Принцип работы эффект пельтье. Генератор на элементе Пельтье

Элемент Пельтье это термоэлектрический преобразователь, который создает разность температур на своих поверхностях при протекании электрического тока. Принцип действия основан на эффекте Пельтье – возникновении разности температур в месте контакта проводников под действием электрического тока.

Устройство и принцип действия элемента Пельтье.

Думаю, что только знатоки физики могут понять, как на самом деле работает элемент Пельтье. Для практиков главное, что существует минимальная единица модуля – термопара, представляющая из себя два соединенных проводника p и n типа.

При пропускании через термопару тока, происходит поглощение тепла на контакте n-p и выделение тепла на p-n контакте. В результате, участок полупроводника, примыкающий к n-p переходу, будет охлаждаться, а противоположный участок – нагреваться. Если поменять полярность тока, то на оборот, n-p участок будет нагреваться, а противоположный – охлаждаться.

Существует и обратный эффект. При нагревании одной из сторон термопары, вырабатывается электрический ток.

Для практического применения энергии поглощения тепла одной термопары недостаточно. В термоэлектрическом модуле используется много термопар. Электрически их соединяют последовательно. А конструктивно – так, что охлаждающие и нагревающие переходы расположены на разных сторонах модуля.

Термопары установлены между двух керамических пластин. Соединяются они медными шинами. Количество термопар может доходить до нескольких сотен. От их количества зависит мощность модуля.

Разность температур между горячей и холодной стороной модуля Пельтье может достигать 70 °C.

Надо понимать, что термоэлектрический модуль Пельтье снижает температуру одной стороны, относительно другой. Т.е. чтобы холодная сторона имела низкую температуру, необходимо отводить тепло от горячей поверхности, снижая ее температуру.

Для увеличения перепада температур, возможно последовательное (каскадное) соединение модулей.

Применение.

Термоэлектрические модули Пельтье применяются:

  • в небольших бытовых и автомобильных холодильниках;
  • в охладителях воды;
  • в системах охлаждения электронных приборов;
  • в термоэлектрических генераторах.

Я, используя элемент Пельтье, сделал .

Достоинства и недостатки модулей Пельтье.

Как-то неправильно сравнивать элементы Пельтье с компрессорными охлаждающими установками. Совсем разные устройства – большая механическая система с компрессором, газом, жидкостью и маленький полупроводниковый компонент. А больше сравнивать не с чем. Поэтому достоинства и недостатки модулей Пельтье весьма условное понятие. Есть области, в которых они не заменимы, а в других случаях их применение совершенно нецелесообразно.

К достоинству элементов Пельтье можно отнести:

  • отсутствие механически движущихся частей, газов, жидкостей;
  • бесшумная работа;
  • небольшие размеры;
  • возможность обеспечивать как охлаждение, так и нагревание;
  • возможность плавного регулирования мощности охлаждения.

Недостатки:

  • низкий кпд;
  • необходимость в источнике питания;
  • ограниченное число старт-стопов ;
  • высокая стоимость мощных модулей.

Параметры элементов Пельтье.

  • Qmax (Вт) – холодопроизводительность, при максимально-допустимом токе и разности температур между горячей и холодной сторонами равной 0. Считается, что вся тепловая энергия поступающая на холодную поверхность, мгновенно, без потерь передается на горячую.
  • Delta Tmax (град) - максимальная разность температур между поверхностями модуля при идеальных условиях: температура горячей стороны – 27 °C и холодная сторона с нулевой отдачей тепла.
  • Imax (А) – ток, обеспечивающий перепад температур delta Tmax.
  • Umax (В) – напряжение, при токе Imax и разности температур delta Tmax.
  • Resistance (Ом) – сопротивление модуля постоянному току.
  • COP (Сoefficient Of Рerformance) – коэффициент, отношение мощности охлаждения к электрической мощности, потребляемой модулем. Т.е. подобие кпд. Обычно 0.3-0.5.

Эксплуатационные требования к элементам Пельтье.

Модули Пельтье – капризные устройства. Их применение сопряжено с рядом требований, не выполнение которых приводит: к деградации модуля или выходу из строя, снижению эффективности системы.

