативных правил поддержки целостности БД.

· Разработка процедур поддержки семантической целостности БД.

Физическое проектирование заключается в увязке логической структуры БД и физической среды хранения с целью наиболее эффективного размещения данных, т.е. отображение логической структуры БД в структуру хранения. Решается вопрос размещения хранимых данных в пространстве памяти, выбора эффективных методов доступа к различным компонентам «физической» БД, решаются вопросы обеспечения безопасности и сохранности данных. Ограничения, имеющиеся в логической модели данных, реализуются различными средствами СУБД, например, при помощи индексов, декларативных ограничений целостности, триггеров, хранимых процедур. При этом опять-таки решения, принятые на уровне логического моделирования определяют некоторые границы, в пределах которых можно развивать физическую модель данных. Точно также, в пределах этих границ можно принимать различные решения. Например, отношения, содержащиеся в логической модели данных, должны быть преобразованы в таблицы, но для каждой таблицы можно дополнительно объявить различные индексы, повышающие скорость обращения к данным.

Кроме того, для повышения производительности могут использоваться возможности параллельной обработки данных. В результате БД может размещаться на нескольких сетевых компьютерах. С другой стороны могут использоваться преимущества многопроцессорных систем.



Для обеспечения безопасности и сохранности данных решаются вопросы способы восстановления после сбоев, резервного копирования информации, настройка систем защиты под выбранную политику безопасности и т.д.

Необходимо отметить, что некоторые современные реляционные СУБД в основном используют физические структуры и методы доступа, опирающиеся на технологию проектирования файла, что по существу практически снимает вопрос о физическом проектировании.

Таким образом, ясно, что решения, принятые на каждом этапе моделирования и разработки базы данных, будут сказываться на дальнейших этапах. Поэтому особую роль играет принятие правильных решений на ранних этапах моделирования .

Перевод цикла из 15 статей о проектировании баз данных.
Информация предназначена для новичков.
Помогло мне. Возможно, что поможет еще кому-то восполнить пробелы.

Руководство по проектированию баз данных.

1. Вступление.
Если вы собираетесь создавать собственные базы данных, то неплохо было бы придерживаться правил проектирования баз данных, так как это обеспечит долговременную целостность и простоту обслуживания ваших данных. Данное руководство расскажет вам что представляют из себя базы данных и как спроектировать базу данных, которая подчиняется правилам проектирования реляционных баз данных.

Базы данных – это программы, которые позволяют сохранять и получать большие объемы связанной информации. Базы данных состоят из таблиц , которые содержат информацию . Когда вы создаете базу данных необходимо подумать о том, какие таблицы вам нужно создать и какие связи существуют между информацией в таблицах. Иначе говоря, вам нужно подумать о проекте вашей базы данных. Хороший проект базы данных, как было сказано ранее, обеспечит целостность данных и простоту их обслуживания.
База данных создается для хранения в ней информации и получения этой информации при необходимости. Это значит, что мы должны иметь возможность помещать, вставлять (INSERT ) информацию в базу данных и мы хотим иметь возможность делать выборку информации из базы данных (SELECT ).
Язык запросов к базам данных был придуман для этих целей и был назван Структурированный язык запросов или SQL. Операции вставки данных (INSERT) и их выборки (SELECT) – части этого самого языка. Ниже приведен пример запроса на выборку данных и его результат.

SQL – большая тема для повествования и его рассмотрение выходит за рамки данного руководства. Данная статья строго сфокусирована на изложении процесса проектирования баз данных . Позднее, в отдельном руководстве, я расскажу об основах SQL.

Реляционная модель.
В этом руководстве я покажу вам как создавать реляционную модель данных. Реляционная модель – это модель, которая описывает как организовать данные в таблицах и как определить связи между этими таблицами.

Правила реляционной модели диктуют, как информация должна быть организована в таблицах и как таблицы связаны друг с другом. В конечном счете результат можно предоставить в виде диаграммы базы данных или, если точнее, диаграммы «сущность-связь», как на рисунке (Пример взят из MySQL Workbench).

Примеры.
В качестве примеров в руководстве я использовал ряд приложений.

РСУБД.

РСУБД, которую я использовал для создания таблиц примеров – MySQL. MySQL – наиболее популярная РСУБД и она бесплатна.

Утилита для администрирования БД.

После установки MySQL вы получаете только интерфейс командной строки для взаимодействия с MySQL. Лично я предпочитаю графический интерфейс для управления моими базами данных. Я часто использую SQLyog. Это бесплатная утилита с графическим интерфейсом. Изображения таблиц в данном руководстве взяты оттуда.

Визуальное моделирование.

Существует отличное бесплатное приложение MySQL Workbench. Оно позволяет спроектировать вашу базу данных графически. Изображения диаграмм в руководстве сделаны в этой программе.

Проектирование независимо от РСУБД.
Важно знать, что хотя в данном руководстве и приведены примеры для MySQL, проектирование баз данных независимо от РСУБД. Это значит, что информация применима к реляционным базам данных в общем, не только к MySQL. Вы можете применить знания из этого руководства к любым реляционным базам данных, подобным Mysql, Postgresql, Microsoft Access, Microsoft Sql or Oracle.

В следующей части я коротко расскажу об эволюции баз данных. Вы узнаете откуда взялись базы данных и реляционная модель данных.

2. История.
В 70-х – 80-х годах, когда компьютерные ученые все еще носили коричневые смокинги и очки с большими, квадратными оправами, данные хранились бесструктурно в файлах, которые представляли собой текстовый документ с данными, разделенными (обычно) запятыми или табуляциями.

Так выглядели профессионалы в сфере информационных технологий в 70-е. (Слева внизу находится Билл Гейтс).

Текстовые файлы и сегодня все еще используются для хранения малых объемов простой информации. Comma-Separated Values (CSV) - значения, разделённые запятыми, очень популярны и широко поддерживаются сегодня различным программным обеспечением и операционными системами. Microsoft Excel – один из примеров программ, которые могут работать с CSV–файлами. Данные, сохраненные в таком файле могут быть считаны компьютерной программой.

Выше приведен пример того, как такой файл мог бы выглядеть. Программа, производящая чтение данного файла, должна быть уведомлена о том, что данные разделены запятыми. Если программа хочет выбрать и вывести категорию, в которой находится урок "Database Design Tutorial" , то она должна строчка за строчкой производить чтение до тех пор, пока не будут найдены слова "Database Design Tutorial" и затем ей нужно будет прочитать следующее за запятой слово для того, чтобы вывести категорию Software .

