Подключение жк дисплея arduino. Подключение жидкокристаллического дисплея к Arduino

Приехал Arduino Nano, приехал кит, в котором макетка (бредборд), и LCD-дисплей. На дисплее на плате написано - 1602А, ниже - QAPASS. Начал ваять первое устройство, и конечно же, захотелось выводить информацию на дисплей, а не мигать светодиодами.

Гугл помог, рассказал, что это символьный дисплей; если не извращаться, то доступны скорее всего символы ASCII - цифры, латиница, что-то из базовых символов.

Запустить дисплей помогли следующие материалы: Driving a character type LCD from a PC printer port ; How to connect Arduino with a character LCD ; Pwm Servo Driver Motor Control PDF .

Дисплей достаточно распространенный, и для него уже понапридумывали шилдов - есть варианты с SPI вроде, и/или с I2C, и интернет полон рецептами для этих случаев. Но у меня был в наличии только оригинальный дисплей 16x2, и ардуинка, к которой хотелось его прицепить.

У дисплея есть режим работы и передачи данных полубайтами, по 4 бита, при этом младшие разряды шины не используются. Подключение только половины шины данных много где описано, и я не стал разбираться, как подключить дисплей и работать с ним по 8ми линиям. Меня вполне устроило, что и так работает.

Хорошее описание дисплеев данного типа я нашел тут - http://greathard.ucoz.com/44780_rus.pdf . А тут (http://arduino.ru/forum/programmirovanie/lcd-i2c-partizanit#comment-40748) - пример задания знакогенератора.

Подключение

У меня дисплей поставлялся с нераспаянными контактами. С начала хотел припаять шлейф, обрезал 16 проводов с дюпонами, зачистил. А потом покопался в ките, и нашел гребенку дюпонов для пайки на плату. Оттуда и отломал 16 контактов и припаял их.
Выглядел (до пайки контактов) мой дисплей примерно так:

Сперва я подключил контакт 15 (A) на +5В, 16 (K) на землю, и убедился, что подсветка работает. Вообще, правильно подключать катод на землю через резистор 220Ом, что я потом и сделал.

Затем подключил землю (1) и питание (2). Arduino может питаться от USB, от стабилизированного напряжения 5В и от нестабилизированного 6-12В, автоматически выбирается наибольшее напряжение. Сейчас ардуинка запитана от USB, и я думал, где там вытащить 5 Вольт. Оказалось, что 5В есть на контакте ардуины, куда подключаются внешние стабилизированные 5В. Вернее, там оказалось 4.7В, но мне хватило.

После подключения питания, если всё хорошо, то верхний ряд загорается сплошными прямоугольниками знакомест.

Затем подключаем потенциометр контраста (пин 3 V0). Один из крайних выводов потенциометра бросаем на землю, второй - на +5В, средний - на пин 3 дисплея. Рекомендуется потенциометр 10К. У меня был 50К из кита, сначала я использовал его. Регулировка была только на одном краю, весьма тонко приходилось ловить нужный контраст. Затем в другом ките нашел аналогичный на 5К, и поставил его. Настройка растянулась от одного края до половины оборота. Видимо, можно и еще меньше взять потенциометр. 10К наверно рекомендуют, чтобы схема поменьше потребляла. Да, пришлось немного попаять, припаял к выводам потенциометров проводки с дюпонами.

Тестовый скетч

Тестовый скетч берем в примерах от Ардуино студии - "C:\Program Files (x86)\Arduino\libraries\LiquidCrystal\ex amples\HelloWorld\HelloWorld.ino", только нужно поменять контакты на наши - LiquidCrystal lcd(7, 6, 5, 4, 3, 2);

В принципе, в этом скетче есть и описание, что куда подключать. Можно подключить, как там указано, тогда менять вообще ничего не нужно.

// include the library code: #include // initialize the library with the numbers of the interface pins LiquidCrystal lcd(7, 6, 5, 4, 3, 2); void setup() { // set up the LCD"s number of columns and rows: lcd.begin(16, 2); // Print a message to the LCD. lcd.print("hello, world!"); } void loop() { // set the cursor to column 0, line 1 // (note: line 1 is the second row, since counting begins with 0): lcd.setCursor(0, 1); // print the number of seconds since reset: lcd.print(millis() / 1000); }

Получается что-то вроде этого:

Кстати, дисплей, который попал ко мне в руки, без подсветки не работает. В смысле, работает, но практически ничего не видно.