  • Модули выделяют значительное количество тепла. Для отвода тепла должен быть установлен соответствующий радиатор . Иначе:
    • Невозможно достичь нужной температуры холодной стороны, т.к. элемент Пельтье снижает температуру относительно горячей поверхности.
    • Допустимый нагрев горячей стороны как правило + 80 °C (в высокотемпературных до 150 °C). Т.е. модуль может просто выйти из строя.
    • При высоких температурах кристаллы модуля деградируют, т.е. снижается эффективность и срок службы модуля.
  • Важен надежный тепловой контакт модуля с радиатором охлаждения.
  • Источник питания для модуля должен обеспечивать ток с пульсациями не более 5% . При более высоком уровне пульсаций эффективность модуля снизится, по некоторым данным на 30-40%.
  • Не допустимо, для управления элементом Пельтье, использовать релейные регуляторы. Это приведет к быстрой деградации модуля. Каждое включение – выключение вызывает деградацию полупроводниковых термопар. Из-за резких изменений температуры между пластинами модуля возникают механические напряжения в местах спайки с полупроводниками. Производители элементов Пельтье нормируют количество циклов старт-стопов модуля. Для бытовых модулей это порядка 5000 циклов. Релейный регулятор выведет из строя модуль Пельтье за 1-2 месяца.
  • К тому же элемент Пельтье обладает высокой теплопроводностью между поверхностями. При выключении, тепло радиатора горячей стороны, через модуль будет передаваться на холодную сторону.
  • Недопустимо , для регулирования мощности на элементе Пельтье, использовать ШИМ модуляцию .
  • Чем надо питать элемент Пельтье источником тока или напряжения? Обычно используют источник напряжения. Он проще в реализации. Но вольт-амперная характеристика модуля Пельтье нелинейная и крутая. Т.е. при небольшом изменении напряжения ток меняется значительно. И вдобавок, характеристика меняется при изменении температуры поверхностей модуля. Надо стабилизировать мощность , т.е. произведение тока через модуль на напряжение на нем. Охлаждающая способность элемента Пельтье напрямую связана с электрической мощностью. Конечно, для этого необходим достаточно сложный регулятор.
  • Напряжение модуля зависит от количества термопар в нем. Чаще всего это 127 термопар, что соответствует напряжению 16 В. Разработчики элементов рекомендуют подавать до 12 В , или 75% Umax. При таком напряжении обеспечивается оптимальная эффективность модулей.
  • Модули имеют герметичное исполнение, их можно использовать даже в воде.
  • Полярность модуля отмечена цветами проводов – черный и красный. Как правило, красный (положительный) провод расположен справа, относительно холодной стороны.

Мною был разработан для холодильника, удовлетворяющим всем этим требованиям. Он:

  • Вырабатывает питание для элемента Пельтье с пульсациями не более 2%.
  • Стабилизирует на модуле электрическую мощность, т.е. произведение тока на напряжение.
  • Обеспечивает плавное включение модуля.
  • Регулировка температуры происходит по принципу аналогового регулирования, т.е. плавного изменения мощности на элементе пельтье.
  • Контроллер разработан для холодильника, поэтому математика регуляторов учитывает инерционность охлаждения воздуха в камере.
  • Обеспечивает контроль температуры горячей стороны модуля и управление вентилятором.
  • Имеет высокий кпд, широкие функциональные возможности.

Термоэлектрический модуль Пельтье TEC1-12706.

Это самый распространенный тип элемента Пельтье. Используется во многих бытовых приборах. Не дорогой, с неплохими параметрами. Хороший вариант для изготовления маломощных холодильников, охладителей воды и т.п.

Характеристики модуля TEC1-12706 привожу в переводе на русский из документации компании производителя – HB Corporation.

Технические параметры TEC1-12706.

Графические характеристики.

0 Рубрика: . Вы можете добавить в закладки.

Модуль Пельтье можно использовать в 4 разных схемах: как нагревательный элемент (в инкубаторах...), как охлаждающий элемент (в холодильниках...), получать электричество (генератор...), а так же с помощью элемента Пельтье можно получать воду. Об этом и будет моя статья

Элемент Пельтье - это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье - возникновении разности температур при протекании электрического тока. В англоязычной литературе элементы Пельтье обозначаются TEC (от англ. Thermoelectric Cooler - термоэлектрический охладитель).

Эффект, обратный эффекту Пельтье, называется эффектом Зеебека.

Принцип действия

В основе работы элементов Пельтье лежит контакт двух токопроводящих материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов, электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному тепловому эффекту.

При контакте металлов эффект Пельтье настолько мал, что незаметен на фоне омического нагрева и явлений теплопроводности. Поэтому при практическом применении используется контакт двух полупроводников.

Элемент Пельтье состоит из одной или более пар небольших полупроводниковых параллелепипедов - одного n-типа и одного p-типа в паре (обычно теллурида висмута, Bi2Te3 и германида кремния), которые попарно соединены при помощи металлических перемычек. Металлические перемычки одновременно служат термическими контактами и изолированы непроводящей плёнкой или керамической пластинкой. Пары параллелепипедов соединяются таким образом, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни последовательности соединений (n->p), а снизу противоположные (p->n). Электрический ток протекает последовательно через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются - или наоборот. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.

Если охлаждать нагревающуюся сторону элемента Пельтье, например при помощи радиатора и вентилятора, то температура холодной стороны становится ещё ниже. В одноступенчатых элементах, в зависимости от типа элемента и величины тока, разность температур может достигать приблизительно 70 °C.

Достоинства и недостатки

Достоинством элемента Пельтье являются небольшие размеры, отсутствие каких-либо движущихся частей, а также газов и жидкостей. При обращении направления тока возможно как охлаждение, так и нагревание - это даёт возможность термостатирования при температуре окружающей среды как выше, так и ниже температуры термостатирования. Также достоинством являются отсутствие механических частей и отсутствие шума.

Недостатком элемента Пельтье является более низкий коэффициент полезного действия, чем у компрессорных холодильных установок на фреоне, что ведёт к большой потребляемой мощности для достижения заметной разности температур. Несмотря на это, ведутся разработки по повышению теплового КПД, а элементы Пельтье нашли широкое применение в технике, так как без каких-либо дополнительных устройств можно реализовать температуры ниже 0 °C.