Таблицы баз данных.
Чтение файла строчка за строчкой не является очень эффективным. В реляционной базе данных данные хранятся в таблицах. Таблица ниже содержит те же самые данные, что и файл. Каждая строка или “запись” содержит один урок. Каждый столбец содержит какое-то свойство урока. В данном случае это заголовок (title) и его категория (category).

Компьютерная программа могла бы осуществить поиск в столбце tutorial_id данной таблицы по специфическому идентификатору tutorial_id для того, чтобы быстро найти соответствующие ему заголовок и категорию. Это намного быстрее, чем поиск по файлу строка за строкой, подобно тому, как это делает программа в текстовом файле.

Современные реляционные базы данных созданы так, чтобы позволять делать выборку данных из специфических строк, столбцов и множественных таблиц, за раз, очень быстро.

История реляционной модели.
Реляционная модель баз данных была изобретена в 70-х Эдгаром Коддом (Ted Codd), британским ученым. Он хотел преодолеть недостатки сетевой модели баз данных и иерархической модели. И он очень в этом преуспел. Реляционная модель баз данных сегодня всеобще принята и считается мощной моделью для эффективной организации данных.

Сегодня доступен широкий выбор систем управления базами данных: от небольших десктопных приложений до многофункциональных серверных систем с высокооптимизированными методами поиска. Вот некоторые из наиболее известных систем управления реляционными базами данных (РСУБД):

- Oracle – используется преимущественно для профессиональных, больших приложений.
- Microsoft SQL server – РСУБД компании Microsoft. Доступна только для операционной системы Windows.
- Mysql – очень популярная РСУБД с открытым исходным кодом. Широко используется как профессионалами, так и новичками. Что еще нужно?! Она бесплатна.
- IBM – имеет ряд РСУБД, наиболее известна DB2.
- Microsoft Access – РСУБД, которая используется в офисе и дома. На самом деле – это больше, чем просто база данных. MS Access позволяет создавать базы данных с пользовательским интерфейсом.
В следующей части я расскажу кое-что о характеристиках реляционных баз данных.

3. Характеристики реляционных баз данных.
Реляционные базы данных разработаны для быстрого сохранения и получения больших объемов информации. Ниже приведены некоторые характеристики реляционных баз данных и реляционной модели данных.
Использование ключей.
Каждая строка данных в таблице идентифицируется уникальным “ключом”, который называется первичным ключом. Зачастую, первичный ключ это автоматически увеличиваемое (автоинкрементное) число (1,2,3,4 и т.д). Данные в различных таблицах могут быть связаны вместе при использовании ключей. Значения первичного ключа одной таблицы могут быть добавлены в строки (записи) другой таблицы, тем самым, связывая эти записи вместе.

Используя структурированный язык запросов (SQL), данные из разных таблиц, которые связаны ключом, могут быть выбраны за один раз. Для примера вы можете создать запрос, который выберет все заказы из таблицы заказов (orders), которые принадлежат пользователю с идентификатором (id) 3 (Mike) из таблицы пользователей (users). О ключах мы поговорим далее, в следующих частях.


Столбец id в данной таблице является первичным ключом. Каждая запись имеет уникальный первичный ключ, часто число. Столбец usergroup (группы пользователей) является внешним ключом. Судя по ее названию, она видимо ссылается на таблицу, которая содержит группы пользователей.

Отсутствие избыточности данных.
В проекте базы данных, которая создана с учетом правил реляционной модели данных, каждый кусочек информации, например, имя пользователя, хранится только в одном месте. Это позволяет устранить необходимость работы с данными в нескольких местах. Дублирование данных называется избыточностью данных и этого следует избегать в хорошем проекте базы данных.
Ограничение ввода.
Используя реляционную базу данных вы можете определить какой вид данных позволено сохранять в столбце. Вы можете создать поле, которое содержит целые числа, десятичные числа, небольшие фрагменты текста, большие фрагменты текста, даты и т.д.


Когда вы создаете таблицу базы данных вы предоставляете тип данных для каждого столбца. К примеру, varchar – это тип данных для небольших фрагментов текста с максимальным количеством знаков, равным 255, а int – это числа.

Помимо типов данных РСУБД позволяет вам еще больше ограничить возможные для ввода данные. Например, ограничить длину или принудительно указать на уникальность значения записей в данном столбце. Последнее ограничение часто используется для полей, которые содержат регистрационные имена пользователей (логины), или адреса электронной почты.

Эти ограничения дают вам контроль над целостностью ваших данных и предотвращают ситуации, подобные следующим:

Ввод адреса (текста) в поле, в котором вы ожидаете увидеть число
- ввод индекса региона с длинной этого самого индекса в сотню символов
- создание пользователей с одним и тем же именем
- создание пользователей с одним и тем же адресом электронной почты
- ввод веса (числа) в поле дня рождения (дата)

Поддержание целостности данных.
Настраивая свойства полей, связывая таблицы между собой и настраивая ограничения, вы можете увеличить надежность ваших данных.
Назначение прав.
Большинство РСУБД предлагают настройку прав доступа, которая позволяет назначать определенные права определенным пользователям. Некоторые действия, которые могут быть позволены или запрещены пользователю: SELECT (выборка), INSERT (вставка), DELETE (удаление), ALTER (изменение), CREATE (создание) и т.д. Это операции, которые могут быть выполнены с помощью структурированного языка запросов (SQL).
Структурированный язык запросов (SQL).
Для того, чтобы выполнять определенные операции над базой данных, такие, как сохранение данных, их выборка, изменение, используется структурированный язык запросов (SQL). SQL относительно легок для понимания и позволяет в т.ч. и уложненные выборки, например, выборка связанных данных из нескольких таблиц с помощью оператора SQL JOIN. Как и упоминалось ранее, SQL в данном руководстве обсуждаться не будет. Я сосредоточусь на проектировании баз данных.

То, как вы спроектируете базу данных будет оказывать непосредственное влияние на запросы, которые вам будет необходимо выполнить, чтобы получить данные из базы данных. Это еще одна причина, почему вам необходимо задуматься о том, какой должна быть ваша база. С хорошо спроектированной базой данных ваши запросы могут быть чище и проще.

Переносимость.
Реляционная модель данных стандартна. Следуя правилам реляционной модели данных вы можете быть уверены, что ваши данные могут быть перенесены в другую РСУБД относительно просто.

Как говорилось ранее, проектирование базы данных – это вопрос идентификации данных, их связи и помещение результатов решения данного вопроса на бумагу (или в компьютерную программу). Проектирование базы данных независимо от РСУБД, которую вы собираетесь использовать для ее создания.