Контакты дисплея 1602A

# контакта Наименование Как подключать
1 VSS GND
2 VDD +5V
3 V0 Контраст - на средний вывод потенциометра
4 RS (Register select) D7 Arduino
5 R/W (Read or write) GND
6 E (Enable signal) D6 Arduino
7-14 D0-D7 D0-D3 - не подключены; D4-D7 - подключены к контактам D5-D2 Ардуино
15 A Анод подсветки, подключается к +5В
16 K Катод подсветки, подключается к земле через резистор 220Ом

Инструкция

Действие ультразвукового дальномера HC-SR04 основано на принципе эхолокации. Он излучает звуковые импульсы в пространство и принимает отражённый от препятствия сигнал. По времени распространения звуковой волны к препятствию и обратно определяется расстояние до объекта.
Запуск звуковой волны начинается с подачи положительного импульса длительностью не менее 10 микросекунд на ножку TRIG дальномера. Как только импульс заканчивается, дальномер излучает в пространство перед собой пачку звуковых импульсов частотой 40 кГц. В это же время запускается алгоритм определения времени задержки отражённого сигнала, а на ножке ECHO дальномера появляется логическая единица. Как только датчик улавливает отражённый сигнал, на выводе ECHO появляется логический ноль. По длительности этого сигнала ("Задержка эхо" на рисунке) определяется расстояние до объекта.
Диапазон измерения расстояния дальномера HC-SR04 - до 4 метров с разрешением 0,3 см. Угол наблюдения - 30 градусов, эффективный угол - 15 градусов. Ток потребления в режиме ожидания 2 мА, при работе - 15 мА.

Питание ультразвукового дальномера осуществляется напряжением +5 В. Два других вывода подключаются к любым цифровым портам Arduino, мы подключим к 11 и 12.

Теперь напишем скетч, определяющий расстояние до препятствия и выводящий его в последовательный порт. Сначала задаём номера выводов TRIG и ECHO - это 12 и 11 пины. Затем объявляем триггер как выход, а эхо - как вход. Инициализируем последовательный порт на скорости 9600 бод. В каждом повторении цикла loop() считываем дистанцию и выводим в порт.
Функция getEchoTiming() генерирует импульс запуска. Она как раз создаёт ток 10 мксек импульс, который является триггером для начала излучения дальномером звукового пакета в пространство. Далее она запоминает время от начала передачи звуковой волны до прихода эха.
Функция getDistance() рассчитывает дистанцию до объекта. Из школьного курса физики мы помним, что расстояние равно скорость умножить на время: S = V*t. Скорость звука в воздухе 340 м/сек, время в микросекундах мы знаем, это "duratuion". Чтобы получить время в секундах, нужно разделить на 1.000.000. Так как звук проходит двойное расстояние - до объекта и обратно - нужно разделить расстояние пополам. Вот и получается, что расстояние до объекта S = 34000 см/сек * duration / 1.000.000 сек / 2 = 1,7 см/сек / 100, что мы и написали в скетче. Операцию умножения микроконтроллер выполняет быстрее, чем деления, поэтому "/ 100" я заменил на эквивалентное "* 0,01".

Также для работы с ультразвуковым дальномером написано множество библиотек. Например, вот эта: http://robocraft.ru/files/sensors/Ultrasonic/HC-SR04/ultrasonic-HC-SR04.zip. Установка библиотеки происходит стандартно: скачать, разархивировать в директорию libraries , которая находится в папке с Arduino IDE. После этого библиотекой можно пользоваться.
Установив библиотеку, напишем новый скетч. Результат его работы тот же - в мониторе последовательного порта выводится дистанция до объекта в сантиметрах. Если в скетче написать float dist_cm = ultrasonic.Ranging(INC); , то дистанция будет отображаться в дюймах.