Основной проблемой в построении элементов Пельтье с высоким КПД является то, что свободные электроны в веществе являются одновременно переносчиками и электрического тока, и тепла. Материал для элемента Пельтье же должен одновременно обладать двумя взаимоисключающими свойствами - хорошо проводить электрический ток, но плохо проводить тепло.

В батареях элементов Пельтье возможно достижение теоретически очень большой разницы температур, более 70 градусов по цельсию, в связи с этим лучше использовать импульсный метод регулирования температуры, благодаря которому можно снизить также потребление энергии. При этом желательно сглаживать пульсации тока для продления срока службы элемента Пельтье.

Применение термоэлектрического модуля : в куллерах для воды, системах охлаждения компьютеров или микросхем различных малогабаритных приборов,в электрических термогенераторах,охлаждение видеокарт, северных или южных мостов, автомобильные холодильники, охладители воздуха, Arduino, для охлаждение ПЗС матриц и инфрокрасных фотоприемников, в электрических термогенераторах, в термостатах, в научных лаболаторных приборов, термокалибраторов, термостабилизаторов. В общем там где требуется достижения перепадов температур более 60 градусов.

Размеры пластин Пельтье и характеристики потребления

Размеры пластин Пельтье и характеристики потребления (потребляемая мощность, напряжение, сила тока, максимальная разница температур). Маркировки этих термоэлектрических генераторов могут быть на разных сайтах разные, все зависит от производителя (например: TEG1-241-1.4-1.2; СР1.4-127-06L отечественные; TB-127-1.4-1.5 Frost-72; SP1848-27145; термогенератор Зеебека TEP1-142T300). Характеристики, в свою очередь будут не сильно отличаться, но некоторые показатели не значительно разнятся.

Qmax Umax Imax dTmax Размеры,(мм)
(Вт) (В) (A) (град) A B H
36,0 16,1 3,6 71 30,0 30,0 3,6
36,0 16,1 3,6 71 40,0 40,0 3,6
62,0 16,3 6,2 72 40,0 40,0 3,9
65,0 16,7 6,3 74 40,0 40,0 3,9
80,0 16,1 8,0 71 40,0 40,0 3,4
80,0 16,1 8,0 71 48,0 48,0 3,4
94,0 24,9 6,1 70 40,0 40,0 3,9
115,0 24,6 7,6 69 40,0 40,0 3,6
120,0 24,6 7,9 69 40,0 40,0 3,4
131,0 24,6 8,6 69 40,0 40,0 3,3
172,0 24,6 11,3 69 40,0 40,0 3,2
156,0 15,7 16,1 70 48,0 48,0 3,4
223,0 15,5 23,4 68 55,0 59,0 3,3
310,0 24,6 20,6 69 62,0 62,0 3,2

USB Холодильник своими руками (Модуль Пельтье)

Для постройки нашего мини-холодильника нам необходимо найти или купить элемент Пельтье (что это такое и как работает Вы сможете прочитать ниже) и два радиатора.


Вот этот самый элемент Пельтье, я выдрал его из сломанного компа, он там стоял между процессором и кулером. Счистил с него старую термопасту. В двух словах — этот элемент Пельтье при подаче на него постоянного тока начинает работать следующим образом: одна сторона у него начинает греться, а вторая — охлаждаться, если поменять полярность источника питания, то стороны элемента будут вести себя наоборот!

Далее я взял два массивных радиатора от ненужного усилка. Потом смазал элемент новой термопастой, которую купил в радио магазине, и зажал элемент Пельтье между радиаторов. Использование термопасты в данном случае обязательно!
Подключил провода к элементу от USB кабеля и воткнул в комп — одна радиатор начал греться, а второй — охлаждаться! Значит, всё пучком!

Материал, из которого я склеил холодильник, похож на прессованный пенопласт или пористый пластик. В общем, материал может быть любым, его главное качество термоизоляция.
Стекло — органическое, выглядит довольно хрупко, но на самом деле материал прочный.
Клей — суперклей.

Потом для удобства сделал застёжку на магнитиках.
Получилось нормально — туда спокойно влезает бутылка минералки.

Генератор — получение электричества с помощью элемента Пельтье

Плюсы этого генератора:

— Топливо – всё что горит или греет.
— Выход USB 5 Вольт, 500mA.
— Не зависит от солнца, ветра и т.д.
— Простая и крепкая конструкция, которая может служить вечно.
— Можно готовить на нем еду, пока ваш телефон заряжается.
— Универсальность.
— Может собрать любой у себя дома за 1 вечер (даже работник АвтоВАЗа=)).
— Дешевизна конструкции.

Изобрел не я, есть коммерческие экземпляры, которые на много лучше моего. Например, BioLite CampStove, его цена 7900 руб. Мой экземпляр сделан на скорую руку для написания этой статьи и дальнейших экспериментов.

Основой является элемент Пельтье. Это термоэлектрический модуль, используемый в кулерах для воды и переносных холодильниках, так же его применяют для охлаждения процессора. При подаче на него напряжения, одна сторона охлаждается, а другая нагревается. Мы же наоборот будем греть одну сторону, чтобы получить электричество.

Главный принцип в том чтобы одна сторона нагревалась, а другая оставалась неизменной, для максимальной эффективности нужен перепад температур в 100 градусов по Цельсию.

Приступим!