В следующей части подробнее рассмотрим первичные ключи.

Основные понятия Баз данных

Развития вычислительной техники осуществлялось по двум основным направлениям:

применение вычислительной техники для выполнения численных расчетов;

использование средств вычислительной техники в информационных системах.

Информационная система – это совокупность программно-аппаратных средств, способов и людей, которые обеспечивают сбор, хранение, обработку и выдачу информации для решения поставленных задач. На ранних стадиях использования информационных систем применялась файловая модель обработки. В дальнейшем в информационных системах стали применяться базы данных. Базы данных являются современной формой организации, хранения и доступа к информации. Примерами крупных информационных систем являются банковские системы, системы заказов железнодорожных билетов и т.д.

База данных – это интегрированная совокупность структурированных и взаимосвязанных данных, организованная по определенным правилам, которые предусматривают общие принципы описания, хранения и обработки данных. Обычно база данных создается для предметной области.

Предметная область – это часть реального мира, подлежащая изучению с целью создания базы данных для автоматизации процесса управления.

Наборы принципов, которые определяют организацию логической структуры хранения данных в базе, называются моделями данных.

Существуют 4 основные модели данных – списки (плоские таблицы), реляционные базы данных, иерархические и сетевые структуры.

В течение многих лет преимущественно использовались плоские таблицы (плоские БД) типа списков в Excel. В настоящее время наибольшее распространение при разработке БД получили реляционные модели данных. Реляционная модель данных является совокупностью простейших двумерных таблиц – отношений (англ. relation), т.е. простейшая двумерная таблица определяется как отношение (множество однотипных записей объединенных одной темой).

От термина relation (отношение) происходит название реляционная модель данных. В реляционных БД используется несколько двумерных таблиц, в которых строки называются записями, а столбцы полями, между записями которых устанавливаются связи. Этот способ организации данных позволяет данные (записи) в одной таблице связывать с данными (записями) в других таблицах через уникальные идентификаторы (ключи) или ключевые поля.



Основные понятия реляционных БД: нормализация, связи и ключи

1. Принципы нормализации:

В каждой таблице БД не должно быть повторяющихся полей;

В каждой таблице должен быть уникальный идентификатор (первичный ключ);

Каждому значению первичного ключа должна соответствовать достаточная информация о типе сущности или об объекте таблицы (например, информация об успеваемости, о группе или студентах);

Изменение значений в полях таблицы не должно влиять на информацию в других полях (кроме изменений в полях ключа).

2. Виды логической связи.

Связь устанавливается между двумя общими полями (столбцами) двух таблиц. Существуют связи с отношением «один-к-одному», «один-ко-многим» и «многие-ко-многим».

Отношения, которые могут существовать между записями двух таблиц:

один – к - одному, каждой записи из одной таблицы соответствует одна запись в другой таблице;

один – ко - многим, каждой записи из одной таблицы соответствует несколько записей другой таблице;

многие – к - одному, множеству записей из одной таблице соответствует одна запись в другой таблице;

многие – ко - многим, множеству записей из одной таблицы соответствует несколько записей в другой таблице.

Тип отношения в создаваемой связи зависит от способа определения связываемых полей:

Отношение «один-ко-многим» создается в том случае, когда только одно из полей является полем первичного ключа или уникального индекса.

Отношение «один-к-одному» создается в том случае, когда оба связываемых поля являются ключевыми или имеют уникальные индексы.

Отношение «многие-ко-многим» фактически является двумя отношениями «один-ко-многим» с третьей таблицей, первичный ключ которой состоит из полей внешнего ключа двух других таблиц

3. Ключи. Ключ – это столбец (может быть несколько столбцов), добавляемый к таблице и позволяющий установить связь с записями в другой таблице. Существуют ключи двух типов: первичные и вторичные или внешние.

Первичный ключ – это одно или несколько полей (столбцов), комбинация значений которых однозначно определяет каждую запись в таблице. Первичный ключ не допускает значений Null и всегда должен иметь уникальный индекс. Первичный ключ используется для связывания таблицы с внешними ключами в других таблицах.

Внешний (вторичный) ключ - это одно или несколько полей (столбцов) в таблице, содержащих ссылку на поле или поля первичного ключа в другой таблице. Внешний ключ определяет способ объединения таблиц.

Из двух логически связанных таблиц одну называют таблицей первичного ключа или главной таблицей, а другую таблицей вторичного (внешнего) ключа или подчиненной таблицей. СУБД позволяют сопоставить родственные записи из обеих таблиц и совместно вывести их в форме, отчете или запросе.

Существует три типа первичных ключей: ключевые поля счетчика (счетчик), простой ключ и составной ключ.

Поле счетчика (Тип данных «Счетчик»). Тип данных поля в базе данных, в котором для каждой добавляемой в таблицу записи в поле автоматически заносится уникальное числовое значение.

Простой ключ. Если поле содержит уникальные значения, такие как коды или инвентарные номера, то это поле можно определить как первичный ключ. В качестве ключа можно определить любое поле, содержащее данные, если это поле не содержит повторяющиеся значения или значения Null.

Составной ключ. В случаях, когда невозможно гарантировать уникальность значений каждого поля, существует возможность создать ключ, состоящий из нескольких полей. Чаще всего такая ситуация возникает для таблицы, используемой для связывания двух таблиц многие - ко - многим.

Необходимо еще раз отметить, что в поле первичного ключа должны быть только уникальные значения в каждой строке таблицы, т.е. совпадение не допускается, а в поле вторичного или внешнего ключа совпадение значений в строках таблицы допускается.

Если возникают затруднения с выбором подходящего типа первичного ключа, то в качеcтве ключа целесообразно выбрать поле счетчика.

Программы, которые предназначены для структурирования информации, размещения ее в таблицах и манипулирования данными называются системами управления базами данных (СУБД). Другими словами СУБД предназначены как для создания и ведения базы данных, так и для доступа к данным. В настоящее время насчитывается более 50 типов СУБД для персональных компьютеров. К наиболее распространенным типам СУБД относятся: MS SQL Server, Oracle, Informix, Sybase, DB2, MS Access и т. д.

Создание БД. Этапы проектирования

Создание БД начинается с проектирования.

Этапы проектирования БД:

Исследование предметной области;

Анализ данных (сущностей и их атрибутов);

Определение отношений между сущностями и определение первичных и вторичных (внешних) ключей.

В процессе проектирования определяется структура реляционной БД (состав таблиц, их структура и логические связи). Структура таблицы определяется составом столбцов, типом данных и размерами столбцов, ключами таблицы.