Итак, мы с вами подключили к Arduino ультразвуковой дальномер HC-SR04 и получили с него данные двумя разными способами: с использованием специальной библиотеки и без.
Преимущество использования библиотеки в том, что количество кода значительно сокращается и улучшается читаемость программы, вам не приходится вникать в тонкости работы устройства и вы сразу же можете его использовать. Но в этом же кроется и недостаток: вы хуже понимаете, как работает устройство и какие в нём происходят процессы. В любом случае, каким способом пользоваться - решать только вам.

Жидкокристаллический дисплей (LCD) мод. 1602 (даташит) - отличный выбор для ваших проектов.

Первое, что радует - низкая цена. Второе - наличие готовых библиотек под Arduino. Третье - наличие нескольких модификаций, которые в том числе идут с различными подсветками (голубая, зеленая). В этой статье рассмотрим основы подключения данного дисплея к Arduino и приведем пример небольшого проекта для отображения уровня освещенности на дисплее с использованием фоторезистора.

Контакты и схема подключения LCD 1602 к Arduino

Контакты на этом дисплее пронумерованы от 1 до 16. Нанесены они на задней части платы. Как именно они подключаются к Arduino, показано в таблице ниже.

Табл. 1. Подключение контактов LCD 1620 к Arduino

Подключение 1602 к ArduinoЕсли дисплей 1602 питается от Arduino через 5-ти вольтовой USB-кабель и соответствующий пин, для контакта контраста дисплея (3-й коннектор – Contrast) можно использовать номинал 2 кОм. Для Back LED+ контакта можно использовать резистор на 100 Ом. Можно использовать и переменный резистор – потенциометр для настройки контраста вручную.

На основании таблицы 1 и схемы, приведенной ниже, подключите ваш жидкокристаллический дисплей к Arduino. Для подключения вам понадобится набор проводников. Желательно использовать разноцветные проводники, чтобы не запутаться.

Табл. 2. Предпочтительные цвета проводников

Схема подключения LCD дисплея 1602 к Arduino:


Базовый пример программы для работы LCD 1602 с Arduino

В примере используются 0, 1, 2, 3, 4, и 5 пины Arduino для подключения соответствующих пинов 4, 6, 11, 12, 13 и 14 с дисплея 1602 (смотри табл. 1). После этого в коде для Arduino мы инициализируем lcd() следующим образом:

LiquidCrystal lcd(0, 1, 2, 3, 4, 5);

Этот кусок кода объясняет Arduino, как именно подключен LCD дисплей.

Весь соурс файл проекта метеостанции, в которой используется дисплей LCD 1602 можно скачать по этой ссылке .

LCD 1602A, Arduino и датчик освещенности (фоторезистор)

В примере мы рассмотрим подключение модификации дисплея - 1602A и фоторезистора. В результате данного проекты мы сможем отображать на дисплее числовые значения, пропорциональные интенсивности освещения.


Данный пример будет хорошим стартом для начинающих разбираться с Arduino. Стоит обратить внимание, что у дисплея 1602 существуют различные модификации. Соответственно, расположение контактов на них могут несколько отличаться.

Необходимые материалы

  • 1 Arduino UNO;
  • 1 макетная плата (63 рельсы);
  • 1 датчик освещенности (фоторезистор);
  • 1 потенциометр на 50 кОм;
  • 1 LCD дисплей 1602A;
  • 1 резистор на 10кОм;
  • 1 рельса коннекторов (на 16 пинов);
  • 1 USB кабель.

LCD Дисплей 1602A

Дисплеи, как правило, продаются без распаянных коннекторов. То есть, паяльник в руках придется подержать. Вам понадобится 16 пинов. Запаивайте со стороны коротких ног, длинные оставляйте для дальнейшего подключения к плате или другим периферийным устройствам.

После распайки можете устанавливать дисплей на макетной плате. Желательно, на самой нижней дорожке, чтобы у вас осталась возможность соединять дисплей через дополнительные коннекторы с платой.

Подключение дисплея 1602A к Arduino

Первое что необходим о – запитать дисплей. Подключите два кабеля от +5 вольт и земли к соответствующим рядам плюс-минус на макетной плате.

Подключите: пин на 5 вольт (5V) с Arduino к одной из дорожек макетной платы.

Подключите: пин Земля (GND) Arduino к другой дорожек (макетной платы).

После этого подключаем питание экрана и его подсветку к дорожкам, на макетной плате, на которых у нас получается 5 вольт и минус.