Нам понадобится:
— Элемент Пельтье, я использовал TEC1-12710
— Не нужный блок питания от компа
Любой, даже тот, который сгорел, и выгорело всё кроме корпуса
— Стабилизатор напряжения
DC-DC Boost Module, Входное напряжение 1-5 Вольт, на выходе всегда 5В.
— Радиатор (чем больше, тем лучше), желательно с кулером на 5В, т.к. радиатор будет постепенно нагреваться. Зимой это не грозит, так как можно поставить радиатор на лед.
— Термопаста
— Набор инструментов

Модуль TEC1-12710, рассчитан на 10 А (есть меньше, есть больше). Но более мощные будут большего размера. Чем больше сила тока, тем он эффективней и дороже. Я купил в алиэкспресс примерно за 250 руб. У нас в магазинах электроники такой стоит около 1500 руб.

Модуль рассчитан на максимальное напряжение 12В, но столько он не выдает из-за низкого КПД, когда мы используем его в обратном направлении, т.е. на получение тока.

Для того чтобы было стабильно 5 вольт и устройства заряжались безопасно, нужен повышающий стабилизатор. Он начинает выдавать 5 Вольт, когда на элементе Пельтье еще только 1. О том, что всё готово к зарядке, можно узнать по горящему светодиоду на модуле.


Можете собрать свой, я же решил довериться китайцам, они предлагают готовый модуль с USB выходом, за 80 руб. на том же сайте.

Распотрошим наш блок питания. Мне пришлось сделать дополнительные дырки для лучшей циркуляции воздуха (блок питания попался очень уж древний).

Главный принцип в том, чтобы воздух засасывало снизу, и выходил он через верх. Проще говоря, нужно сделать обычную печку. Не забудьте предусмотреть отверстие для подкидывания щепок и подставку под котелок или кружку для кипячения воды, если вам это нужно.


Далее к ровной стенке нужно прикрепить модуль Пельтье с радиатором, предварительно равномерно нанеся термопасту. Чем плотнее контакт, тем лучше. Та сторона, где написана модель – холодная, именно к ней мы прикладываем радиатор. Если вы перепутали, модуль не будет выдавать напряжение, в этом случае нужно просто поменять провода местами.


Припаиваем повышающий преобразователь, и находим, куда его спрятать. Можно вообще оставить его висеть на проводах, но обязательно нужно заизолировать, например, одеть на него термоусадку.

Собираем всё вместе. Вот что должно получиться:


Как это работает?

Закидываем внутрь ветки, щепки, в общем, всё то, что горит. Затем разжигаем. Огонь нагревает стенки печки и элемент Пельтье, который на одной из этих стенок. Другая сторона элемента, которая на радиаторе, остается при уличной температуре. Чем больше разница температур, тем больше мощность, но не переборщите.

Максимальная эффективность достигается уже при разнице в 100 градусов. Со временем радиатор начинает нагреваться, и его нужно будет охлаждать. Можно подбрасывать снег, поливать водой, поставить радиатором на лед или в воду, поставить на него кружку с холодной водой. Вариантов много, самый простой это кулер, он будет забирать часть мощности, но за счет охлаждения общий результат не измениться.


НЕ допускайте воздействие больших температур на элемент, он может перегореть и сгореть. В документации указана максимальная температура 180 °С, но особо беспокоится не стоит, с хорошим охлаждением и на простых дровах ничего с ним не будет.

Если вы не будете ленится и всё правильно сделаете, то получите вот такую простую щепочницу на которой можно подогревать еду, кипятить, воду и одновременно заряжать свои гаджеты.

Её можно использовать дома, если отключили электричество, поставив внутрь свечку. Кстати если подключить к ней светодиоды, но свет будет на много ярче чем от самой свечки.

В любом месте где можно найти что-то горящее, у вас будет электричество, тепло и возможность удобно готовить еду, расходуя меньше горючего по сравнению с костром.

Первые испытания!

Пошел после работы в лес, солнце почти село, хворост мокрый, но печь оправдала себя на 100%.

Результат превзошёл все мои ожидания. Сразу после разгорания щепок, загорелся индикатор, я подключи телефон и он начал заряжаться. Зарядка шла стабильно.

Преобразователь вообще не напрягался. Еще я брал с собой охлаждающую подставку для ноутбука, на ней 2 кулера и светодиоды, должно прилично потреблять. Подключил, всё крутится, светится, ветерок дует. Брал еще USB вентилятор, подключил в конце, когда остались одни угли. Всё отлично крутится, даже не знаю что еще можно попробовать.

Результат:

Всё прекрасно работает выдает свои пол Ампера. Все таки нужен кулер, т.к. за пол часа радиатор нагрелся порядка 40 градусов, летом это будет еще больше. Пускай крутиться себе.

Языки пламени вырываются высоко вверх, мне лично такого костра не надо, буду закрывать часть отверстий, чтобы горело медленней.

Буду делать все по новой, возьму за основу стандартную щепочницу которую делают из консервных банок, но сделаю из метала потолще и прямоугольной формы. Куплю хороший радиатор с кулером подходящей формы и постараюсь сделать разборный вариант, чтобы при переноске занимало меньше места.

Получение питьевой воды с помощью модуля Пельтье

Начало 19 столетия. Золотой век физики и электротехники. В 1834 году французский часовщик и естествоиспытатель Жан-Шарль Пельтье поместил каплю воды между электродами из висмута и сурьмы, а затем пропустил по цепи электрический ток. К своему изумлению, он увидел, что капля неожиданно замерзла.