К базовым понятиями модели БД «сущность – связь» относятся: сущности, связи между ними и их атрибуты (свойства).

Сущность – любой конкретный или абстрактный объект в рассматриваемой предметной области. Сущности – это базовые типы информации, которые хранятся в БД (в реляционной БД каждой сущности назначается таблица). К сущностям могут относиться: студенты, клиенты, подразделения и т.д. Экземпляр сущности и тип сущности - это разные понятия. Понятие тип сущности относится к набору однородных личностей, предметов или событий, выступающих как целое (например, студент, клиент и т.д.). Экземпляр сущности относится, например, к конкретной личности в наборе. Типом сущности может быть студент, а экземпляром – Петров, Сидоров и т. д.

Атрибут – это свойство сущности в предметной области. Его наименование должно быть уникальным для конкретного типа сущности. Например, для сущности студент могут быть использованы следующие атрибуты: фамилия, имя, отчество, дата и место рождения, паспортные данные и т.д. В реляционной БД атрибуты хранятся в полях таблиц.

Связь – взаимосвязь между сущностями в предметной области. Связи представляют собой соединения между частями БД (в реляционной БД – это соединение между записями таблиц).

Сущности – это данные, которые классифицируются по типу, а связи показывают, как эти типы данных соотносятся один с другим. Если описать некоторую предметную область в терминах сущности – связь, то получим модель сущность - связь для этой БД.

Рассмотрим предметную область: Деканат (Успеваемость студентов)

В БД «Деканат» должны храниться данные о студентах, группах студентов, об оценках студентов по различным дисциплинам, о преподавателях, о стипендиях и т.д. Ограничимся данными о студентах, группах студентов и об оценках студентов по различным дисциплинам. Определим сущности, атрибуты сущностей и основные требования к функциям БД с ограниченными данными.

Основными предметно-значимыми сущностями БД «Деканат» являются: Студенты, Группы студентов, Дисциплины, Успеваемость.

Основные предметно-значимые атрибуты сущностей:

Студенты – фамилия, имя, отчество, пол, дата и место рождения, группа студентов;

Группы студентов – название, курс, семестр;

Дисциплины – название, количество часов

Успеваемость – оценка, вид контроля.

Основные требования к функциям БД:

Выбрать успеваемость студента по дисциплинам с указанием общего количества часов и вида контроля;

Выбрать успеваемость студентов по группам и дисциплинам;

Выбрать дисциплины, изучаемые группой студентов на определенном курсе или

определенном семестре.

Из анализа данных предметной области следует, что каждой сущности необходимо назначить простейшую двумерную таблицу (отношения). Далее необходимо установить логические связи между таблицами. Между таблицами Студенты и Успеваемость необходимо установить такую связь, чтобы каждой записи из таблицы Студенты соответствовало несколько записей в таблице Успеваемость, т.е. один – ко – многим, так как у каждого студента может быть несколько оценок.

Логическая связь между сущностями Группы – Студенты определена как один – ко – многим исходя из того, что в группе имеется много студентов, а каждый студент входит в состав одной группе. Логическая связь между сущностями Дисциплины – Успеваемость определена как один – ко – многим, потому что по каждой дисциплине может быть поставлено несколько оценок различным студентам.

На основе вышеизложенного составляем модель сущность – связь для БД «Деканат» - стрелка является условным обозначением связи: один – ко – многим.

Для создания БД необходимо применить одну из известных СУБД, например СУБД Access.

1. ПРОЕКТИРОВАНИЕ БАЗ ДАННЫХ

1.1. Реляционная база данных и ее структура

Базой данных (БД) называется организованная в соответствии с определенными правилами и поддерживаемая в памяти компьютера совокупность сведений об объектах, процессах, событиях или явлениях, относящихся к некоторой предметной области, теме или задаче. Она организована таким образом, чтобы обеспечить информационные потребности пользователей, а также удобное хранение этой совокупности данных, как в целом, так и любой ее части.

Реляционная база данных представляет собой множество взаимосвязанных таблиц, каждая из которых содержит информацию об объектах определенного вида. Каждая строка таблицы содержит данные об одном объекте (например, автомобиле, компьютере, клиенте), а столбцы таблицы содержат различные характеристики этих объектов –атрибуты (например, номер двигателя, марка процессора, телефоны фирм или клиентов).

Строки таблицы называются записями . Все записи таблицы имеют одинаковую структуру – они состоят изполей (элементов данных), в которых хранятся атрибуты объекта (рис. 1). Каждое поле записи содержит одну характеристику объекта и представляет собой заданный тип данных (например, текстовая строка, число, дата). Для идентификации записей используется первичный ключ.Первичным ключом называется набор полей таблицы, комбинация значений которых однозначно определяет каждую запись в таблице.

Рис. 1. Названия объектов в таблице

Для работы с данными используются системы управления базами данных (СУБД). Основные функции СУБД:

определение данных (описание структуры баз данных);

обработка данных;

управление данными.

Разработка структуры БД – важнейшая задача, решаемая при проектировании БД. Структура БД (набор, форма и связи ее таблиц) – это одно из основных проектных решений при создании приложений с использованием БД. Созданная разработчиком структура БД описывается на языке определения данных СУБД.

Любая СУБД позволяет выполнять следующие операции с данными:

добавление записей в таблицы;

удаление записей из таблицы;

обновление значений некоторых полей в одной или нескольких записях в таблицах БД;

поиск одной или нескольких записей, удовлетворяющих заданному условию.

Для выполнения этих операций применяется механизм запросов. Результатом выполнения запросов является либо отобранное по определенным критериям множество записей, либо изменения в таблицах. Запросы к базе формируются на специально созданном для этого языке, который так и называется

«язык структурированных запросов» (SQL – Structured Query Language).

Под управлением данными обычно понимают защиту данных от несанкционированного доступа, поддержку многопользовательского режима работы с данными и обеспечение целостности и согласованности данных.

1.2. Этапы проектирования реляционной базы данных

Основная причина сложности проектирования базы данных заключается в том, что объекты реального мира и взаимосвязи между ними вовсе не обязаны иметь и, как правило, не имеют структуры, согласованной с реляционной моделью данных. Разработчик при проектировании должен придумать представление для реальных объектов и их связей в терминах таблиц, полей, атрибутов, записей и т. п., то есть в терминах абстракций реляционной модели данных. Поэтому в данном контексте термин «проектирование» можно понимать и как процесс, результатом которого являетсяпроект , и как процесс, результатом которого являетсяпроекция .