Подключите: дорожку GND (минус) на макетной плате к 1 пину на LCD экране (он обозначен как VSS).

Подключите: дорожку 5 вольт (плюс) на макетной плате ко 2 пину на LCD экране (он обозначен как VDD).

Подключите: дорожку 5 вольт (плюс) на макетной плате к 15 пину на LCD экране (он обозначен как A).

Подключите: дорожку GND (минус) на макетной плате к 16 пину на LCD экране (он обозначен как K).

Подключаем нашу Arduino к персональному компьютеру через USB-кабель и вуаля! Экран должен включиться.

Следующий шаг – подключение потенциометра для регулировки контрастности дисплея. В большинстве гайдов, используется потенциометр на 10 кОм, но 50 кОм тоже подойдет. Из-за большего диапазона значений сопротивлений на выходе потенциометра, более точная настройка становится сложнее, но для нас в данном случае это не критично. Установите потенциометр на макетной плате и подключите три его пина.

Подключите: первый пин на потенциометре к минусу на макетке.

Подключите: средний пин потенциометра к 3 пину на дисплее (он обозначен как V0).

Подключите: третий пин на потенциометре к плюсу на макетке.

После подачи питания на плату через USB-кабель, на дисплее первый ряд должен заполниться прямоугольниками. Если вы их не увидели, немного проверните ручку потенциометра слева направо, чтобы отрегулировать контраст. В дальнейшем, когда мы будем отображать числовые значения на экране, вы сможете более точно отрегулировать контрастность. Если ваш дисплей выглядит примерно так, вы все делаете верно:

Продолжим. Теперь нам надо обеспечить обмен данными между Arduino и LCD дисплеем 1602A для отображения символов.

Для этого подключите 4 пин дисплея (RS) к 7 пину Arduino (желтый коннектор). 5 пин дисплея (RW) – к ряду пинов земля на макетке (черный кабель).

6 пин дисплея (E) – к 8 пину Arduino (ШИМ).

11 пин дисплея (D4) – к 9 пину Arduino (ШИМ).

12 пин дисплея (D5) – к 10 пину Arduino (ШИМ).

13 пин дисплея (D6) – к 11 пину Arduino (ШИМ).

14 пин дисплея (D7) – к 12 пину Arduino (ШИМ).

Программа для Arduino IDE – отображение надписи на дисплее 1602A

Представленный ниже кусок кода достаточно скопипастить в Arduino IDE и загрузить на плату:

#include <LiquidCrystal.h>

LiquidCrystal lcd(7, 8, 9, 10, 11 , 12);

lcd.begin(16, 2);

lcd.setCursor(0,1);

lcd.write("LIGHT: ");

После загрузки программы на плату, на дисплее во второй строке отобразится следующая надпись:

Своеобразный "hello world!" на LCD 1602A запущен. Я вас поздравляю.

Подключаем фоторезистор и заливаем всю программу в Arduino

Теперь подключим фоторезистор. Подключите три провода к свободным рельсам на макетной плате (условно пронумеруем их 1, 2, 3). Оставьте в рельсах немного места для самого датчика освещенности и резистора.

Рельсу GND с макетной платы подключаем к рельсе 1. A0 (аналоговый вход) с Arduino - к рельсе 2. 5 вольт с макетной платы - к рельсе 3.

Дальше подключаем наш датчик и резистор к подготовленным рельсам. Какие именно ноги идут к земле, а какие - к питанию для нашего датчика освещенности и резистора неважно (в отличие от, например, светодиода, в котором есть катод и анод). Так что тут не перепутаете.

Датчик освещенности подключаем к рельсе 1 и рельсе 2. Резистор – к рельсе 2 и к рельсе 3.

Теперь вернемся к нашей программе и добавим несколько строк в пустующее пока что тело функции loop():

int sensorValue = analogRead(A0);

lcd.setCursor(7,1);

lcd.print(sensorValue);

После заливки на Arduino окончательной версии нашей программы, на дисплее будут отображаться текущие значения уровня освещенности.