О тепловом действии электрического тока на проводники было известно, а вот обратный эффект был сродни магии. Можно понять чувства Пельтье: это явление на стыке двух разных областей физики - термодинамики и электричества вызывает ощущение чуда и сегодня.

Проблема охлаждения тогда не была такой острой, как сегодня. Поэтому к эффекту Пельтье обратились только спустя почти два столетия, когда появились электронные устройства, для работы которых потребовались миниатюрные системы охлаждения. Достоинством охлаждающих элементов Пельтье являются малые габариты, отсутствие движущихся деталей, возможность каскадного соединения для получения больших перепадов температур.

Кроме этого, эффект Пельтье обратим: при перемене полярности тока через модуль, охлаждение сменяется нагреванием, поэтому на нем легко реализуются системы точного поддержания температуры - термостаты . Недостатком элементов (модулей) Пельтье является низкий КПД, что требует подведения больших значений тока для получения заметного перепада температур. Сложность представляет и отвод тепла от пластины, противоположной охлаждаемой плоскости.

Но обо всем по-порядку. Для начала попытаемся рассмотреть физические процессы, ответственные за наблюдаемое явление. Не погружаясь в пучину математических выкладок, постараемся просто на «пальцах» понять природу этого интересного физического явления.

Поскольку речь идет о температурных явлениях, физики, для удобства математического описания, заменяют колебания атомной решетки материала неким газом, состоящим из как бы частиц - фононов.

Температура фононного газа зависит от температуры окружающей среды и свойств металла. Тогда любой металл - это смесь электронного и фононного газов, находящихся в термодинамическом равновесии.При контакте двух разных металлов в отсутствии внешнего поля более “горячий” электронный газ проникает в зону более “холодного”, создавая известную всем контактную разность потенциалов.

При прикладывании разности потенциалов к переходу, т.е. протекании тока через границу двух металлов, электроны забирают энергию у фононов одного металла и передают ее фононному газу другого. При смене полярности передача энергии, а значит, нагрев и охлаждение меняют знак.

В полупроводниках за перенос энергии отвечают электроны и “дырки”, но механизм переноса тепла и появления разности температур сохраняется. Разность температур увеличивается до тех пор, пока не истощатся высокоэнергетичные электроны. Наступает температурное равновесие. Такова современная картина описания эффекта Пельтье .

Из нее понятно, что эффективность работы элемента Пельтье зависит от подбора пары материалов, силы тока и скорости отвода тепла от горячей зоны. Для современных материалов (как правило, это полупроводники) КПД составляет 5-8%.

А теперь о практическом применении эффекта Пельтье. Для его увеличения отдельные термопары (спаи двух различных материалов) собираются в группы, состоящие из десятков и сотен элементов. Основное назначение таких модулей - это охлаждение небольших объектов или микросхем.

Термоэлектрический охлаждающий модуль

Широкое применение модули на эффекте Пельтье нашли в приборах ночного видения с матрицей инфракрасных приемников. Микросхемы с зарядовой связью (ПЗС), которые сегодня применяют и в цифровых фотоаппаратах, требуют глубокого охлаждения для регистрации изображения в инфракрасной области. Модули Пельтье охлаждают инфракрасные детекторы в телескопах, активные элементы лазеров для стабилизации частоты излучения, в системах точного времени. Но это все применения военного и специального назначения.

С недавних пор модули Пельтье нашли применение и в бытовых изделиях. Преимущественно, в автомобильной технике: кондиционеры, переносные холодильники, охладители воды.

Пример практического использования эффекта Пельтье

Наиболее интересным и перспективным применением модулей является компьютерная техника. Высокопроизводительные микропроцессоры процессоры и чипы видеокарт выделяют большое количество тепла. Для их охлаждения применяют высокоскоростные вентиляторы, которые создают значительные акустические шумы. Применение модулей Пельтье в составе комбинированных систем охлаждения устраняют шум при значительном отборе тепла.

Компактный USB-холодильник с использованием модулей Пельтье

И, наконец, закономерный вопрос: заменят ли модули Пельтье привычные системы охлаждения в компрессионных бытовых холодильниках? На сегодняшний день это невыгодно с точки зрения эффективности (малый КПД) и цены. Стоимость мощных модулей еще достаточно высока.

Но техника и материаловедение не стоят на месте. Исключить возможность появления новых, более дешевых материалов с большим КПД и высоким значением коэффициентом Пельтье нельзя. Уже сегодня появляются сообщения из исследовательских лабораторий об удивительных свойствах наноуглеродных материалов, которые радикально смогут изменить ситуацию с эффективными системами охлаждения.

Появились сообщения о высокой термоэлектрической эффективности кластратов - твердотельных растворов, похожих по строению на гидраты. Когда эти материалы выйдут из исследовательских лабораторий, то совершенно бесшумные холодильники с неограниченным сроком службы заменят наши привычные домашние модели.

P.S. Одной из самых интересных особенностей термоэлектрической технологии является то, что она может не только использовать электрическую энергию для получения тепла и холода, но также благодаря ей можно запустить обратный процесс, и, например, из тепла получить электрическую энергию .