Разработка эффективной базы данных состоит из нескольких этапов. Процесс разработки БД начинается с анализа требований. Проектировщик на этом этапе разработки должен найти ответы на следующие вопросы: какие элементы данных должны храниться, кто и как будет к ним обращаться.

На втором этапе создается логическая структура БД. Для этого определяют, как данные будут сгруппированы логически. Структура БД на этом этапе выражается в терминах прикладных объектов и отношений между ними.

На заключительном (третьем) этапе логическая структура БД преобразуется в физическую с учетом аспектов производительности. Элементы данных на этом этапе получают атрибуты и определяются как столбцы в таблицах выбранной для реализации БД СУБД.

Рассмотрим применение концепции реляционных баз данных на практике. Представим себе деятельность туристической фирмы. Очевидно, что для ее работы необходимо хранить и отслеживать определенный набор информации о клиентах данной турфирмы (туристах), о предлагаемых им турах, об оформлении и оплате путевок. Это можно делать в обычной бумажной тетради, но со временем поиск нужных записей и финансовая отчетность будут представлять собой довольно рутинную, длительную работу.

1.2.1. Определение требований

Требования к приложению с БД обычно составляются с помощью опросов и бесед с конечными пользователями. Это – итерационный процесс, в ходе которого разработчики определяют структуру пользовательских диалогов, критерии поиска документов и возможные реакции пользователей.

Общая методика определения и документирования требований к БД заключается в составлении словаря данных. Словарь данных перечисляет и определяет отдельные элементы данных, которые должны храниться в базе. Начальный проект словаря данных для менеджера турфирмы приведен в таблице 1.

Таблица 1

Словарь данных для приложения БД менеджера турфирмы

Элемент данных

Описание

Фамилия туриста

Имя туриста

Отчество

Отчество туриста

Серия и номер паспорта туриста

Контактный телефон туриста

Город проживания туриста

Страна проживания туриста

Почтовый индекс адреса туриста

Название туристической поездки

Цена туристической поездки

Дата начала

Время начала туристической поездки

Дата конца

Время завершения туристической поездки

Информация

Дополнительная информация о туре

Дата оплаты

Дата оплаты путевки

Сумма оплаты

Составление словаря – хороший способ, чтобы начать определять требования к базе данных. Но одного словаря не достаточно для определения структуры БД, так как словарь данных не описывает, как связаны элементы, как данные создаются, обновляются и выбираются, кто и как будет использовать БД.

Необходима функциональная спецификация , отражающая информацию о количестве одновременно работающих пользователей, о том, как часто записи будут вставляться и обновляться, и каким образом информация будет выбираться из БД.

Функциональное описание для приложения БД менеджера турфирмы могло бы включать, например, следующие требования:

Приложением будут пользоваться руководитель турфирмы, 2 менеджера по продажам, бухгалтер, кассир и 2 офисных сотрудника турфирмы – всего 7 пользователей. Предполагается, что одновременно с БД будут работать не более 3 сотрудников. Персоналу бухгалтерии для работы достаточно иметь доступ только к данным по оплате путевок.

Все пользователи в любое время могут добавлять информацию в БД. При добавлении информации или ее изменении, пользователь, который сделал изменение, а также дата и время изменения, должны быть зарегистрированы.

Один из офисных сотрудников будет назначен системным администратором. Только он должен вести учетные записи пользователей.

Спецификация функций и словарь данных, как правило, разрабатываются одновременно, так как эти документы информационно дополняют друг друга.

Важная часть анализа требований – предупредить потребности пользователей, поскольку они не всегда способны полностью и четко объяснить их собственные требования к системе. Практически функциональное описание должно представлять систему как можно более полно и подробно.

1.2.2. Логическая модель

ER-диаграммы

Общим способом представления логической модели БД является построение ER-диаграмм (Entity-Relationship – сущность-связь). В этой модели сущность определяется как дискретный объект, для которого сохраняются элементы данных, а связь описывает отношение между двумя объектами.

В примере менеджера турфирмы имеются 5 основных объектов:

Туристы

Туры

Путевки

Сезоны

Оплаты

Отношения между этими объектами могут быть определены простыми терминами:

Каждый турист может купить одну или несколько (много) путевок.

Каждой путевке соответствует ее оплата (оплат

может быть и несколько,

если путевка, например,

продана в кредит).

Каждый тур может иметь

несколько сезонов.

Путевка

продается

один сезон одного тура.

Эти объекты и отношения

могут быть представлены ER-

диаграммой,

как показано

Рис. 2. ER-диаграмма для приложения БД

менеджера турфирмы

Объекты, атрибуты и ключи

Далее модель развивается путем определения атрибутов для каждого объекта. Атрибуты объекта – это элементы данных, относящиеся к определенному объекту, которые должны сохраняться. Анализируем составленный словарь данных, выделяем в нем объекты и их атрибуты, расширяем словарь при необходимости. Атрибуты для каждого объекта в рассматриваемом примере представлены в таблице 2.

Объекты и атрибуты БД

Таблица 2

Название

Дата начала

Дата оплаты

Дата конца

Отчество

Информация

Атрибуты

Следует обратить внимание, что несколько элементов отсутствуют. Опущена регистрационная информация, упомянутая в функциональной спецификации. Как ее учесть, вы подумаете самостоятельно и доработаете предложенный пример. Но более важно то, что пока отсутствуют атрибуты, необходимые для связи объектов друг с другом. Эти элементы данных в ER-модели не представ-

ляются, так как не являются, собственно, «натуральными» атрибутами объектов. Они обрабатываются по-другому и будут учтены в реляционной модели данных.

Реляционная модель характеризуется использованием ключей и отношений. Существует отличие в контексте реляционной базы данных терминов relation (отношение) и relationship (схема данных). Отношение рассматривается как неупорядоченная, двумерная таблица с несвязанными строками.Схема данных формируется между отношениями (таблицами) через общие атрибуты, которые являютсяключами .

Существует несколько типов ключей, и они иногда отличаются только с точки зрения их взаимосвязи с другими атрибутами и отношениями. Первичный ключ уникально идентифицирует строку в отношении (таблице), и каждое отношение может иметь только один первичный ключ, даже если больше чем один атрибут является уникальным. В некоторых случаях требуется более одного атрибута для идентификации строк в отношении. Совокупность этих атрибутов называетсясоставным ключом . В других случаях первичный ключ должен быть специально создан (сгенерирован). Например, в отношение «Туристы» имеет смысл добавить уникальный идентификатор туриста (код туриста) в виде первичного ключа этого отношения для организации связей с другими отношениями БД.