LCD дисплей Arduino позволяет визуально отображать данные с датчиков. Расскажем, как правильно подключить LCD монитор к Arduino по I2C и рассмотрим основные команды инициализации и управления LCD 1602. Также рассмотрим различные функции в языке программирования C++, для вывода текстовой информации на дисплее, который часто требуется использовать в проектах на Ардуино.

Видео. Arduino LCD Display I2C 1602

LCD 1602 I2C подключение к Arduino

I2C - последовательная двухпроводная шина для связи интегральных схем внутри электронных приборов, известна, как I²C или IIC (англ. Inter-Integrated Circuit). I²C была разработана фирмой Philips в начале 1980-х годов, как простая 8-битная шина для внутренней связи между схемами в управляющей электронике (например, в компьютерах на материнских платах, в мобильных телефонах и т.д.).

В простой системе I²C может быть несколько ведомых устройств и одно ведущее устройство, которое инициирует передачу данных и синхронизирует сигнал. К линиям SDA (линия данных) и SCL (линия синхронизации) можно подключить несколько ведомых устройств. Часто ведущим устройством является контроллер Ардуино, а ведомыми устройствами: часы реального времени или LCD Display.

Как подключить LCD 1602 к Ардуино по I2C

Жидкокристаллический дисплей 1602 с I2C модулем подключается к плате Ардуино всего 4 проводами — 2 провода данных и 2 провода питания. Подключение дисплея 1602 проводится стандартно для шины I2C: вывод SDA подключается к порту A4, вывод SCL – к порту A5. Питание LCD дисплея осуществляется от порта +5V на Arduino. Смотрите подробнее схему подключения жк монитора 1602 на фото ниже.

Для занятия нам понадобятся следующие детали:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • LCD монитор 1602;
  • 4 провода «папа-мама».

После подключения LCD монитора к Ардуино через I2C вам потребуется установить библиотеку LiquidCrystal_I2C.h для работы с LCD дисплеем по интерфейсу I2C и библиотека Wire.h (имеется в стандартной программе Arduino IDE). Скачать рабочую библиотеку LiquidCrystal_I2C.h для LCD 1602 с модулем I2C можно на странице Библиотеки для Ардуино на нашем сайте по прямой ссылке с Google Drive.

Скетч для дисплея 1602 с I2C

#include // библиотека для управления устройствами по I2C #include // подключаем библиотеку для LCD 1602 LiquidCrystal_I2C lcd(0x27,20,2); // присваиваем имя lcd для дисплея 20х2 void setup () // процедура setup { lcd.init (); // инициализация LCD дисплея lcd.backlight (); // включение подсветки дисплея lcd.setCursor (0,0); // ставим курсор на 1 символ первой строки lcd.print ("I LOVE"); // печатаем сообщение на первой строке lcd.setCursor (0,1); // ставим курсор на 1 символ второй строки lcd.print ("ARDUINO"); // печатаем сообщение на второй строке } void loop () // процедура loop { /* это многострочный комментарий // изначально процедура void loop() в скетче не используется lcd.noDisplay(); // выключаем подсветку LCD дисплея delay(500); // ставим паузу lcd.display(); // включаем подсветку LCD дисплея delay(500); // ставим паузу */ }

Пояснения к коду:

  1. библиотека LiquidCrystal_I2C.h содержит множество команд для управления LCD дисплея по шине I²C и позволяет значительно упростить скетч;
  2. скетч содержит многострочный комментарий /* ... */ , который позволяет закомментировать сразу несколько строк в программе.
  3. перед выводом информации на дисплей, необходимо задать положение курсора командой setCursor(0,1) , где 0 — номер символа в строке, 1 — номер строки.

Дисплеи LCD 1602 размера, созданные на базе HD44780 контроллера, в наши дни всё ещё остаются одними из самых доступных, простых и востребованных, чтобы разрабатывать какие бы то ни было электронные устройства. Неудивительно, что их можно увидеть как в простых, собранных буквально на коленке агрегатах, так и в более серьезных промышленных, например автоматах для приготовления кофе. Именно с таким дисплеем и собираются наиболее популярные модули и шилды по тематике Arduino, например LCD I2C модуль и LCD Keypad Shield.

Данная статья подробно с изображениями рассказывает, как подключить LCD к Arduino и отобразить информацию.