Пример того, как можно получить электроэнергию из тепла с использованием термоэлектрического модуля () смотрите на этом видео:

А что Вы думаете по этому поводу? Жду Ваших комментариев!

Андрей Повный

Что такое элемент Пельтье – электро-, термопреобразователь, который состоит из нескольких пар (в отдельных случаях одной) полупроводников различных по свойству типов («n» и «р»), последние соединяются перемычками из металла – в основном это - медь. На практике данное устройство создает температурную разность на разных концах поверхности при протекании энергии электрического тока.

Одним из наиболее простейших вариантов данного устройства Пельтье в практическом использовании является модификация ТЕС1-12706, изображенная на рисунке 1.

В корне принципа работы положен термоэлектрический эффект Пельтье. Другими словами - при протекании и под действием электрического тока создается разница температур в местах контактов термопар - полупроводников «n» и «р» - типа.

Элементы Пельтье – доволи таки «чувствительные устройства» к перегреву и высоким температурам. К ним предъявляются высокие требования к эксплуатации, при невыполнении которых, устройство быстро выходит из строя. Очень важно отводить тепло, для этой цели необходимо устанавливать радиатор или вентилятор, в противном случае не достигается температура холодной стороны относительно горячей.

Как работает элемент Пельтье

Представим, что электрический ток проходит через термическую пару, как показано на рисунке 2.

В этом случае происходит процесс поглощения энергии тепла на полупроводниковом контакте n - p и процесс выделения тепловой энергии на p - n контакте. В итоге часть термопары полупроводника, который сопрягается с n - p контактом, будет охлаждаться, а вторая часть с другой противоположной стороны - соответственно, нагреваться.

В том случае, когда поменяем полярность по току, то происходит процессы нагревания и охлаждения, соответственно, также поменяются.

Обратный процесс эффекта Пельтье приводит к тому, что при подводе теплоты к одной стороне термопреобразователя получают энергию электрического тока.

Конечно на практике, применение одной термопары не хватает для полного отвода тепловой энергии, поэтому в преобразователе применяют большое количество. Электрическая цепь собирается из термопар последовательно. В то же время в конструкции термопреобразовательных элементов: нагревающие термопары располагаются на другой стороне относительно охлаждающих.

Устройство элемента Пельтье очень простое. Термические пары конструируются между двумя платинами, выполненными из керамики. Соединение термопар производится медными проводниками (шинами). Количество термопар определяется назначением термопреобразователя, его мощности и места установки и может применяться от одной до нескольких сотен штук.

Основными элементами термопреобразователя являются: полупроводники р - типа, n - типа, керамические пластины, медные сопряжения - проводники; контакты подвода электрического тока «плюс» и «минус». Для элемента Пельтье разница по температурам разных краев термопар достигает до 70 градусов по Цельсию. Чтобы увеличить данную разницу требуется увеличить каскад последовательного включения термопар.

Основные эксплуатационные характеристики элемента Пельтье

Данное устройство в целом идеально работает в тех случаях, когда хорошо и надежно контактируют термопары с охладительным устройством, будь то радиатор охлаждения или вентилятор охлаждения со змеевиком, то есть – хороший теплосъем.

Модули Пельтье, как их часто называют, очень чувствительны к перепадам по току и напряжению (не более 5 %). Под действием высоких температур (наиболее критическая для элементов до 150 градусов) эффективность снижается во много раз (до 40 %) и модуль очень быстро ломается.

Как правило, в схему работы полупроводниковых элементов недопустимым условием является приспособление релейных устройств: ограничивающих мощность или регулирующих. Это приводит к деградации кристаллических составляющих и к неисправности в скором времени элемента.

Частое включение и выключение устройств также негативно влияет на работу и срок эксплуатации, и его долговечность функционирования. Согласно законов физики - любой нагрев материала приводит к его тепловому расширению, а охлаждение - к сжатию. Соответственно, особенно слабыми местами в полупроводниковых элементах являются «паечные», где из-за механического движения возможно появление дефектов в виде микротрещин и в конце концов к разрыву цепи.

Коэффициент теплопроводности термических пар элемента Пельтье достаточно высок, что с одной стороны является достоинством, а с другой стороны ограничивает срок эксплуатации и расчетное число циклов «стоп-старт-стоп».

Достоинства и недостатки модуля Пельтье

Сравнивать устройство Пельтье с другими охладительными установками с различным приводом в принципе невозможно и нецелесообразно, так как в первом случае имеют полупроводниковые материалы в виде кристаллов, а во втором случае рабочее тело - газ или жидкость (к примеру: компрессорный холодильник). В различных областях применяются и те и другие устройства.

К преимуществам элементов Пельтье можно отнести:

  • полное отсутствие механики движения и вращающихся частей, а также жидкостей, газов;
  • абсолютно нет шума работы устройств;
  • сравнительно малые размеры;
  • двухфункциональность: нагревание и охлаждение при изменении полярности;

К недостаткам можно отнести:

  • относительно низкий коэффициент полезного действия;
  • требование постоянного источника энергии, питания;
  • число пусков и остановов ограничено;
  • плавность отключения и включения термоэлектрических устройств;
  • контроль нагрева с одной стороны или охлаждения с другой с помощью вентилятора.