Другой тип ключа, называемый внешним ключом, существует только в терминах схемы данных между двумя отношениями. Внешний ключ в отношении – это атрибут, который является первичным ключом (или частью первичного ключа) в другом отношении. Это – распределенный атрибут, который формирует схему данных между двумя отношениями в БД.

Для проектируемой БД расширим атрибуты объектов кодовыми полями в качестве первичных ключей и используем эти коды в отношениях БД для ссылки на объекты БД следующим образом (табл. 3).

Построенную схему БД еще рано считать законченной, так как требуется ее нормализация. Процесс, известный как нормализация реляционной БД, используется для группировки атрибутов специальными способами, чтобы минимизировать избыточность и функциональную зависимость.

Объекты и атрибуты БД с расширенными кодовыми полями

Таблица 3

Код туриста

Код путевки

Код сезона

Код оплаты

Код туриста

Название

Дата начала

Дата оплаты

Атрибуты

Код сезона

Дата конца

Отчество

Информация

Код путевки

Нормализация

Функциональные зависимости проявляются, когда значение одного атрибута может быть определено из значения другого атрибута. Атрибут, который может быть определен, называетсяфункционально зависимым от атрибута, который является детерминантом. Следовательно, по определению, все неключевые (без ключа) атрибуты будут функционально зависеть от первичного ключа в каждом отношении (так как первичный ключ уникально определяет каждую строку). Когда один атрибут отношения уникально не определяет другой атрибут, но ограничивает его набором предопределенных значений, это называетсямногозначной зависимостью.Частичная зависимость имеет место, когда атрибут отношения функционально зависит от одного атрибута составного ключа. Транзитивные зависимости наблюдаются, когда неключевой атрибут функционально зависит от одного или нескольких других неключевых атрибутов в отношении.

Процесс нормализации состоит в пошаговом построении БД в нормальной форме (НФ).

Первая нормальная форма (1НФ) очень проста. Все таблицы БД должны удовлетворять единственному требованию – каждая ячейка в таблицах должна содержать атомарное значение, другими словами, хранимое значение в рамках предметной области приложения БД не должно иметь внутренней структуры, элементы которой могут потребоваться приложению.

Вторая нормальная форма (2НФ) создается тогда, когда удалены все частичные зависимости из отношений БД. Если в отношениях не имеется никаких составных ключей, то этот уровень нормализации легко достигается.

Третья нормальная форма (3НФ) БД требует удаления всех транзитивных зависимостей.

Четвертая нормальная форма (4НФ) создается при удалении всех многозначных зависимостей.

БД нашего примера находится в 1НФ, так как все поля таблиц БД атомарные по своему содержанию. Наша БД также находится и во 2НФ, так как мы искусственно ввели в каждую таблицу уникальные коды для каждого объекта (Код Туриста, Код Путевки и т. д.), за счет чего и добились 2НФ для каждой из таблиц БД и всей базы данных в целом. Осталось разобраться с третьей и четвертой нормальными формами.

Обратите внимание, что они существуют только относительно различных видов зависимостей атрибутов БД. Есть зависимости – нужно стоить НФ БД, нет зависимостей – БД и так находится в НФ. Но последний вариант практически не встречается в реальных приложениях.

Итак, какие же транзитивные и многозначные зависимости присутствуют в нашем примере БД менеджера турфирмы?

Давайте проанализируем отношение «Туристы». Рассмотрим зависимости между атрибутами «Код туриста», «Фамилия», «Имя», «Отчество» и «Паспорт» (рис. 3). Каждый турист, представленный в отношении сочетанием «Фамилия- Имя-Отчество», имеет на время поездки только один паспорт, при этом полные тезки должны иметь разные номера паспортов. Поэтому атрибуты «Фамилия- Имя-Отчество» и «Паспорт» образуют в отношении туристы составной ключ.

Составной ключ

Отчество

Код туриста

Рис. 3. Пример транзитивной зависимости

Как видно из рисунка, атрибут «Паспорт» транзитивно зависит от ключа «Код туриста». Поэтому, чтобы исключить данную транзитивную зависимость, разобьем составной ключ отношения и само отношение на 2 по связям «один-к-одному». В первое отношение, оставим ему имя «Туристы», включаются атрибуты «Код туриста» и «Фамилия», «Имя», «Отчество». Второе отношение, назовем его «Информация о туристах», образуют атрибуты «Код туриста» и все оставшиеся атрибуты отношения «Туристы»: «Паспорт», «Телефон», «Город», «Страна», «Индекс». Эти два новых отношения уже не имеют транзитивной зависимости и находятся в 3НФ.

Многозначные зависимости в нашей упрощенной БД отсутствуют. Для примера предположим, что для каждого туриста должны храниться несколько контактных телефонов (домашний, рабочий, сотовый и пр., что весьма характерно на практике), а не один, как в примере. Получаем многозначную зависимость ключа – «Код туриста» и атрибутов «Тип телефона» и «Телефон», в этой ситуации ключ перестает быть ключом. Что делать? Проблема решается также путем разбиения схемы отношения на 2 новые схемы. Одна из них должна представлять информацию о телефонах (отношение «Телефоны»), а вторая о туристах (отношение «Туристы»), которые связываются по полю «Код туриста». «Код туриста» в отношении «Туристы» будет первичным ключом, а в отношении «Телефоны» – внешним.

1.2.3. Физическая модель

Физическая модель данных зависит от выбранной СУБД. Например, если вы планируете использовать СУБД Oracle, то физическая база данных будет состоять из файлов данных, областей таблиц, сегментов отката, таблиц, столбцов

и индексов.

В данном пособии будут рассмотрено создание физической модели БД средствами СУБД Microsoft Access и сервера баз данных Microsoft SQL Server 2005 Express Edition.

1.3. Создание БД в СУБД Microsoft Access

1.3.1. Таблицы

Для создания таблицы в СУБД Microsoft Access используем режим конструктора (рис. 4).

Рис. 4. Выбор режима конструктора

Рис. 5. Полный список полей таблицы

В появившемся окне «Таблица1: таблица» предстоит определить названия полей, которые и станут заголовками в этой таблице. Введем следующие названия полей (рис. 5).

При вводе названия поля, для него

по умолчанию определяется тип данных

«текстовый». Для изменения типа следу-

ет выбрать нужное значение из выпа-

дающего списка (рис. 6).

Рис. 6. Определение типа данных поля

Описания возможных типов дан-

ных Microsoft Access приводятся в таб-

Таблица 4

Типы данных Microsoft Access

Тип данных

Описание

Текстовый

Текст или комбинация текста и чисел, например, адреса, а также

числа, не требующие вычислений, например, номера телефонов, ин-

вентарные номера или почтовые индексы. Сохраняет до 255 знаков.