Дисплеи 1602 имеют два различных исполнения :

Жёлтая подсветка с чёрными буквами
- либо (это бывает гораздо чаще) синяя подсветка с белыми.

Размерность дисплеев на HD44780 контроллере бывает самой разной, а управляются они одинаково. Наиболее распространённые из размерностей – 16 на 02 (то есть по 16 символов в двух строках) или 20 на 04. Сами же символы имеют разрешение в 5 на 8 точек.

Большая часть дисплеев не поддерживает кириллицу (за исключением дисплеев CTK-маркировки). Но такая проблема частично решаема, и далее статья подробно рассказывает, как это сделать.

На дисплее есть 16-PIN разъём для подключения. Выводы имеют маркировку с тыльной стороны платы , она следующая:

1 (VSS) – питание на минус для контроллера.
2 (VDD) – питание на плюс для контроллера.
3 (VO) – настройки управления контрастом.
4 (RS) – выбор для регистра.
5 (R/W) – чтение и запись, в частности, запись при соединении с землёй.
6 (E) – активация (enable).
7–10 (DB0-DB3) – младшие биты от восьмибитного интерфейса.
11–14 (DB4-DB7) – старшие биты от интерфейса
15 (A) – положительный анод на питание подсветки.
16 (K) – отрицательный катод на питание подсветки.

Шаг 2: Подключаем ЖК-дисплей

Перед тем как подключать дисплей и передавать на него информацию, стоит проверить его работоспособность. Сперва подайте напряжение на VSS и VDD контроллер, запитайте подсветку (A, K), далее настройте контрастность. Для таких настроек подойдёт потенциометр с 10 кОм, форма его не важна. На крайние ноги подают +5V и GND, а ножку по центру соединяют с VO выводом.

Когда на схему подаётся питание, нужно добиться необходимого контраста, если он настраивается неправильно, то и изображение на экране видно не будет. Чтобы настроить контраст, нужно «поиграть» с потенциометром. Когда схема будет собрана правильно и контраст настроен верно, верхняя строка на экране должна заполниться прямоугольниками.

Чтобы дисплей работал, применяется встроенная в Arduino IDE среду специальная библиотека LiquidCrystal.h, о которой я напишу ниже. Он может действовать в 8-битном и в 4-битном режиме. В первом варианте применяют лишь младшие и старшие биты (BB0-DB7), во втором – только младшие (BB4-DB7).

Но применение 8-битного режима в этом дисплее – неправильное решение, преимущества в скорости почти нет, поскольку частота обновления у него всегда меньше 10 раз за секунду. Чтобы выводился текст, надо присоединить выводы DB7, DB6, DB5, DB4, E и RS к выводам контроллера. Присоединять их допустимо к любым пинам Arduino, главное – задание верной последовательности в коде.

Если необходимого символа пока что нет в памяти контроллера, то можно его определить вручную (всего до семи символов). Ячейка в рассматриваемых дисплеях имеет расширение в пять на восемь точек. Задача создания символа в том, чтобы написать битовую маску и расставить единички в местах, где точки должны гореть, а нолики – где не должны.

Рассмотренная выше схема подключения не всегда хороша, т. к. на Arduino занимается минимум шесть цифровых выходов.

Шаг 3: Схема обхода

Изучим вариант, как обойти это и обойтись только двумя. Нужен добавочный модуль-конвертор для LCD в IIC/I2C. Как он припаивается к дисплею и присоединяется к Arduino, можно увидеть на изображениях ниже.

Но такой вариант подключения действует лишь со специальной библиотекой LiquidCrystal_I2C1602V1, которую, впрочем, нетрудно найти в Сети и установить, после чего можно без проблем им пользоваться.

Шаг 4: Библиотека LiquidCrystal.h

Библиотеку LiquidCrystal.h можно скачать с официального ресурса - . Также вы можете скачать ниже по ссылкам:

Скетч

После того, как вы скачали архив замените папку LiquidCrystal в папке с библиотеками вашего каталога установки Arduino.

Вы можете увидеть примерный скетч в Файл -> Примеры -> LiquidCrystal -> HelloWorld_SPI (File -> Examples -> LiquidCrystal -> HelloWorld_SPI).

На этом наш очередной урок завершен. Желаем вам качественных проектов!




Top