Опрос: Понятно ли что такое и как устроен Элемент Пельтье

Количество электронных устройств в мире постоянно растет как снежный ком. Все они потребляют электроэнергию, и людям приходится постоянно возить и носить с собой аккумуляторы или вырабатывать ее на громоздких устройствах. В качестве не так давно стали применяться модули Пельтье - элементы, образующие электрический ток при создании разности температур на их противоположных сторонах.

Эффекты Пельтье и Зеебека

Несмотря на то что почти 2 века назад был создан первый элемент Пельтье, принцип работы нашел применение только сейчас, когда появились подходящие материалы и необходимость в использовании. Он заключается в тепловыделении на контакте разнородных проводников, когда по ним протекает электрический ток. При изменении полярности место контакта начинает охлаждаться. Процесс обратимый: при искусственном поддерживании разности температуры на контактах проводников в их цепи протекает электрический ток (эффект Зеебека).

На базе двух термоэлектрических эффектов создали модуль Пельтье, элементы которого располагаются между двумя параллельными керамическими пластинами в виде разнородных проводников. Проходящий ток через контакт проводников одинаков, а энергетические потоки в каждом из них различаются. Когда энергии в контакт поступает больше, чем вытекает из него, это значит, что электроны затормаживаются в переходной области, вызывая ее разогрев. При изменении полярности электроны ускоряются, забирая энергию у кристаллической решетки, что вызывает ее охлаждение.

Особенно активно эффект Пельтье проявляется на границах полупроводниковых элементов, где наиболее высокие энергетические процессы.

Термоэлектрический модуль

Элементы Пельтье применение нашли в устройстве, состоящем из множества полупроводников p и n типов. В отличие от транзисторов и диодов, переходные области находятся на границе металла с полупроводником. В модуле Пельтье элементы в большом количестве располагаются между керамическими пластинами, что позволяет сделать устройство мощней.

Каждый элемент содержит 4 перехода на контакте полупроводник-металл. Когда электрическая цепь замкнута, электроны перемещаются от минуса батареи питания к плюсу, проходя через все переходы.

На первом переходе термоэлектрического модуля (ТЭМ) между медной шиной и р-полупроводником в последнем выделяется тепло, так как поток зарядов попадает в область с меньшей энергией.

На другом контакте в полупроводнике поглощается энергия, поскольку электроны "высасываются" электрическим полем, совпадающим с направлением их движения. Там происходит процесс охлаждения.

На третьем контакте энергия электронов поглощается, поскольку полупроводник типа n имеет энергию больше, чем металл.

На четвертом переходе выделяется тепло, так как электроны снова тормозятся электрическим полем.

Таким образом, на одной стороне выделяется тепло, а другая - охлаждается. На одном элементе это явление будет незаметно, но модуль Пельтье, элементы которого располагаются между двумя керамическими пластинами, создает значительный температурный перепад.

Модуль можно применять как генератор электроэнергии, если поддерживать разную температуру пластин. При этом каждый термоэлектрический элемент Пельтье последовательно подключается к соседнему через медные перемычки, и токи их суммируются.

Достоинства и недостатки

Преимущества ТЭМ:

  • небольшие размеры;
  • обратимость процесса;
  • применение как электрогенератора или холодильника.

К недостаткам ТЭМ относят высокую стоимость, низкий КПД (не более 3 %), высокие энергозатраты и необходимость поддерживания разности температур.

Холодильник из модуля Пельтье

Элемент Пельтье для охлаждения процессора эффективнее стандартных элементов. При этом последние остаются, но применяются только для вывода тепла из замкнутого пространства компьютера.

При их конструировании в качестве охладителя электронных средств нужно учитывать следующие особенности.

  1. Мощность напрямую связана с размерами модуля. Небольшие устройства не создадут требуемый уровень охлаждения. Например, они не обеспечат нормальный температурный режим процессора. Слишком мощный модуль вызывает появление влаги, являющейся причиной коротких замыканий в электронике, поскольку расстояния между токопроводящими элементами на печатных платах незначительны.
  2. Модули Пельтье сами нуждаются в охлаждении с помощью вентиляторов и радиаторов, поскольку они выделяют много тепла. Это необходимо для снижения температуры в замкнутом пространстве компьютера и нормализации условий работы других элементов.
  3. Модуль Пельтье является дополнительной нагрузкой в блоке питания.
  4. Холодильник после выхода из строя является изолятором между радиатором и охлаждаемым элементом, что может привести к быстрому выходу последнего из строя от перегрева.
  5. Современные процессоры могут изменять потребление энергии при работе, что благоприятно влияет на тепловой баланс, но не всегда при применении модулей Пельтье. Простейшие холодильники рассчитаны на непрерывную работу, и их не рекомендуется использовать вместе с программами охлаждения.

Выделение тепла

Холодильный эффект у ТЭМ небольшой, а тепла он выделяет много. Когда его применяют в системном блоке, внутри значительно повышается температура, влияющая на работу остального оборудования. Дополнительными средствами для ее снижения служат вентиляторы и радиаторы, создающие тепловой выхлоп.

Тепловой режим модуля нужно правильно рассчитать, чтобы не было перегрева и не образовывался конденсат на электронных платах. Кулер Пельтье выбирается с оптимальной мощностью, где важно обеспечить правильное соотношение температуры внутри корпуса, объекта охлаждения и влажностью воздуха.

Элемент Пельтье: характеристики

ТЭМ выбирается по термоэлектрическим параметрам.