Свойство «Размер поля» (FieldSize) определяет максимальное коли-

чество знаков, которые можно ввести в поле

Поле МЕМО

Предназначено для ввода текстовой информации, по объему превы-

шающей 255 символов. Такое поле может содержать до 65 535 сим-

волов. Этот тип данных отличается от типа Текстовый (Text) тем, что

щиеся отдельно. За счет этого ускоряется обработка таблиц (сорти-

ровка, поиск и т. п.). Поле типа MEMO не может быть ключевым или

проиндексированным

Числовой

Данные, используемые для математических вычислений, за исклю-

чением финансовых

расчетов (для них следует использовать тип

«Денежный»). Сохраняет 1, 2, 4 или 8 байтов. Конкретный тип чи-

слового поля определяется значением свойства Размер поля (Field-

Дата/время

Значения дат и времени. Сохраняет 8 байтов

Денежный

Используется для денежных значений и для предотвращения округ-

ления во время вычислений. Сохраняет 8 байтов

Автоматическая вставка уникальных последовательных (увеличи-

вающихся на 1) или случайных чисел при добавлении записи. Со-

храняет 4 байта

Логический

Данные, принимающие только одно из двух возможных значений,

таких, как «Да/Нет», «Истина/Ложь», «Вкл./Выкл.». Значения Null не

допускаются. Сохраняет 1 бит.

Поле объекта

Объекты OLE (такие, как документы Microsoft Word, электронные

таблицы Microsoft Excel, рисунки, звукозапись или другие данные в

двоичном формате) (ограничивается объемом диска)

Перевод цикла из 15 статей о проектировании баз данных.
Информация предназначена для новичков.
Помогло мне. Возможно, что поможет еще кому-то восполнить пробелы.

Руководство по проектированию баз данных.

1. Вступление.
Если вы собираетесь создавать собственные базы данных, то неплохо было бы придерживаться правил проектирования баз данных, так как это обеспечит долговременную целостность и простоту обслуживания ваших данных. Данное руководство расскажет вам что представляют из себя базы данных и как спроектировать базу данных, которая подчиняется правилам проектирования реляционных баз данных.

Базы данных – это программы, которые позволяют сохранять и получать большие объемы связанной информации. Базы данных состоят из таблиц , которые содержат информацию . Когда вы создаете базу данных необходимо подумать о том, какие таблицы вам нужно создать и какие связи существуют между информацией в таблицах. Иначе говоря, вам нужно подумать о проекте вашей базы данных. Хороший проект базы данных, как было сказано ранее, обеспечит целостность данных и простоту их обслуживания.
База данных создается для хранения в ней информации и получения этой информации при необходимости. Это значит, что мы должны иметь возможность помещать, вставлять (INSERT ) информацию в базу данных и мы хотим иметь возможность делать выборку информации из базы данных (SELECT ).
Язык запросов к базам данных был придуман для этих целей и был назван Структурированный язык запросов или SQL. Операции вставки данных (INSERT) и их выборки (SELECT) – части этого самого языка. Ниже приведен пример запроса на выборку данных и его результат.

SQL – большая тема для повествования и его рассмотрение выходит за рамки данного руководства. Данная статья строго сфокусирована на изложении процесса проектирования баз данных . Позднее, в отдельном руководстве, я расскажу об основах SQL.

Реляционная модель.
В этом руководстве я покажу вам как создавать реляционную модель данных. Реляционная модель – это модель, которая описывает как организовать данные в таблицах и как определить связи между этими таблицами.

Правила реляционной модели диктуют, как информация должна быть организована в таблицах и как таблицы связаны друг с другом. В конечном счете результат можно предоставить в виде диаграммы базы данных или, если точнее, диаграммы «сущность-связь», как на рисунке (Пример взят из MySQL Workbench).

Примеры.
В качестве примеров в руководстве я использовал ряд приложений.

РСУБД.

РСУБД, которую я использовал для создания таблиц примеров – MySQL. MySQL – наиболее популярная РСУБД и она бесплатна.

Утилита для администрирования БД.

После установки MySQL вы получаете только интерфейс командной строки для взаимодействия с MySQL. Лично я предпочитаю графический интерфейс для управления моими базами данных. Я часто использую SQLyog. Это бесплатная утилита с графическим интерфейсом. Изображения таблиц в данном руководстве взяты оттуда.

Визуальное моделирование.

Существует отличное бесплатное приложение MySQL Workbench. Оно позволяет спроектировать вашу базу данных графически. Изображения диаграмм в руководстве сделаны в этой программе.

Проектирование независимо от РСУБД.
Важно знать, что хотя в данном руководстве и приведены примеры для MySQL, проектирование баз данных независимо от РСУБД. Это значит, что информация применима к реляционным базам данных в общем, не только к MySQL. Вы можете применить знания из этого руководства к любым реляционным базам данных, подобным Mysql, Postgresql, Microsoft Access, Microsoft Sql or Oracle.

В следующей части я коротко расскажу об эволюции баз данных. Вы узнаете откуда взялись базы данных и реляционная модель данных.

2. История.
В 70-х – 80-х годах, когда компьютерные ученые все еще носили коричневые смокинги и очки с большими, квадратными оправами, данные хранились бесструктурно в файлах, которые представляли собой текстовый документ с данными, разделенными (обычно) запятыми или табуляциями.

Так выглядели профессионалы в сфере информационных технологий в 70-е. (Слева внизу находится Билл Гейтс).

Текстовые файлы и сегодня все еще используются для хранения малых объемов простой информации. Comma-Separated Values (CSV) - значения, разделённые запятыми, очень популярны и широко поддерживаются сегодня различным программным обеспечением и операционными системами. Microsoft Excel – один из примеров программ, которые могут работать с CSV–файлами. Данные, сохраненные в таком файле могут быть считаны компьютерной программой.

Выше приведен пример того, как такой файл мог бы выглядеть. Программа, производящая чтение данного файла, должна быть уведомлена о том, что данные разделены запятыми. Если программа хочет выбрать и вывести категорию, в которой находится урок "Database Design Tutorial" , то она должна строчка за строчкой производить чтение до тех пор, пока не будут найдены слова "Database Design Tutorial" и затем ей нужно будет прочитать следующее за запятой слово для того, чтобы вывести категорию Software .