Расчет мощности состоит в следующем.

  1. Выбирается максимально допустимое напряжение U max (V) и по графику зависимости U(I) находят максимальную силу тока I max (A), который протекает через модуль Пельтье. Здесь важно, чтобы его значение находилось в пределах роста зависимости температурного перепада от тока dT(I) = T h - T с.
  2. По установленной величине I выбирается характеристика dT(Q), где Q - тепловая мощность охлаждаемого элемента.
  3. По известным значениям dT и T h определяется T с = T h - dT.

Характеристики dT(Q) показывают, что с ростом выделяемой тепловой мощности снижается разность dT. Ее можно сделать больше, если увеличить силу тока через модуль, которая, в свою очередь, должна быть ограничена.

Пример расчета

Исходные данные: U = 12 В, Q с = 60 Вт и T h = 50 °C.

При напряжении 12 В по характеристике U(I) находим ток I = 5 А.

Для силы тока 5 А разница температур dT = 4 К. Тогда T с = T h - dT = 50 - 4 = 46 °C.

Взяв более мощный модуль, можно увеличить dT. Для модуля на 131 Вт, где I max = 8,5 А, U max = 28,8 В и объекта с мощностью теплообразования 60 Вт разность температур составит 40 °C. Тогда T с = 50 - 40 = 10 °C.

Выбирая по мощности ТЭМ, не следует забывать о том, сколько тепла он будет выделять. Этот тепловой поток следует удалять подходящими охлаждающими средствами. Когда традиционные средства не справляются с тепловыделением, применяют водяное охлаждение.

Кондиционер

Кондиционер на элементах Пельтье по эффективности пропорционален своим размерам. Его принцип действия и преимущества те же самые, что и у холодильника. Проблемой является отвод тепла за пределы охлаждаемого пространства.

Для кондиционера требуются 2 кулера, где один из них отводит холодный воздух, а другой - горячий. в автомобиле служит аккумулятор, а для комнаты подойдет старый БП от персонального компьютера.

Одного модуля для работы устройства будет мало. Обычно применяются несколько элементов, склеенных между собой термопастой.

Холодильник своими руками

Эффект Пельтье применяется при создании портативных холодильников. Модуль можно купить за 300-500 руб., а радиатор с вентилятором берется от старого компьютера. В качестве контейнера можно использовать любую пластиковую, фанерную или металлическую емкости, оклеенные снаружи и изнутри теплоизолирующими пластинами (пенопласт, пеноплекс и т. п.) с отражающими слоями из алюминиевой фольги.

Модуль Пельтье удобней встраивать в крышку, но можно и в стенку корпуса. Если он располагается в верхней части емкости, холод перемещается вниз, обеспечивая равномерную температуру внутри.

Изнутри к модулю приклеивается на термопасту радиатор, который также крепится к крышке. Можно приклеить два модуля друг к другу, но при этом нельзя путать полярность. Горячая сторона нижнего элемента должна контактировать с холодной верхнего. Эффективность охлаждения при этом увеличится.

Снаружи к модулю приклеивается радиатор с вентилятором от кулера компьютера, а также дополнительно крепится к крышке саморезами или винтами. Крепеж с горячей и холодной сторон должен быть друг от друга изолирован, а шляпки залиты термоклеем.

Важно! Затяжку крепежа радиаторов нужно делать аккуратно, чтобы не треснули керамические пластины модулей.

Изнутри на крышку устанавливается теплоизолирующая прокладка. Чтобы улучшить теплоизоляцию, элементы с торцов закрываются рамкой из теплоизола.

Электрика подключается к блоку питания.

Электрогенераторы из модулей Пельтье

Элемент Пельтье, принцип работы которого обратим, применяется для создания миниэлектростанций в условиях отсутствия источников электроэнергии. Для сборки ТЭГ нужны элементы:

  1. Модуль Пельтье, способный выдержать температуру от 300 °C. Распространены модели ТЕС-12712 с размерами сторон квадратных пластин 40, 50 и 60 мм. Если выбрать изделие максимального размера, достаточно одного элемента для подзарядки мобильного телефона. Максимальный ток показывают две последние цифры маркировки - 12 а.
  2. Повышающий преобразователь. Генератор может не обеспечить нужное напряжение, и его следует увеличить. Чтобы заряжать гаджеты, следует подобрать устройство с разъемом USB.
  3. Нагреватель и охладитель. Для походных условий или дачи подходит источник огневого подогрева: самодельная печка, лампа, свеча, костер. Современным решением является каталитический нагреватель, что позволяет производить подзарядку мобильника на ходу. Для охлаждения можно использовать воздух или воду.
  4. Конструкция. Самодельный элемент Пельтье состоит из емкости, в которой разводится огонь, а снаружи на термопасту крепится модуль. Через провода он подключается к преобразователю напряжения. Здесь важно не перегреть устройство. Для этого на холодную сторону модуля приклеивается радиатор.

Заключение

Модули Пельтье - элементы, которые широко применяются для охлаждения современной электронной техники. Особенно они необходимы для нормализации теплового режима мощных процессоров. Из них изготавливают своими руками небольшие холодильники для авто или дачи.

Поскольку процесс обратимый, элементы применяют в качестве портативных мини-электростанций в местах, где нет источников электроэнергии.




Top