Таблицы баз данных.
Чтение файла строчка за строчкой не является очень эффективным. В реляционной базе данных данные хранятся в таблицах. Таблица ниже содержит те же самые данные, что и файл. Каждая строка или “запись” содержит один урок. Каждый столбец содержит какое-то свойство урока. В данном случае это заголовок (title) и его категория (category).

Компьютерная программа могла бы осуществить поиск в столбце tutorial_id данной таблицы по специфическому идентификатору tutorial_id для того, чтобы быстро найти соответствующие ему заголовок и категорию. Это намного быстрее, чем поиск по файлу строка за строкой, подобно тому, как это делает программа в текстовом файле.

Современные реляционные базы данных созданы так, чтобы позволять делать выборку данных из специфических строк, столбцов и множественных таблиц, за раз, очень быстро.

История реляционной модели.
Реляционная модель баз данных была изобретена в 70-х Эдгаром Коддом (Ted Codd), британским ученым. Он хотел преодолеть недостатки сетевой модели баз данных и иерархической модели. И он очень в этом преуспел. Реляционная модель баз данных сегодня всеобще принята и считается мощной моделью для эффективной организации данных.

Сегодня доступен широкий выбор систем управления базами данных: от небольших десктопных приложений до многофункциональных серверных систем с высокооптимизированными методами поиска. Вот некоторые из наиболее известных систем управления реляционными базами данных (РСУБД):

- Oracle – используется преимущественно для профессиональных, больших приложений.
- Microsoft SQL server – РСУБД компании Microsoft. Доступна только для операционной системы Windows.
- Mysql – очень популярная РСУБД с открытым исходным кодом. Широко используется как профессионалами, так и новичками. Что еще нужно?! Она бесплатна.
- IBM – имеет ряд РСУБД, наиболее известна DB2.
- Microsoft Access – РСУБД, которая используется в офисе и дома. На самом деле – это больше, чем просто база данных. MS Access позволяет создавать базы данных с пользовательским интерфейсом.
В следующей части я расскажу кое-что о характеристиках реляционных баз данных.

3. Характеристики реляционных баз данных.
Реляционные базы данных разработаны для быстрого сохранения и получения больших объемов информации. Ниже приведены некоторые характеристики реляционных баз данных и реляционной модели данных.
Использование ключей.
Каждая строка данных в таблице идентифицируется уникальным “ключом”, который называется первичным ключом. Зачастую, первичный ключ это автоматически увеличиваемое (автоинкрементное) число (1,2,3,4 и т.д). Данные в различных таблицах могут быть связаны вместе при использовании ключей. Значения первичного ключа одной таблицы могут быть добавлены в строки (записи) другой таблицы, тем самым, связывая эти записи вместе.

Используя структурированный язык запросов (SQL), данные из разных таблиц, которые связаны ключом, могут быть выбраны за один раз. Для примера вы можете создать запрос, который выберет все заказы из таблицы заказов (orders), которые принадлежат пользователю с идентификатором (id) 3 (Mike) из таблицы пользователей (users). О ключах мы поговорим далее, в следующих частях.


Столбец id в данной таблице является первичным ключом. Каждая запись имеет уникальный первичный ключ, часто число. Столбец usergroup (группы пользователей) является внешним ключом. Судя по ее названию, она видимо ссылается на таблицу, которая содержит группы пользователей.

Отсутствие избыточности данных.
В проекте базы данных, которая создана с учетом правил реляционной модели данных, каждый кусочек информации, например, имя пользователя, хранится только в одном месте. Это позволяет устранить необходимость работы с данными в нескольких местах. Дублирование данных называется избыточностью данных и этого следует избегать в хорошем проекте базы данных.
Ограничение ввода.
Используя реляционную базу данных вы можете определить какой вид данных позволено сохранять в столбце. Вы можете создать поле, которое содержит целые числа, десятичные числа, небольшие фрагменты текста, большие фрагменты текста, даты и т.д.


Когда вы создаете таблицу базы данных вы предоставляете тип данных для каждого столбца. К примеру, varchar – это тип данных для небольших фрагментов текста с максимальным количеством знаков, равным 255, а int – это числа.

Помимо типов данных РСУБД позволяет вам еще больше ограничить возможные для ввода данные. Например, ограничить длину или принудительно указать на уникальность значения записей в данном столбце. Последнее ограничение часто используется для полей, которые содержат регистрационные имена пользователей (логины), или адреса электронной почты.

Эти ограничения дают вам контроль над целостностью ваших данных и предотвращают ситуации, подобные следующим:

Ввод адреса (текста) в поле, в котором вы ожидаете увидеть число
- ввод индекса региона с длинной этого самого индекса в сотню символов
- создание пользователей с одним и тем же именем
- создание пользователей с одним и тем же адресом электронной почты
- ввод веса (числа) в поле дня рождения (дата)

Поддержание целостности данных.
Настраивая свойства полей, связывая таблицы между собой и настраивая ограничения, вы можете увеличить надежность ваших данных.
Назначение прав.
Большинство РСУБД предлагают настройку прав доступа, которая позволяет назначать определенные права определенным пользователям. Некоторые действия, которые могут быть позволены или запрещены пользователю: SELECT (выборка), INSERT (вставка), DELETE (удаление), ALTER (изменение), CREATE (создание) и т.д. Это операции, которые могут быть выполнены с помощью структурированного языка запросов (SQL).
Структурированный язык запросов (SQL).
Для того, чтобы выполнять определенные операции над базой данных, такие, как сохранение данных, их выборка, изменение, используется структурированный язык запросов (SQL). SQL относительно легок для понимания и позволяет в т.ч. и уложненные выборки, например, выборка связанных данных из нескольких таблиц с помощью оператора SQL JOIN. Как и упоминалось ранее, SQL в данном руководстве обсуждаться не будет. Я сосредоточусь на проектировании баз данных.

То, как вы спроектируете базу данных будет оказывать непосредственное влияние на запросы, которые вам будет необходимо выполнить, чтобы получить данные из базы данных. Это еще одна причина, почему вам необходимо задуматься о том, какой должна быть ваша база. С хорошо спроектированной базой данных ваши запросы могут быть чище и проще.

Переносимость.
Реляционная модель данных стандартна. Следуя правилам реляционной модели данных вы можете быть уверены, что ваши данные могут быть перенесены в другую РСУБД относительно просто.

Как говорилось ранее, проектирование базы данных – это вопрос идентификации данных, их связи и помещение результатов решения данного вопроса на бумагу (или в компьютерную программу). Проектирование базы данных независимо от РСУБД, которую вы собираетесь использовать для ее создания.

В следующей части подробнее рассмотрим первичные ключи.




Top